Year 10

Half Yearly Examination 2016

Stage 5.3 Mathematics

General Instructions

- Working time - 90 minutes
- Write using black or blue pen.
- Approved calculators may be used.
- All necessary working MUST be shown in every question if full marks are to be awarded.
- If more space is required, clearly write the number of the QUESTION on one of the back pages and answer it there. Indicate that you have done so.
- Clearly indicate your class by placing an X, next to your class

NAME: \qquad

Class	Teacher	
10 A	Ms Kilmore	
10 B	Mr Choy	
10 C	Ms Millar	
10 D	Mr Wang	
10 E	Mr Fuller	
10 F	Ms Ward	
10 G	Mr Parker	

- All answers should be presented in simplest exact form, unless otherwise directed.
- Marks may not be awarded for untidy or badly arranged work.

Examiner: A.M.Gainford

Question	Mark
1	$/ 15$
2	$/ 16$
3	$/ 15$
4	$/ 15$
5	$/ 14$
6	$/ 11$
7	$/ 14$
Total	$/ 100$

Question 1. (15 marks)

		Answers
(a) 1	Express $\frac{2}{11}$ as an exact decimal.	
(b) 1	Find $\sqrt[3]{\frac{27 \times 0 \cdot 216}{8}}$ exactly.	
(c) 1	Simplify $\frac{\left(x^{2} y\right)^{3}}{x^{3} y}$	
(d) 1	Tom, Dick and Harry wish to share $\$ 1200$ in ratio 10:5:1. How much does Dick receive?	
(e) 1	A regular polygon has intrerior angles 156°. How many sides does it have?	
(f) 1	Express 2576798 in scientific notation, correct to 4 significant figures.	
(g) 1	Simplify (4x-6)-3(x-4)	
(h) 1	Express $0 . \dot{2} 5 \dot{2}$ as a common fraction in lowest terms.	

		Answers
(i) 1 1	Use your calculator to find the values of the following, correct to 4 decimal places: (i) $\cos 27^{\circ}$ (ii) $\tan 51^{\circ} 38^{\prime}$	(i) (ii)
(j)	Given that measurements are in centimetres, find the area of $\triangle A B C$ correct to 2 decimal places:	
(k) 1	Solve $3 x-4=5-x$.	
(1) 1	Find the point intersection of the lines $x+2 y=4$ and $x-y=-2$.	
(m) 1	Simplify $\frac{3}{\sqrt{5}-2}+\frac{2}{\sqrt{5}+2}$	
(n) 1	Find where the line $2 x+4 y=9$ crosses the y-axis.	

Question 2. (16 marks)

		Answers
(a)	A factory has a ratio of male to female workers of 5:4. If $\frac{1}{3}$ of the men, and $\frac{1}{4}$ of the women join the union, what fraction of the whole staff belong to the union?	
(b)	A shop buys a wide-screen television for $\$ 800$, and sells it for $\$ 1500$. Calculate the profit as a percentage of the selling price.	
$\mathbf{1}$	Simplify $\left(\frac{1}{2}-\frac{\sqrt{3}}{2}\right)\left(\frac{1}{2}+\frac{\sqrt{3}}{2}\right)$	
(c)	A triangular prism has a base of side 8 cm and altitude 9 cm. The height of the prism is 20 cm. Find its volume.	
(d)	Bill borrows $\$ 1000$ from a loan shark, and is charged 12% per month compound interest. How much does he owe after 3 months?	
(e)	Factorise completely: $a^{2}-4 b^{2}+a-2 b$ For tax purposes it depreciates at 60% per annum. Find its worth after two years.	
(f)	Fans	
$\mathbf{1}$	(g)	

(h) 2	Fred, standing atop a small tower, sees a soccer ball at C. If $A B$ is 12 m , and $B C$ is 10 m , and $A D \\| B C$ calculate the angle of depression, to the nearest degree.
(i) 1	Solve $\frac{2 x-1}{3}-\frac{x-2}{2}=1$
(j) 2	What is the equation of the line which has x and y intercepts at 4 and -3 respectively.
(k) 1	Find the exact value of x :
	A salesman earns $\$ 46$ commission for a particular sale, at a commission rate of 8%. What was the selling price of the item?

