

MOORE PARK, SURRY HILLS

Year 10

Half Yearly Examination 2016

Stage 5.3 Mathematics

General Instructions

- Working time 90 minutes
- Write using black or blue pen.
- Approved calculators may be used.
- All necessary working MUST be shown in every question if full marks are to be awarded.
- If more space is required, clearly write the number of the QUESTION on one of the back pages and answer it there. Indicate that you have done so.
- Clearly indicate your class by placing an X, next to your class

NAME:

Class	Teacher	
10 A	Ms Kilmore	
10 B	Mr Choy	
10 C	Ms Millar	
10 D	Mr Wang	
10 E	Mr Fuller	
10 F	Ms Ward	
10 G	Mr Parker	

• All answers should be presented in simplest exact form, unless otherwise directed.

• Marks may not be awarded for untidy or badly arranged work.

Examiner: A.M.Gainford

Question	Mark
1	/15
2	/16
3	/15
4	/15
5	/14
6	/11
7	/14
Total	/100

Question 1. (15 marks)

		Answers
(a) 1	Express $\frac{2}{11}$ as an exact decimal.	
(b) 1	Find $\sqrt[3]{\frac{27 \times 0.216}{8}}$ exactly.	
(c) 1	Simplify $\frac{(x^2y)^3}{x^3y}$	
(d) 1	Tom, Dick and Harry wish to share \$1200 in ratio 10:5:1. How much does Dick receive?	
(e) 1	A regular polygon has intrerior angles 156°. How many sides does it have?	
(f) 1	Express 2 576 798 in scientific notation, correct to 4 significant figures.	
(g)	Simplify $(4x-6) - 3(x-4)$	
1		
(h)	Express 0.252 as a common fraction in lowest terms.	
1		

		Answers
(i)	Use your calculator to find the values of the following, correct to 4 decimal places:	
1		(i)
	(i) $\cos 27^{\circ}$	
1	(ii) tan 51°38'	(ii)
(j) 1	Given that measurements are in centimetres, find the area of ΔABC correct to 2 decimal places:C 	
	$A \xrightarrow{75^{\circ}} B$	
(k)	Solve $3x - 4 = 5 - x$.	
1		
(1)	Find the point intersection of the lines $x + 2y = 4$ and $x - y = -2$.	
1		
(m)	Simplify $\frac{3}{2} + \frac{2}{2}$	
1	Simplify $\sqrt{5}-2$ $\sqrt{5}+2$	
(n)	Find where the line $2x + 4y = 9$ crosses the <i>v</i> -axis.	
()		
1		

Question 2. (16 marks)

	Answers
A factory has a ratio of male to female workers of 5:4.	
If $\frac{1}{3}$ of the men, and $\frac{1}{4}$ of the women join the union, what fraction	
of the whole staff belong to the union?	
A shop buys a wide-screen television for \$800, and sells it for	
\$1500. Calculate the profit as a percentage of the selling price.	
$(1 \overline{2})(1 \overline{2})$	
Simplify $\left \frac{1}{2} - \frac{\sqrt{3}}{2} \right \left \frac{1}{2} + \frac{\sqrt{3}}{2} \right $	
A triangular prism has a base of side 8 cm and altitude 9 cm. The	
height of the prism is 20 cm.	
Find its volume.	
Bill borrows \$1000 from a loan shark, and is charged 12% per	
month compound interest.	
How much does he owe after 3 months?	
Factorise completely: $a^2 - 4b^2 + a - 2b$	
Bill buys a new Apple computer for \$3500.	
For tax purposes it depreciates at 60% per annum.	
Find its worth after two years.	
	A factory has a ratio of male to female workers of 5:4. If $\frac{1}{3}$ of the men, and $\frac{1}{4}$ of the women join the union, what fraction of the whole staff belong to the union? A shop buys a wide-screen television for \$800, and sells it for \$1500. Calculate the profit as a percentage of the selling price. Simplify $\left(\frac{1}{2} - \frac{\sqrt{3}}{2}\right) \left(\frac{1}{2} + \frac{\sqrt{3}}{2}\right)$ A triangular prism has a base of side 8 cm and altitude 9 cm. The height of the prism is 20 cm. Find its volume. Bill borrows \$1000 from a loan shark, and is charged 12% per month compound interest. How much does he owe after 3 months? Factorise completely: $a^2 - 4b^2 + a - 2b$ Bill buys a new Apple computer for \$3500. For tax purposes it depreciates at 60% per annum. Find its worth after two years.

