

Sydney Boys High School

MOORE PARK, SURRY HILLS

YEAR 10 ADVANCED MATHEMATICS

Half Yearly Examination 2017

General Instructions:

- All questions may be attempted.
- Marks may be deducted for careless or badly arranged work.
- All working and answers are to be written in this test booklet.
- If you wish to rewrite an answer, draw a line through your faulty answer and rewrite your answer on the back page of this booklet.
Show the number and part of the answer being rewritten.
- Leave your answers in the simplest exact form, unless otherwise stated.
- Board approved calculators may be used.
- Clearly indicate your class by placing an \mathbf{X} next to your class.

Time Allowed: 90 minutes

Examiner: JM

Name:

Class	Teacher	
$10 \mathbf{A}$	Ms Kilmore	
$10 \mathbf{B}$	Ms Chan	
$10 \mathbf{C}$	Ms Evans and Mr Elliott	
$10 \mathbf{P}$	Ms Ward	
$10 \mathbf{L}$	Mr Choy	
$10 \mathbf{U}$	Mr Wang	
$10 \mathbf{S}$	Mr Gainford	

Question	Marks
1	$/ 16$
2	$/ 16$
3	$/ 16$
4	$/ 17$
5	$/ 15$
6	$/ 15$
7	$/ 14$
Total	$/ 109$

Question 1 (16 Marks)

(a) Calculate 68% of $\frac{14}{25}$, leaving your answer as a decimal.
(b) Express your answer to $2017 \times(28)^{4}$ in scientific notation correct to 4 significant figures.
(c) Expand and simplify:
(i) $8 x+7-3 x$ 1
(ii) $3(4 x-5)+12$
(iii) $(5-x)(5+x)$
(iv) $(3 x-7)(2 x+5)$
(d) Find the value of k if, $7 \sqrt{3}=\sqrt{k}$.
(e) Simplify:
(i) $2 \sqrt{3}-5 \sqrt{2}+3 \sqrt{3}$ 1
(ii) $3 \sqrt{2} \times \sqrt{6}$
(iii) $\frac{4 \sqrt{20}}{2 \sqrt{12}}$
(iv) $2 \sqrt{2}(\sqrt{3}-5)$
(f) At Rhonda High School, 36 students are on either the baseball team, the hockey teams, or both. If there are 25 students on the baseball team and 19 students on the hockey team, how many students play both sports?
(g) Which of the data sets displayed in the following box-and-whisker plots has the largest interquartile range?
(A)
(B)

(C)

(D)

Question 2 (16 Marks)

(a) Simplify $\sqrt{72}+\sqrt{18}$.
(b) Find the value of x, giving reasons?

(c) If $\frac{3}{4}$ of the boys in a junior class use a backpack, and $\frac{2}{5}$ are not in full uniform, find the probability that a boy chosen by lot would be in uniform and using a backpack.
(d) The mean of three numbers, x, y and z is x. What is the mean of y and z ?
(e) David is paid at these rates:

Weekday rate	$\$ 18.00$ per hour Saturday rate Time-and-a-half Sunday rate

His time sheet for last week is:

	Start	Finish	Unpaid break
Friday	9.00 am	1.30 pm	30 minutes
Saturday	9.00 am	4.00 pm	1 hour
Sunday	8.00 am	2.00 pm	1 hour

(i) Calculate David's gross pay for last week.
(ii) David decides not to work on Saturdays. He wants to keep his weekly gross pay the same. How many extra hours at the weekday rate must he work?
(f) The diagram shows a radio mast $A D$ with two of its supporting wires, $B E$ and $C E$. The point B is the bisector of A and C.
(i) Calculate the height $A B$ in metres, leaving your answer in exact form.

Question 3 (16 Marks)

(a) Given A and B are the points $(1,2)$ and $(-5,-4)$.
(i) Find the gradient of $A B$. 1
(ii) Find the midpoint of $A B$. 1
(iii) Find the equation of the line that is perpendicular to $A B$ and passes through the midpoint of $A B$.
(b) If the sides of a cube are increased by 15%, then what is the percentage increase of the 2 volume?
(c) Factorise completely:
(i) $x^{2}-13 x+42 \quad 1$
(ii) $a^{2}-4(b+c)^{2}$
(iii) $4 x^{3}+28 x^{2}-9 x-63$
(iv) $x^{4}-13 x^{2}+36$
(d) Express as a single fraction in the simplest form $\frac{2 x-3}{2}-\frac{x-1}{5}$.
(e) Solve these equations simultaneously.

$$
\begin{gathered}
5 x+2 y=16 \\
x-y=-1
\end{gathered}
$$

Question 4 (17 Marks)

(a) From the top of a cliff 300 metres above sea level. The angles of depression of two boats, out at sea are 28° and 22°.
(i) Draw a diagram representing the above information, and show that the distance from the base of the cliff to the closest boat is $300 \tan 62^{\circ}$.