Question 3. (15 marks)

				Answers
(e)	The weight loss (in kg) of 20 randomly selected people on a special diet over three weeks is:85966745568677766455		(i)	
2	(i)	Make a frequency distribution table of the data, including cumulative frequency.		
2	(ii)	Calculate the mean, and median.	(ii) Mean= Median=	
(f)	Solve these quadratic equations by factorisation:			
1	(i) $2 x^{2}+7 x+6=0$			(i)
1	(ii) $6 x^{2}+11 x-10=0$			(ii)
(g)	Fred takes a home loan for $\$ 240000$ over 20 years. He pays equal monthly instalments of $\$ 1779.67$.			
1	(i) Find the total amount repaid.			(i)
1	(ii) Find the amount of interest paid.			(ii)
1	(iii) Use the simple interest formula to calculate the equivalent flat rate of interest per annum.			(iii)

Question 4. (15 marks)

		Answers
(a)	The hollow cylinder at right is made of "diecast", of density $1.74 \mathrm{~g} / \mathrm{cm}^{3}$. The dimensions are: $h=9 \mathrm{~cm}$, $r_{1}=5 \mathrm{~cm}$ and $r_{2}=2.5 \mathrm{~cm}$ By first finding the volume, calculate the mass of the cylinder, in grams correct to 2 decimal places.	Volume: Mass:
(b)	Solve these equations by completing the square:	
1 1	(i) $x^{2}+4 x+1=0$ (ii) $x^{2}-3 x-5=0$	
(c)	Jason invested \$100 000 for five years at 7% p.a. compounding annually.	
1	(i) Find the total value of the investment at the end of five years.	(i)
1	(ii) State the amount of interest earned over the five years.	(ii)
1	(iii) Find the simple interest rate which would have produced the same amount of interest.	(iii)

		Answers
(d)	For each equation, determine the discriminant, and state the number of distinct real solutions.	
2	(i) $x^{2}+x-6=0$	(i)
2	(ii) $x^{2}-3 x+9=0$	(ii)
2	(iii) $2 x^{2}-12 x+18=0$	(iii)
(e)	Find a if $\sqrt{a}=\sqrt{27}+\sqrt{12}$.	
2		

Question 5. (14 marks)

						Answers
(a)	If one letter is taken from each of the words 'BREAD' and 'BUTTER' at random. What is the probability that the two letters are the same?					
(b)	A combination lock has a combination of 4 digits as illustrated below. (i) How many combinations are possible? (ii) Alex has forgotten his combination but he remembers that: $>$ the first number is odd. $>$ the second number is even and $>$ the third number is greater than 6 . What is the maximum number of combinations he may need to try before he could open the lock?					(i)
1 2						
						(ii)

Question 6. (11 marks)

		Answers
(a)	Use an appropriate method to solve each of these equations:	
2	(i) $4 x^{2}-9=0$	
2	(ii) $3 x^{2}-2 x-1=0$	
2	(iii) $x^{2}+6 x-5=0$	
2	(iv) $\frac{x+1}{x}=x$	
(b)	A real estate agent charges the following scale of commission for properties sold:	
	$2 \frac{1}{2} \%$ of the first $\$ 220000$ value 2% of the next $\$ 100000$ value 1% thereafter	
1	(i) How much commission does an agent earn for selling a house for $\$ 300000$?	(i)
2	(ii) An agent earned $\$ 9900$ commission. Find the price of the house he sold.	(ii)

Question 7. (14 marks)