(h) 2	Fred, standing atop a small tower, sees a soccer ball at C. If AB is 12m, and BC is 10m, and $AD \parallel BC$ calculate the angle of depression, to the nearest degree. B Distance C	
(i) 1	Solve $\frac{2x-1}{3} - \frac{x-2}{2} = 1$	
(j) 2	What is the equation of the line which has <i>x</i> and <i>y</i> intercepts at 4 and -3 respectively.	
(k) 1	Find the exact value of <i>x</i> :	
(l) 1	A salesman earns \$46 commission for a particular sale, at a commission rate of 8%. What was the selling price of the item?	

Question 3. (15 marks)

(a)	Solve the following quadratic equations:	
1	(i) $3x^2 = 15x$	(i)
1	(ii) $24x^2 = 46x - 10$	(ii)
(b)	If $x = 1$, find the value of:	
1	$3^x + 3^{1-x} + 3^{x-2}$	
(c)	A right circular cylinder has height 20 cm and base radius 4 cm.	
1	(i) Find the volume in cubic centimetres, in terms of π .	(i)
1	(ii) Find the total surface area in square centimetres in terms of π .	(ii)
(d) 1	Find, to the nearest degree, the smallest angle of the triangle <i>ABC</i> , where $a = 6$ cm, $b = 10$ cm, and $c = 8$ cm.	

		Answers
(e) 2	The weight loss (in kg) of 20 randomly(i)selected people on a special diet over threeweeks is:8 5 9 6 6 7 4 5 5 6 8 6 7 7 7 6 6 4 5 5(i)(i)Make a frequency distribution table of the data, including cumulative frequency.	
2	(ii) Calculate the mean, and median. (ii) Mean= Median=	
(f)	Solve these quadratic equations by factorisation:	
1	(i) $2x^2 + 7x + 6 = 0$	(i)
1	(ii) $6x^2 + 11x - 10 = 0$	(ii)
(g)	Fred takes a home loan for \$240 000 over 20 years. He pays equal monthly instalments of \$1779.67.	
1	(i) Find the total amount repaid.	(i)
1	(ii) Find the amount of interest paid.	(ii)
1	(iii) Use the simple interest formula to calculate the equivalent flat rate of interest per annum.	(iii)

Question 4. (15 marks)

		Answers
(a) 2	The hollow cylinder at right is made of "diecast", of density $1.74g/cm^3$. The dimensions are: $h = 9cm$, $r_1 = 5cm$ and $r_2 = 2.5cm$ By first finding the volume, calculate the mass of the cylinder, in grams correct to 2 decimal places.	Volume: Mass:
(b)	Solve these equations by completing the square:	
1	(i) $x^2 + 4x + 1 = 0$	
1	(ii) $x^2 - 3x - 5 = 0$	
(c)	Jason invested \$100 000 for five years at 7% p.a. compounding annually.	
1	(i) Find the total value of the investment at the end of five years.	(i)
1	(ii) State the amount of interest earned over the five years.	(ii)
1	(iii) Find the simple interest rate which would have produced the same amount of interest.	(iii)

		Answers
(d)	For each equation, determine the discriminant, and state the number of distinct real solutions.	
2	(i) $x^2 + x - 6 = 0$	(i)
2	(ii) $x^2 - 3x + 9 = 0$	(ii)
2	(iii) $2x^2 - 12x + 18 = 0$	(iii)
(e)	Find <i>a</i> if $\sqrt{a} = \sqrt{27} + \sqrt{12}$.	
2		

Question 5. (14 marks)