(ii) Calculate the distance between the two boats, (correct to two decimal places).
(b) Solve the following quadratic equations.
(i) $x^{2}-12 x-64=0$
(ii) $2 x^{2}-15 x-11=0$
(iii) $(2 x+3)^{2}=4$
(c) A hot chocolate drink is 6% pure chocolate, by volume. If 12 litres of pure milk are added to 50 litres of this drink, what is the percentage of chocolate in the new drink?
(d) Solve for p if $\frac{p-1}{p+1}+\frac{1}{p^{2}-1}=\frac{p}{p-1}$.
(e) A gift box is made from a rectangular piece of cardboard that is three times as long as it is wide. 5 cm squares are cut from each corner and the ends are then folded up to make the box. If the box's volume is $4340 \mathrm{~cm}^{3}$, find the length and width of the cardboard.

Question 5 (15 Marks)

(a) If $x=3+\sqrt{8}$.
(i) Show that $x+\frac{1}{x}=6$
(ii) Hence or otherwise evaluate $x^{2}+\frac{1}{x^{2}}$.
(b) Simplify and evaluate $\frac{81^{n+1} \times 9^{n}}{9^{3 n+2}}$.
(c) In the square, $A B C D, E$ and F are points lying on the sides $B C$ and $C D$ respectively, such that $A E=B F$. Also, $A E$ and $B F$ intersect at G.

(i) Prove that $\triangle A B E$ is congruent to $\triangle B C F$.
(ii) Show that $\triangle B G E$ is right angled.
(iii) If $C F=15 \mathrm{~cm}$ and $E G=9 \mathrm{~cm}$, find the length of $B G$.
(d) In the trapezium $A B C D$ has three equal sides $A B=A D=D C$. The base $B C$ is 2 cm less than the sum of the lengths of the other three sides. The distance between the parallel sides is 5 cm .

Calculate the area of trapezoid $A B C D$.

Question 6 (15 Marks)

(a) If $\left(2^{4}\right)\left(3^{6}\right)=9\left(6^{x}\right)$, what is the value of x ?
(b) By completing the square, find the values of a, b and c in $2 x^{2}-12 x+25=a(x-b)^{2}+c$.
(c) Luke and Jayden run a 10-lap race around a housing block. For the first 5 laps Luke ran at an average speed of $2 \mathrm{~km} / \mathrm{h}$ faster than Jayden. For the last 5 laps Luke ran at an average speed of $2 \mathrm{~km} / \mathrm{h}$ slower than Jayden. Who won the race?
(d) In the diagram $A B C$ is an isosceles triangle where $\angle A B C=\angle B C A=72^{\circ}$ and $A B=A C=1$. Angle $A B C$ is bisected by $B D$, and $B C=x$.

(i) Show that triangles $A B C$ and $B C D$ are similar.
(ii) By using (i) find the exact value of x.
(e) In a pack of construction paper, the numbers of blue and red sheets are originally in the ratio 2:7. Each day, Laura uses 1 blue sheet and 3 red sheets. One day, she uses 3 red sheets and the last blue sheet, leaving her with 15 red sheets. How many sheets of construction paper were in the pack originally?

Question 7 (14 Marks)

(a) Ned adds the degree measures of the interior angles of a convex polygon and arrives at a 2 sum of 2017. He then discovers that he forgot to include one angle. What is the size of the forgotten angle?
(b) Three rugs have a combined area of $200 \mathrm{~m}^{2}$. By overlapping the rugs to cover a floor area of $140 \mathrm{~m}^{2}$, the area which is covered by exactly two layers of rug is $24 \mathrm{~m}^{2}$. What area of floor is covered by three layers of rug?
(c) Two identical perfect cubes (similar to dice) each having faces numbered $0,1,2,3,4,5$ are rolled. A score for the roll is determined as the product of the two numbers on the two uppermost faces.
What is the probability that if the cubes are rolled twice and the scores for each roll are added, what is the probability of a combined score of at least 41?
(d) The y-intercepts of three parallel lines are 2, 3 and 4 . The sum of the x-intercepts of the three lines is 36 . What is the slope of these parallel lines?
(e) Solve for $x: \frac{x-\sqrt{x+1}}{x+\sqrt{x+1}}=\frac{11}{5}$.