		Answers
(a) 2 2	Solve these equations, each of which is reducible to a quadratic: (i) $x^{4}-13 x^{2}+36=0$ (ii) $4^{x}-9\left(2^{x}\right)+8=0$	(i) (ii)
(b)	A fixed term deposit of $\$ 60000$ is established for ten years at $7 \frac{1}{2} \%$ per annum compound interest, compounding annually. Calculate the balance at the end of the ten years.	
(c)	The quadratic equation $x^{2}+4 x-1=0$ has two distinct solutions. Find:	
2	(i) The average of the two solutions. (ii) The product of the two solutions.	(i) (ii)

(c)	A pack of 52 cards consists of four suits with 13 cards in each suit.	
$\mathbf{2}$	(i)One card is drawn from the pack and kept on the table. A second card is drawn and placed beside it on the table. What is the probability that the second card is from a different suit to the first?	(i)
(ii)The two cards are replaced and the pack shuffled. Four cards are chosen from the pack and placed side by side on the table. What is the probability that these four cards are all from different suits?	(ii)	

This is the end of the paper.

SYDNEY BOYS HIGH SCHOOL MoOREPARK, SURRY HILLS

2016

Year 10 Half Yearly

Advanced Mathematics

Solutions

Question	Teacher
Q1	PSP
Q2	AW
Q3	AF
Q4	AYW
Q5	JM
Q6	EC
Q7	BK

(a) 1	Express $\frac{2}{11}$ as an exact decimal. $\frac{2}{11}=\frac{18}{99}=0 . \dot{1} \dot{8}$	0.18
(b) $\begin{array}{r} \\ \\ 1\end{array}$	Find $\sqrt[3]{\frac{27 \times 0.216}{8}}$ exactly. $\sqrt[3]{\frac{27 \times 0.216}{8}}=\sqrt[3]{0.729}=0.9$	0.9
(c)	Simplify $\frac{\left(x^{2} y\right)^{3}}{x^{3} y}$ $\frac{\left(x^{2} y\right)^{3}}{x^{3} y}=\frac{x^{6} y^{3}}{x^{3} y}=x^{3} y^{2}$	$x^{3} y^{2}$
(d)	Tom, Dick and Harry wish to share $\$ 1200$ in ratio $10: 5: 1$. How much does Dick receive? Dick receives $\frac{5}{16}$ of $\$ 1200$ i.e. $\frac{5}{16} \times 1200=375$ of $\$ 1200$	\$375
(e) $\begin{array}{r} \\ 1\end{array}$	A regular polygon has interior angles 156°. How many sides does it have? The exterior angles of a (convex) polygon is 360°. If the interior angle is 156°, the exterior angle is 24°. \therefore Number of sides $=360 \div 24=15$	15 sides
(f) $\begin{array}{r} \\ \\ 1\end{array}$	Express 2576798 in scientific notation, correct to 4 significant figures. $\underbrace{2576}_{\text {4sf }} 798 \doteqdot 2577000=2.577 \times 10^{6}$	2.577×10^{6}
(g)	Simplify $(4 x-6)-3(x-4)$ $(4 x-6)-3(x-4)=4 x-6-3 x+12=x+6$	$x+6$
(h)	Express $0 . \dot{2} 5 \dot{2}$ as a common fraction in lowest terms. $0 . \dot{2} 5 \dot{2}=\frac{252}{999}=\frac{28}{111} .$ ALIERNATIVELY Let $x=0 . \dot{2} 5 \dot{2} \Rightarrow 1000 x=252.25 \dot{2}$ On subtracting, $999 x=252$ and so $x=\frac{252}{999}$.	$\frac{28}{111}$

Question 2. (16 marks)

$$
\begin{aligned}
& \text { its worth after two years. } \\
& \begin{aligned}
A & =P(1-r)^{n} \\
& =3500(0.4)^{2}
\end{aligned}
\end{aligned}
$$

Question 3. (15 marks)

Question 4. (15 marks)

Notes
4) (II) 8(II) Students lost halta mark if they didst leave their answer to 2d.p. due to it is a money question.

1) (III)

Students lost half a mark it they didn't write decimal places rounding.