 (a) If one letter is taken from each of the words 'BREAD' and 'BUTTER' at random. What is the probability that the two letters are the same? (b) A combination lock has a combination of 4 digits as illustrated below. * * * * (i) How many combinations are possible? (ii) Alex has forgotten his combination but he remembers that: > the first number is odd. > the second number is even and > the third number is greater than 6. 			Answers
 'BUTTER' at random. What is the probability that the two letters are the same? (b) A combination lock has a combination of 4 digits as illustrated below. * * * * * (i) How many combinations are possible? (ii) Alex has forgotten his combination but he remembers that: > the first number is odd. > the second number is even and > the third number is greater than 6. 	(a)	If one letter is taken from each of the words 'BREAD' and	
 are the same? (b) A combination lock has a combination of 4 digits as illustrated below. * * * * 1 (i) How many combinations are possible? (i) Alex has forgotten his combination but he remembers that: > the first number is odd. > the second number is even and > the third number is greater than 6. 		'BUTTER' at random. What is the probability that the two letters	
 (b) A combination lock has a combination of 4 digits as illustrated below. * * * * * 1 (i) How many combinations are possible? (i) 2 (ii) Alex has forgotten his combination but he remembers that: > the first number is odd. > the second number is even and > the third number is greater than 6. 	2	are the same?	
 (b) A combination lock has a combination of 4 digits as illustrated below. * * * * * 1 (i) How many combinations are possible? (i) 2 (ii) Alex has forgotten his combination but he remembers that: > the first number is odd. > the second number is even and > the third number is greater than 6. 			
 (b) A combination lock has a combination of 4 digits as illustrated below. (i) How many combinations are possible? (i) Alex has forgotten his combination but he remembers that: the first number is odd. the second number is even and the third number is greater than 6. 			
 (b) A combination lock has a combination of 4 digits as illustrated below. * * * * * 1 (i) How many combinations are possible? (i) 2 (ii) Alex has forgotten his combination but he remembers that: > the first number is odd. > the second number is even and > the third number is greater than 6. 			
 (b) A combination lock has a combination of 4 digits as illustrated below. * * * * * 1 (i) How many combinations are possible? (i) 2 (ii) Alex has forgotten his combination but he remembers that: > the first number is odd. > the second number is even and > the third number is greater than 6. 			
below. i i	(b)	A combination lock has a combination of 4 digits as illustrated	
1 (i) How many combinations are possible? (i) 2 (ii) Alex has forgotten his combination but he remembers that: (ii) > the first number is odd. > the second number is even and > the third number is greater than 6. (ii)		below.	
1 (i) How many combinations are possible? (i) 2 (ii) Alex has forgotten his combination but he remembers that: (iii) > the first number is odd. (iii) > the second number is even and (iii) > the third number is greater than 6.			
1 (i) How many combinations are possible? (i) 2 (ii) Alex has forgotten his combination but he remembers that: iii) > the first number is odd. iii) > the second number is even and iii) > the third number is greater than 6.			
1 (1) How many combinations are possible? (i) 2 (ii) Alex has forgotten his combination but he remembers that: > > the first number is odd. > the second number is even and > the third number is greater than 6. (ii)			
 2 (ii) Alex has forgotten his combination but he remembers that: > the first number is odd. > the second number is even and > the third number is greater than 6. 	1	(1) How many combinations are possible?	(i)
 (ii) Their has forgotion his contained out he remembers that: the first number is odd. the second number is even and the third number is greater than 6. 	2	(ii) Alex has forgotten his combination but he	
 the first number is odd. the second number is even and the third number is greater than 6. 	-	remembers that	
 the second number is even and the third number is greater than 6. 		\succ the first number is odd.	
\succ the third number is greater than 6.		\succ the second number is even and	
		\succ the third number is greater than 6.	
What is the maximum number of combinations he may (ii)		What is the maximum number of combinations he may	(ii)
need to try before he could open the lock?		need to try before he could open the lock?	()

(c)					
		50 cm ²	x cn	n	
			5 cm	1	
	·		ł		
	The rectangle above	e has area 50 cm ²	, and width <i>x</i> cm.		
1	(i) Find the	length of the rect	angle in terms of a	c	(i)
•		length of the reet			
2	(ii) The recta	angle is extended	by 5 cm to form a	square.	(11)
	Form a q	uadratic equation	and find the value	e of x.	
(b)	Researchers have a	leveloped a new f	test for the measle	s virus and	
(u)	have tested it on a group of patients for whom it is already known				
	table below.				
	Positive Test Negative Test Totals				
		Result	Result		
	Patients with Measles	16	4	20	
	Patients without	24	Value A	380	
	Totals		Value B	400	(1) A=
2	(i) Write down the missing values A and B at right				B=
1	(i) What percentage of nationts had the massles?				(;;)
1	(ii) what percentage of patients had the measles?				(11)
2	(iii) What is the chance that a patient with measles will be correctly identified by this test?			sies will be	(iii)
1	(iv) How many of the tests gave the wrong result?			lt?	
1			č		(1V)

Question 6. (11 marks)

		Answers
(a)	Use an appropriate method to solve each of these equations:	
2	(i) $4x^2 - 9 = 0$	
2	(ii) $3x^2 - 2x - 1 = 0$	
2	(iii) $x^2 + 6x - 5 = 0$	
2	(iv) $\frac{x+1}{x} = x$	
(b)	A real estate agent charges the following scale of commission for	
(0)	properties sold:	
	$2\frac{1}{2}$ % of the first \$220,000 value	
	$2\frac{2}{2}$ of the next \$100 000 value	
	1% thereafter	
1	(i) How much commission does an agent earn for selling a house for \$300 000?	(i)
2	(ii) An agent earned \$9900 commission. Find the price of the house he sold.	(ii)

Question 7. (14 marks)

