SYDNEYBOYS HIGH SCHOOL moore park, surry hills

Year 10

Half Yearly Examination 2012

5.3 Mathematics

General Instructions

- Working time - 90 minutes
- Write using black or blue pen.
- Approved calculators may be used.
- All necessary working MUST be shown in every question if full marks are to be awarded.
- If more space is required, clearly write the number of the QUESTION on one of the back pages and answer it there. Indicate that you have done so.
- Clearly indicate your class by placing an X, next to your class
- All answers should be presented in simplest exact form, unless otherwise directed.
- Marks may not be awarded for untidy or badly arranged work.

Examiner: R.Elliott

NAME: \qquad

Class	Teacher	
10 A	Mr Fuller	
10 B	Mr Hespe	
10 C	Ms Chen	
10 D	Ms Nesbitt	
10 E	Ms Ward	
10 F	Mr Boros	
10 G	Mr McQuillan	

Question	Mark
1	$/ 19$
2	$/ 14$
3	$/ 15$
4	$/ 14$
5	$/ 14$
6	$/ 14$
7	$/ 102$
Total	

SECTION A

	QUESTION	ANSWER and WORKING	marks
1	Factorize (a) $8 x^{2} y-6 x$ (b) $81-x^{2}$		1 1
2	Simplify $\frac{12-3 x}{6}$		1
3	Solve $\frac{x^{2}}{2}=x$		1
4	Solve and graph solution on a number line: $\frac{2 x}{3}-5<2$		2
5	Find correct to three significant figures $\frac{\sqrt{5}}{\sqrt{2}-0.4^{2}}$		2
6	Write $\frac{5}{8}, 62 \%, \sqrt{0.36}, \frac{1}{\sqrt{3}}$ in ascending order.		1
7	What is the gradient of the line joining $(2,5)$ to $(-1,11)$		1
8	$x^{2}-5 x+k$ is a perfect square. Find k .		1
9	A quadratic equation has solutions $x=3$ and $x=-4$. Write it down in expanded form.		2
10	How many subsets are there of a set with three elements?		1
11	What is the percentage discount if a TV is bought for $\$ 144$ after receiving a $\$ 16$ discount?		1
12	A rhombus has diagonals of 15 cm and 12 cm.. Find the area.		1
13	Given $2 \sqrt{5 x}=\sqrt{y}$, find x in terms of y.		1
14	Find θ to the nearest minute.		2

	SECTION D	ANSWER and WORKING	marks
1	A tent has a square base of area $16 \mathrm{~m}^{2}$ and triangular sides. If the tent has a height of $2 m$. at its vertex, find the area of one of its triangular sides. (To nearest cm^{2}.)		3
2	A horse trough is in the shape of a prism with a trapezium cross section. The parallel sides of the trapezium are 38 cm . and 28 cm . respectively. (a) If the trough is 2 m . long find the surface area of metal needed to make it. (b)How many litres would it hold?		3
3	A man invested \$20,000 at 8\% PA Compound Interest for 4 years. (a) How much did this earn in interest? (b) What would the equivalent Simple Interest rate be to earn this amount?		4
4	In a year 1 class of 30 students, 18 study French, 17 study Art and 5 do neither. (a) Show this in a Venn diagram (b) A student is chosen at random. Find the probability that; (i) He does French but not Art (ii) He studies both subjects.		4

	SECTION E	ANSWER and WORKING	marks
1	Solve the equation $x^{2}=1-4 x$ by the completing the squares method.		3
2	Given $(2 \sqrt{3}-\sqrt{2})^{2}=a+b \sqrt{c}$, find a, b and c,		3
3	In this diagram match each equation with the correct parabola.	(a) $y=x^{2}$ (b) $y=-x^{2}$ (c) $y=3 x^{2}$ (d) $y=-x^{2}+3$ (e) $y=x^{2}+3$	2
4	Given the formula Find the value of t if $s=7, a=6$ and $u=1$		3
5	Show that the points $\mathrm{A}(-1,-3), \mathrm{B}(3,6)$ and $C(0,-1)$ are not collinear. Give full explanation.		3

	SECTION F	ANSWER and WORKING	marks
1	Write $\left(\sqrt{2}-\frac{1}{\sqrt{2}}\right)^{2}$ as a surd with rational denominator.	3	
2	Find the points where the parabola $y=x^{2}+3 x+4$ cuts the line $y=5 x+12$.	3	
3	If a man wants to have $\$ 10,000$ in 5 years time and he can get 7% Compound Interest calculated annually, what must he invest?		3
4	An American says that he gets 40 miles per gallon of petrol from his car. If one gallon $=$ 3.785 Litres and one mile $=1.61$ km find this rate in litres per 100 kilometres.		