Question 5
(a) P (two letters the same)

$$
\begin{align*}
& =P(E E)+P(B B)+P(R R) \\
& =3 \times\left(\frac{1}{5} \times \frac{1}{6}\right) \\
& =\frac{3}{30} \\
& =\frac{1}{10} \tag{2}
\end{align*}
$$

(b) i)

$$
\begin{align*}
10^{4} & =10 \times 10 \times 10 \times 10 \\
& =10000 \tag{1}
\end{align*}
$$

ii) $\left\{\begin{array}{c}1 \text { st digit } \\ 1,3,5,7,9\end{array}\right\}\left\{\begin{array}{c}\text { nd digit } \\ 0,2,4,6,8\end{array}\right\}\left\{\begin{array}{c}3 \text { rd digit } \\ 7,8,9\end{array}\right\}\left\{\begin{array}{c}4 \text { th digit } \\ 0-9\end{array}\right\}$

The maximum number of combinations possible

$$
\begin{align*}
& =5 \times 5 \times 3 \times 10 \\
& =750 \tag{2}
\end{align*}
$$

(zero is an even number)
(c)

$$
\text { i) } \begin{align*}
A & =x \times y \\
50 & =x y \\
\therefore y & =\frac{50}{x} \tag{1}
\end{align*}
$$

(where y is the length)

$$
\text { ii) } \begin{aligned}
x+5 & =\frac{50}{x} \\
x(x+5) & =50 \\
x^{2}+5 x-50 & =0 \\
(x+10)(x-5) & =0 \\
x & =5,-10
\end{aligned}
$$

However $x>0 \therefore x=5$
(d) i) $A=356$

$$
\begin{equation*}
B=360 \tag{array}
\end{equation*}
$$

ii) $\frac{20}{400}=5 \%$
[1]
iii) $\frac{16}{20}=\frac{4}{5}$
iv) $24+4=28$
[1]

Question(i)
(i)

$$
\begin{align*}
4 x^{2}-9 & =0 \\
4 x^{2} & =9 \\
x & = \pm \frac{3}{2} \tag{2}
\end{align*}
$$

(ii) $3 x^{2}-2 x-1=0$.

$$
3 x^{2}-3 x+x-1=0
$$

$$
3 x(x-1)+(x-1)=0
$$

$$
(3 x+1)(x-1)=0
$$

$$
\therefore x=-1 / 3,12
$$

(iii)

$$
\begin{align*}
& \text { 1) } x^{2}+6 x-5=0 \\
& x=\frac{-6 \pm \sqrt{36+20}}{2} \\
& x=-3 \pm \sqrt{14} \\
& x=\left\{\begin{array}{l}
0.742 . \\
-6.742 .
\end{array}\right. \tag{2}
\end{align*}
$$

(iv)

$$
\begin{align*}
& x+1=x^{2} \\
& x=\frac{-1 \pm \sqrt{5}}{2} \\
& x=\left\{\begin{array}{l}
0.62 \\
-1.62
\end{array}\right. \tag{2}
\end{align*}
$$

(b)
220000×0.025 $=5500$.
$+80000 \times 0.02$ $=160.0$
\therefore Commission

$$
\begin{aligned}
& =5500+1600 \\
& =\$ 7100
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& 0.025 \times 220000 \\
&=5500 \\
& 0.02 \times 100000 \\
&=2000
\end{aligned}
$$

$9900-5500-2000$ $=2400$
$2400=170$
$\therefore 240000=100 \%$
\therefore Price oy tronse
$240000+220000$ $+100000$

$$
=\$ 56000^{\circ}
$$

Question 7. (14 marks)

(c) Many mistakes here. In (i) some added and didn't divide by 2. Part (ii) was done poorly and often not attempted. Many students rounded their solutions for rather than leaving as a surd so that calculations were not exact.

Many students did not realise that the probability of drawing the first card is $52 / 52$ which $=1$. Part (I) was done more successfully than part (ii). Many students did not use 39, 26 and 13 as the number of cards remaining in the different suites after each draw.

This iṣ the end of the paper.