		Answers
(a)	Solve these equations, each of which is reducible to a quadratic:	
2	(i) $x^4 - 13x^2 + 36 = 0$	(i)
2	(ii) $4^x - 9(2^x) + 8 = 0$	(ii)
(b)	A fixed term deposit of \$60 000 is established for ten years at $7\frac{1}{2}$ % per annum compound interest, compounding annually	
	$7\frac{1}{2}$ /6 per annum compound interest, compounding annuary.	
2	Calculate the balance at the end of the ten years.	
(c)	The quadratic equation $x^2 + 4x - 1 = 0$ has two distinct solutions. Find:	
2	(i) The average of the two solutions	(i)
	(i) The average of the two solutions.	
2	(ii) The product of the two solutions.	(ii)

(c)	A pack o	f 52 cards consists of four suits with 13 cards in each suit.	
2	(i)	One card is drawn from the pack and kept on the table. A second card is drawn and placed beside it on the table. What is the probability that the second card is from a different suit to the first?	(i)
2	(ii)	The two cards are replaced and the pack shuffled. Four cards are chosen from the pack and placed side by side on the table. What is the probability that these four cards are all from different suits?	(ii)

This is the end of the paper.

2016

Year 10 Half Yearly

Advanced Mathematics

Solutions

Question	Teacher
Q1	PSP
Q2	AW
Q3	AF
Q4	AYW
Q5	JM
Q6	EC
Q7	BK

Question 1

SOLUTIONS

(a)	Express $\frac{2}{11}$ as an exact decimal.	
1	$\frac{2}{11} = \frac{18}{99} = 0.\dot{1}\dot{8}$	0.18
(b)	Find $\sqrt[3]{\frac{27 \times 0.216}{8}}$ exactly.	
1	$\sqrt[3]{\frac{27 \times 0.216}{8}} = \sqrt[3]{0.729} = 0.9$	0.9
(c) 1	Simplify $\frac{(x^2y)^3}{x^3y}$	3.2
	$\frac{\left(x^{2} y\right)^{3}}{x^{3} y} = \frac{x^{6} y^{3}}{x^{3} y} = x^{3} y^{2}$	x ³ y ²
(d)	Tom, Dick and Harry wish to share \$1200 in ratio 10 : 5 : 1.	
1	How much does Dick receive? Dick receives $\frac{5}{16}$ of \$1200 i.e. $\frac{5}{16} \times 1200 = 375$ of \$1200	\$375
(e) 1	A regular polygon has interior angles 156°. How many sides does it have?	
	The exterior angles of a (convex) polygon is 360° . If the interior angle is 156° , the exterior angle is 24° . \therefore Number of sides = $360 \div 24 = 15$	15 sides
(f) 1	Express 2 576 798 in scientific notation, correct to 4 significant figures.	
I	$\underbrace{2576}_{4\mathrm{sf}}798 \doteq 2577000 = 2.577 \times 10^6$	2.577×10^{6}
(g)	Simplify $(4x-6) - 3(x-4)$	
1	(4x-6)-3(x-4) = 4x-6-3x+12 = x+6	<i>x</i> + 6
(h)	Express 0.252 as a common fraction in lowest terms.	
1	$0.\dot{2}\dot{5}\dot{2} = \frac{252}{999} = \frac{28}{111}.$	
	ALTERNATIVELY	28
	Let $x = 0.252 \implies 1000x = 252.252$	111
	On subtracting, $999x = 252$ and so $x = \frac{252}{999}$.	

(i)	Use your calculator to find the values of thje following, correct to 4	
1	decimal places:	() 0.0010
1	(i) $\cos 27^\circ$	(1) 0.8910
	DEGREES mode	
1	(ii) tan 51°38′	(ii) 1.2632
(1)	No half marks given for this question	
(J)	Deleted	
(k)	Solve $3x - 4 = 5 - x$.	
		··· 21 ⁹ 2.25
1	$\therefore 4x = 9$	$x = 2\frac{1}{4}, -\frac{1}{4}, 2.25$
	$\therefore x = 2.25$	
(1)	Find the point intersection of the lines $r + 2y = 4$ and $r - y = -2$	
(1)	The the point intersection of the inters $x + 2y = 4$ and $x - y = -2$.	
1	$x+2y=4 \Rightarrow y=-\frac{1}{2}x+2$	
	$x - y = -2 \implies y = x + 2$	(0, 2)
	The point of intersection is at the <i>y</i> -intercept.	
()	2 2	
(m)	Simplify $\frac{3}{\sqrt{5}-2} + \frac{2}{\sqrt{5}-2}$.	
1	$\sqrt{5-2}$ $\sqrt{5+2}$	
	$\frac{3}{3} + \frac{2}{3} = \frac{3(\sqrt{5}+2)+2(\sqrt{5}-2)}{3}$	_
	$\sqrt{5}-2$, $\sqrt{5}+2$, $(\sqrt{5}-2)(\sqrt{5}+2)$	$5\sqrt{5+2}$
	$3\sqrt{5} + 6 + 2\sqrt{5} - 4$	
	$=\frac{5\sqrt{5+5+2\sqrt{5}-1}}{5-4}$	
	$-5\sqrt{5}+2$	
	- 5 4 5 + 2	
(n)	Find where the line $2x + 4y = 9$ crosses the y-axis.	
	y-intercepts are when $x = 0$	0
	$\therefore 4y - 9$	$y = 2\frac{1}{4}, \frac{y}{4}, 2.25$
	$\therefore y = 2.25$	4