	SECTION G	ANSWER and WORKING	marks
1	A computer is now worth \$320 after depreciating at 20\% Per Annum for 3 years. Find its original value to the nearest dollar.	3	
2	For what value of x does $y=x^{2}+2 x-8$ have a minimum value. What is this minimum value?	3	
3	The product of two positive consecutive multiples of 3 is 378. Form an equation to show this information and hence find the two numbers.		3
4	"When High play St. Josephs in Basketball there are 3 possible results.; win, loss or draw. Therefore the probability, when High next plays St. Josephs, that High wins, is 1/3". Is this statement true? Justify your answer.	3 5 The digits 1,2,5 and 7 are used to form 24 different 3 digit numbers (each digit is used only once). If one number is selected at random what is the probability of it being even?	2

τ	$\begin{aligned} 1+\varepsilon_{0} g Z & =\theta \\ \frac{s i n}{T} & =\theta \text { vis } \end{aligned}$	- วұпи!̣ụ 7รэлеәи әч7 ${ }^{07} \theta$ puty	$\dagger 1$
I	$\frac{\sigma z}{h}=x \quad b r=-0 \tau$		εI
I	$\tau^{n-3} a b$	 	ZI
I	$\%_{0} 01$	iłunoss!̣ 	II
1	8	¿ऽчиәшว 	01
τ	$\begin{aligned} & 0=21-x+2 \\ & 10=(1+x)(\varepsilon-x) \end{aligned}$	$\varepsilon=x$ suо̣nпоя seq womenbə эп̣егреnb \forall	6
I			8
I	- $Z-\frac{7-1}{s-11}=m$	$\left(I I^{〔} I-\right) 07$ 	L
1	$\frac{8}{5} 1029198.0{ }^{\prime} \frac{80}{1}$		9
乙	$82 \% 1$	$\frac{\tau^{*} 0-Z \Lambda}{S \Upsilon}$	ς
τ			\dagger
1	$2^{\prime} 0=x$	$x=\frac{z}{\tau^{x}}$ ә ${ }^{\circ} \mathrm{O} \mathrm{S}$	ε
1	$\frac{\bar{c}}{x-n}$	$\frac{9}{x \varepsilon-Z \mathrm{I}}$ Kỵ! ${ }^{\text {dum! }}$	τ
	$\begin{aligned} & (x+b)(x-b) \\ & \left.\left(\varepsilon-h x_{n}\right)\right)^{x} c \end{aligned}$		I
sqreut	פNITYOM PLe x M MSNY	NOILSAnd	

ς		¿ $0>9-x-{ }_{\tau} x$ sәop x јо sәпโел ұечм Іод T ${ }^{-1}$ $(z+x)(\varepsilon-x)$ 	
τ	$\frac{7}{1}=r-20=$		
z		¿पІр！M 	
ε	$\begin{array}{r} \frac{\overline{e \varepsilon}}{1 \varepsilon}=(\text { sporion -1) } d \\ \overline{\overline{\frac{e \varepsilon}{1}}}={ }_{s}\binom{\tau}{\overline{e \varepsilon}} \\ { }_{c} \tau \end{array}$	¿рвәч әио „รеә CSILP7 ＇sautul ¢ passof s！uioo jpruiou \forall	
e		 u！әu！ 	
sяipui	פNIXYOM Pue ẏM	\bigcirc NOILJ日S	

5

A	ω		N	-	
					唿
A	¢		ω	ω	

6

	＋	ω	N	－	
	\square				
	4	N	ω	ω	晨

	SECTION F	ANSWER and WORKING	marks
1	Write $\left(\sqrt{2}-\frac{1}{\sqrt{2}}\right)^{2}$ as a surd with rational denominator.	$\begin{aligned} \left(\frac{2-1}{\sqrt{2}}\right)^{2} & =\left(\frac{1}{\sqrt{2}}\right)^{2} \\ & =\frac{1}{2} \end{aligned}$	3
2	Find the points where the parabola $y=x^{2}+3 x+4$ cuts the line $y=5 x+12$.	$\begin{gathered} x^{2}+3 x+4=5 x+12 \\ x^{2}-2 x-8=0 \\ (x-4)(x+2)=0 \\ x=-2,4 \\ y=-10+12(x=-2) \\ =+2 \\ y=20+12(x=4) \\ =32 \\ \therefore \text { Point }(-2,2) \\ (4,32) \end{gathered}$	3
3	If a man wants to have $\$ 10,000$ in 5 years time and he can get 7\% Compound Interest calculated annually, what must he invest?	$\begin{aligned} 10000 & =P\left(1+\frac{7}{100}\right)^{5} \\ P & =\frac{10000}{1.075} \\ & =7129.861795 \text { (catco } \end{aligned}$ \therefore The rumot inest $\therefore \quad \$ 7129.86$	3 alot
4	An American says that he gets 40 miles per gallon of petrol from his car. If one gallon $=$ 3.785 Litres and one mile $=1.61 \mathrm{~km}$ find this rate in litres per 100 kilometres.	(3 dec. μ	3 ten 100

8