MsWard

Question 2. (16 marks)

٧

τ.,

e.

		Answers
(a)	A factory has a ratio of male to female workers of 5:4.	
	If $\frac{1}{3}$ of the men, and $\frac{1}{4}$ of the women join the union, what fraction	
2	of the whole staff belong to the union? Bo : 24	8
	Very poorly-done. 10 men 6 women	27
(b)	A shop buys a wide-screen television for \$800, and sells it for	
	\$1500. Calculate the profit as a percentage of the selling price.	, 2 01
	done 1500 × 100	70 3 ملبا
(c)	$(1 \sqrt{3})(1 \sqrt{3}) + \sqrt{2} \sqrt{2}$	
	Simplify $\left $	- a
	Poorly done	
(d)	A triangular prism has a base of side 8 cm and altitude 9 cm. The	
4	height of the prism is 20 cm.	
L	$A = \frac{1}{1}$	720 cm ³
	As-2bh V=Ah	· · · ·
	$= 3b \mathrm{cm}^2 = 3b(20)$	
(e)	Bill borrows \$1000 from a loan shark, and is charged 12% per	
2	How much does he over after 3 months?	
4	A $\mathcal{A}(\mathcal{A})^{1}$	1404.93.
	H=1(1+1)	
	= 1000 (1+0.12) - 1000 (1+0.	· · · · · ·
(1)	Factorise completely: $a^2 - 4b^2 + a - 2b$	
1	(a+2b)(a-2b) + (a-2b) $(a-2b)$	25)[07257]
	Very poorly dow	re
(g)	Bill buys a new Apple computer for \$3500.	
	For tax purposes it depreciates at 60% per annum.	
	Find its worth after two years. Very well elove.	\$560
	$ A = V(1 - \Gamma)^{-1}$	
	=3500(0.4)	
	$\int \frac{dx}{dx} dx$	

processian # Store

Sec. - Ardie

SBHS Mathematics Half-Yearly 2016

\$ 64

SBHS Mathematics Half-Yearly 2016

Question 3. (15 marks)

(a)	Solve the following quadratic equations: $3x^2 - 15x = 0$	a nel al EX frances
1	(i) $3x^2 = 15x$ $3x(x-5) = 0$	(i) $\chi = 0, 5$
1	(ii) $24x^2 = 46x - 10$ $24x^2 - 46x + 10 = 0$ $12x^2 - 23x + 5 = 0$ $\frac{x}{4} = 0$ $12x^2 - 20x - 3x + 5 = 0$ 4x(3x - 5) - (3x - 5) = 0	$x = \frac{1}{4}, \frac{5}{3}$
(b)	(3x-5)(4x-1)=0 If $x=1$, find the value of:	12
1	$3^{x} + 3^{1-x} + 3^{x-2} = 3^{1} + 3^{1-1} + 3^{1-2}$	3
(c) 1	 A right circular cylinder has height 20 cm and base radius 4 cm. (i) Find the volume in cubic centimetres, in terms of π. 	$V = \pi r^{2}h$ (i) = $\pi(4)^{2}(20)$ = 320π
1	(ii) Find the total surface area in square centimetres in terms of π .	(ii) $SA = 2\pi r^{2} + 2\pi rh$ $= 2\pi (4)^{2} + 2\pi (4)(2)$ $= 192\pi$
(d) 1	Find, to the nearest degree, the smallest angle of the triangle <i>ABC</i> , where $a = 6 \text{ cm}$, $b = 10 \text{ cm}$, and $c = 8 \text{ cm}$. $fan 0 = \frac{6}{8}$ $a = \frac{10}{8} + \frac{10}{8} + \frac{10}{8} = \frac{10}{8} + $	37°

SBHS Mathematics Half-Yearly 2016

	16				Answers
(e)	The weight loss (in kg) of 20 randomly selected people on a special diet over three weeks is: 8 5 9 6 6 7 4 5 5 6 8 6 7 7 7 6 6 4 5 5	(i) x 4 5	Tally 11 HIT	f 2 5	C.f 2 7
2	 Make a frequency distribution table of the data, including cumulative frequency. 	6789	HTT I 111(11 1	6421	13 17 19 20
2	(ii) Calculate the mean, and median.	(ii) Me	an= 6. dian=	1	
f)	Solve these quadratic equations by factorisation:	:			
1	(i) $2x^2 + 7x + 6 = 0$ x + 7 (2x + 3) + 2 (2x + 3) + 2 (2x + 3) (x + 3)	(2x+3)=0	=0)=0		(i) $\chi = -\frac{3}{2}, -2$
1	(ii) $6x^{2}+11x-10=0$ $6x^{2}+15x-4$ x = -60 $3x(2x+5)-4+ = -11$ $(2x+5)(3x)$	+x - 10 2(2x+ (-2) =)=0 5)=0 =0	,	$(ii) \chi = -\frac{5}{2}, \frac{2}{3}$
g)	Fred takes a home loan for \$240 000 over 20 yea He pays equal monthly instalments of \$1779.67.	ars.			
1	(i) Find the total amount repaid. 1179.67	×12×2	-0 =		(i) \$427120-80
1	(ii) Find the amount of interest paid. 427120	0-80-1	240000	0 =	(ii) \$187120∙8
1	(iii) Use the simple interest formula to calcula flat rate of interest per annum. $I = 1$ 187120.80	ate the eq $P_r t$ = 2400	uivalent	.0)	(iii) 3.9%
		1000			

SBHS Mathematics Half-Yearly 2016

7

Question 4. (15 marks)

(a) The hollow cylinder at right is made of "diseast", of density 1.74g / cm ³ . The dimensions are: $h = 9cm$, $r_1 = 5cm$ and $r_2 = 2.5cm$ By first finding the volume, calculate the mass of the cylinder, in grams correct to 2 decimal places. 1) $V = \pi \ln \left(R^2 - r^2 \right)$ $= \pi \times 9 \times (5^2 - 2.5^2) = 165.75 \pi$ (22.45 grams) (b) Solve these equations by completing the square: 1) $Mass = 0ensity \times Volume$ (b) Solve these equations by completing the square: 1) $Mass = 0ensity \times Volume$ (i) $x^2 + 4x + 1 = 0$ $x^2 + 4x + 2^2 = -1 + 2^2$ $(x + 2)^2 = 3$ $x^2 - 3x + (1.5)^2 = 5 + (1.5)^2$ $(x - 1.5)^2 = 7.25$ (c) Jason invested \$100 000 for five years at 7% p.a. compounding annually. 1 (i) Find the total value of the investment at the end of five years: $$100000 (1.07)^5$ 1 (ii) State the amount of interest earned over the five years. $\Im \{140^2 55 \cdot 17 - \frac{4}{3} to 0.000$ 1 (iii) Find the simple interest rate which would have produced the same amount of interest. $\Im g \cdot 05 / k$ $\Im g \cdot 05 / k$			Answers	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	(a) 2	The hollow cylinder at right is made of "diecast", of density $1.74g/cm^3$. The dimensions are: $h = 9cm$, $r_1 = 5cm$ and $r_2 = 2.5cm$ By first finding the volume, calculate the mass of the cylinder, in grams correct to 2 decimal places. 1) $V = \pi h (R^2 - r^2)$ $= \pi \times 9 \times (5^2 - 2.5^2) = 167.75\pi$	Volume: 530.14 cm ² (2d.p.) Mass: 922.45grams	
(b) Solve these equations by completing the square: 1 (i) $x^2 + 4x + 1 = 0$ $x^2 + 4x + 2^2 = -1 + 2^2$ (ii) $x^2 - 3x + 2^2 = -1 + 2^2$ (iii) $x^2 - 3x - 5 = 0$ $x^2 - 3x + (1 \cdot 5)^2 = 5 + (1 \cdot 5)^2$ $x - 1 \cdot 5 = 1 + (7 \cdot 25)^2$ $x - 1 \cdot 5 = 1 + (7 \cdot 25)^2$ $x - 1 \cdot 5 = 1 + (7 \cdot 25)^2$ (c) Jason invested \$100 000 for five years at 7% p.a. compounding annually. 1 (i) Find the total value of the investment at the end of five years. $1 = 0 0 0 0 = 1 + 2^2$ (ii) $\frac{1}{29} = \frac{3 \pm 129}{2}$ (iii) $\frac{1}{29} = \frac{3 \pm 129}{2}$ (iv) $\frac{1}{29} = \frac{1}{2} = \frac{1}{$		" 11) Mass = Density x Volume		
1 (i) $x^{2}+4x+1=0$ $x^{2}+4x+1=0$ $x^{2}+4x+1=0$ $(x+2)^{2} = 3$ 1 (ii) $x^{2}-3x-5=0$ $x^{2}-3x+(1\cdot5)^{2} = 5+(1\cdot5)^{2}$ $(x-1\cdot5)^{2} = 7\cdot25$ $x-1\cdot5 = \pm (7\cdot25)$ (c) Jason invested \$100 000 for five years at 7% p.a. compounding annually. 1 (i) Find the total value of the investment at the end of five years. $\$100000 (1\cdot07)^{5}$ 1 (ii) State the amount of interest earned over the five years. $\Im (40255\cdot17 - \Re 100000$ 1 (iii) Find the simple interest rate which would have produced the same amount of interest. $\Im = PRT$ $\$40255\cdot17 = \10000 $R = \$40255\cdot17 \times 1007$	(b)	Solve these equations by completing the square:	1) $x = -2 \pm \sqrt{3}$	
1 (ii) $x^2 - 3x - 5 = 0$ $x^2 - 3x + (1 \cdot 5)^2 = 5 + (1 \cdot 5)^2$ $(x - 1 \cdot 5)^2 = 7 \cdot 25$ $x - 1 \cdot 5 = \pm (7 \cdot 25)$ (c) Jason invested \$100 000 for five years at 7% p.a. compounding annually. 1 (i) Find the total value of the investment at the end of five years. $\$100000 (1 \cdot 07)^5$ 1 (ii) State the amount of interest earned over the five years. $\$100000 (1 \cdot 07)^5$ 1 (iii) State the amount of interest earned over the five years. $\$100000 (1 \cdot 07)^5$ 1 (iii) Find the simple interest rate which would have produced the same amount of interest. I = PRT $\$400255 \cdot 17 = \$100000 \times R \times 5$ $R = \$40255 \cdot 17 \times 1007$	1	(i) $x^{2}+4x+1=0$ $\chi^{2}+4\chi+2^{2}=-1+2^{2}$ $(\chi+2)^{2}=3$ $\chi^{2}+1+\chi+2^{2}=-1+2^{2}$		
$\begin{array}{c} \chi^{2} - 3\chi + \{1,3\} = 5 + \{1,3\} \\ \chi - 1,5\}^{2} = 7,25 \\ \chi - 1,5 = \pm \overline{(7,25)} \\ = -3\pm \overline{(29)} \\ = -3\pm $	1	(ii) $x^2 - 3x - 5 = 0$	11) 21=1.5±(7.2	5
(c)Jason invested \$100 000 for five years at 7% p.a. compounding annually.(i)Find the total value of the investment at the end of five years. $$100000 (1.07)^{5}$ (i)\$140255.171(ii)State the amount of interest earned over the five years. $$100000$ (iii)\$40255.171(iii)Find the simple interest rate which would have produced the same amount of interest. $I = PRT$ $$40255.17 = $100000 \times R \times 5$ (iii) $R = 40255.17×1007		$\chi^{-3} \times t(1.5) = 5 + (1.5)$ $(\chi - 1.5)^{2} = 7.25$ $\chi - 1.5 = \pm 7.25$	$=\frac{3}{2}\pm1\frac{29}{4}$ = 3 ± 129	
1 (i) Find the total value of the investment at the end of five years. $\$100000 (1.07)^{\$}$ 1 (ii) State the amount of interest earned over the five years. $\$140255 \cdot 17 - \100000 1 (iii) Find the simple interest rate which would have produced the same amount of interest. I = PRT $\$40255 \cdot 17 = \$100000 \times R \times 5$ $R = \$40255 \cdot 17 \times 100^{7}$	(c)	Jason invested \$100 000 for five years at 7% p.a. compounding annually.		
1 (ii) State the amount of interest earned over the five years. $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	1	(i) Find the total value of the investment at the end of five years. \$100000 (1.07) ⁵	(i) \$ 140255.17	E
1 (iii) Find the simple interest rate which would have produced the same amount of interest. I = PRT \$40 255.17 = \$100000 × R × 5 R = \$40255.17 × 1007	1	(ii) State the amount of interest earned over the five years. $g_{40255-17} - g_{100000}$	(ii) \$ 40255.17	
$\$40255.17 = \$100000 \times R \times 5$ (2d.p.) R = \$40255.17 × 1007	1	 (iii) Find the simple interest rate which would have produced the same amount of interest. T = PRT 	(iii) ~ 8.05] .	.
$R = 440255.17 \times 1007$		\$40 255.17 = \$100000 × R×5	(2d.p.)	
	L	$R = \frac{$40255.17}{\times 1007}$		

\$ 500 000

SBHS Mathematics Half-Yearly 2016

Answers (d) For each equation, determine the discriminant, and state the number of distinct real solutions. $\Delta = b^2 - 4ac$ $x^2 + x - 6 = 0$ 2 (i) 2 solutions (i) 4=1-4×1×-2 (ii) $x^2 - 3x + 9 = 0$ Norsolution. (ii) 2 (iii) $2x^2 - 12x + 18 = 0$ (iii) $\Delta = (-12)^2 - 4x2 \times 18$ 1 solution = 0 (e) Find *a* if $\sqrt{a} = \sqrt{27} + \sqrt{12}$. i. a=75 RHS = 33 + 23 2 $= 5\sqrt{3}$ Votes ()- 8 (11) Students lost halfamark if they didnt leave their answer to 2 d.p. dine to It is a money question Students lost half a mark if they <u>t) (m)</u> didn't write decimal places rounding 9 SBHS Mathematics Half-Yearly 2016

Question 5 (a) P(two letters the same) = P(EE) + P(BB) + P(RR) $\frac{1}{5} \times \frac{1}{6}$ 3 -30 2 = 1 10 104 = 10 × 10 × 10 × 10 (b)[1] = 10 000 ii) {1st digit} {2nd digit} {3rd digit} {4th digit} {1,3,5,7,9} {0,2,4,6,8} {7,8,9} {0-9} The maximum number of combinations possible = 5 x 5 x 3 x 10 = 750 2 (Zero is an even number) $A = x \times y \quad (where y is the length)$ $50 = x \cdot y = \frac{50}{x} \qquad [1]$ (C) $x + 5 = \frac{50}{3}$ 11) x(x+5)=50 $x^2 + 5x - 50 = 0$ (x + 10)(x - 5) = 0x = 5, -10However 26 > 0 5 F2)(=

356 360 A = B = (d) i) ii) = 5% [1] 20 400 1<u>6</u> 20 iii) [2] 45 N 24+4 = 28 iv) [1] \sim

.

Question 7. (14 marks)

		Answers	
(a)	Solve these equations, each of which is reducible to a quadratic: $\neg 2$	ż=	11
2	(i) $x^4 - 13x^2 + 36 = 0$ = $(7^2 - 4)(x^2 - q) = 0$ $x^2 - q$	(i) ±2,±3 ·	
2	$\begin{array}{c} \begin{array}{c} \frac{\chi = \pm 2 \text{ or } \chi = \pm 3}{4^{x} - 9(2^{x}) + 8 = 0} \\ \begin{array}{c} \chi \\ \chi $	(ii) $\chi = 3 \text{ or } O$ (a) Part (i) generally d many students for	one well but pot about the
(b)	A fixed term deposit of \$60 000 is established for ten years at	negative solutions More than half the	students.could
	$7\frac{1}{2}$ % per annum compound interest, compounding annually.	not do part (ii)	
2	Calculate the balance at the end of the ten years. $A = 60000 (1 + 075)^{0}$ $= 5123661 \cdot 89$ (b) Nearly	all students got this cor	rect
(c)	The quadratic equation $x^2 + 4x - 1 = 0$ has two distinct solutions. Find: $\chi = -\frac{\psi \pm \sqrt{20}}{20} = -4 \pm 2\sqrt{5} = -2 \pm \sqrt{5}$,	
2	(i) The average of the two solutions. -2+55+-2-55 = -4	(i) -2 -1 7	
2	(ii) The product of the two solutions. (-2+5)(-2-5) = 4-5	(ii) -) //	

(c) Many mistakes here. In (i) some added and didn't divide by 2. Part (ii) was done poorly and often not attempted. Many students rounded their solutions for rather than leaving as a surd so that calculations were not exact.

٧.

SBHS Mathematics Half-Yearly 2016

(c) A pack of 52 cards consists of four suits with 13 cards in each suit. 2 (i) (i) One card is drawn from the pack and kept on the table. A second card is drawn and placed beside it on the table. What is the probability that the second card is from a different suit to the first? (ii) $\int \chi$ 2 (ii) The two cards are replaced and the pack shuffled. Four cards are chosen from the pack and placed side by side on the table. What is the probability that these four cards are all from different suits?

Many students did not realise that the probability of drawing the first card is 52/52 which =1. Part (I) was done more successfully than part (ii). Many students did not use 39, 26 and 13 as the number of cards remaining in the different suites after each draw. **This is the end of the paper.**

SBHS Mathematics Half-Yearly 2016