EXTRA WORKI NG PAGE 1:

EXTRA WORKI NG PAGE 2:

SYDNEY BOYS HIGH SCHOOL MOORE PARK, SURRY HILLS

2017

Year 10 Half Yearly

Advanced Mathematics

Suggested Solutions

Questions	Marker
1	AYW
2	TE
3	AMG
4	EC
5	TE
6	JWC
7	BK

Question 1 (16 Marks)

(a) Calculate 68% of $\frac{14}{25}$, leaving your answer as a decimal.

$$
0.68 \times 0.56=0.3808
$$

(b) Express your answer to $2017 \times(28)^{4}$ in scientific notation correct to 4 significant figures.

$$
1239761152 \div 1.240 \times 10^{9}
$$

(c) Expand and simplify:
(i) $8 x+7-3 x=5 x+7$
(ii) $3(4 x-5)+12=12 x-15+12$

$$
=12 x-3
$$

(iii) $(5-x)(5+x) \quad 5^{2}-x^{2}$

$$
=25-x^{2}
$$

(iv) $(3 x-7)(2 x+5) \quad 6 x^{2}+15 x-14 x-35$

$$
=6 x^{2}+x-35
$$

(d) Find the value of k if, $7 \sqrt{3}=\sqrt{k}$.

$$
\begin{gathered}
49 \times 3=K \\
k=147
\end{gathered}
$$

(e) Simplify:
(i) $2 \sqrt{3}-5 \sqrt{2}+3 \sqrt{3}=5 \sqrt{3}-5 \sqrt{2}$
(ii) $3 \sqrt{2} \times \sqrt{6}=3 \sqrt{12}=6 \sqrt{3}$
(iii) $\frac{4 \sqrt{20}}{2 \sqrt{12}}=\frac{2}{4 \sqrt{5}} \frac{4 \sqrt{3}}{}=\frac{2 \sqrt{5}}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}=\frac{2 \sqrt{15}}{3}$
(Rationalize denominator)
(iv) $2 \sqrt{2}(\sqrt{3}-5) \quad 2 \sqrt{6}-10 \sqrt{2}$
(f) At Rhonda High School, 36 students are on either the baseball team, the hockey teams, or both. If there are 25 students on the baseball team and 19 students on the hockey team, how many students play both sports?

$$
\begin{aligned}
& B=\text { Baseball } \quad \begin{aligned}
H=\text { Hochey }
\end{aligned} \quad=(25+19)-36 \\
&
\end{aligned}
$$

(g) Which of the data sets displayed in the following box-and-whisker plots has the largest interquartile range?
(A)
(B)

(C)
(D)

Question 2 (16 Marks)
(a) Simplify $\sqrt{72}+\sqrt{18}$.
-1 not fully

$$
\begin{aligned}
& =\sqrt{36} \times \sqrt{2}+\sqrt{9} \times \sqrt{2} \\
& =6 \sqrt{2}+3 \sqrt{2} \\
& =9 \sqrt{2}
\end{aligned}
$$

simplified.
(b) Find the value of x, giving reasons?

$$
\begin{aligned}
& \angle E A G=110^{\circ}(\text { sum st line }) \\
& \therefore 110^{\circ}+20+x+20+x=180^{\circ} \\
&(<\operatorname{sum} \Delta) \\
& \therefore 2 x=30 \\
& \therefore \therefore x=15
\end{aligned}
$$

no reasons - 1
(c) If $\frac{3}{4}$ of the boys in a junior class use a backpack, and $\frac{2}{5}$ are not in full uniform, find the $\mathbf{3}$ probability that a boy chosen by lot would be in uniform and using a backpack.

$$
\frac{3}{5} \times \frac{3}{4}=\frac{9}{20}
$$

most common error not using correct fraction (d) The mean of three numbers, x, y and z is x. What is the in un form

$$
\begin{array}{ll}
\frac{x+y+z}{3}=x & \frac{y+z}{2}=\frac{2 x}{2} \\
x+y+z=3 x & \frac{y+z}{2}=x \\
\therefore y+z=2 x &
\end{array}
$$

no working -1 .
(e) David is paid at these rates:

Weekday rate Saturday rate Sunday rate	$\$ 18.00$ per hour Time-and-a-half Double time

His time sheet for last week is:

	Start	Finish	Unpaid break
	4		
	9.00 am	1.30 pm	30 minutes
Saturday	9.00 am	4.00 pm	1 hour
Sunday	8.00 am	2.00 pm	1 hour

(i) Calculate David's gross pay for last week.

$$
\begin{gathered}
(18 \times 4)+(18 \times 1.5 \times 6)+(18 \times 2 \times 5) \\
=\$ 414-
\end{gathered}
$$

(ii) David decides not to work on Saturdays. He wants to keep his weekly gross pay the same. How many extra hours at the weekday rate must he work?

$$
6 \times 1.5=9 \text { extra week day hours }
$$

this question was poorly done.
(f) The diagram shows a radio mast $A D$ with two of its supporting wires, $B E$ and $C E$. The point B is the bisector of A and C.
(i) Calculate the height $A B$ in metres, leaving your answer in exact form.

$$
\begin{aligned}
\tan 60 & =\frac{A B}{15} \\
A B & =15 \sqrt{3}
\end{aligned}
$$

(ii) Calculate the distance $C E$ in metres, correct to one decimal place.

$$
\begin{aligned}
& C E^{2}=15^{2}+(2 \times 15 \sqrt{3})^{2} \\
& C E=\sqrt{2925} \\
& C E=54.1 \mathrm{~m}
\end{aligned}
$$

Year 10 Half Yearly 2017

Question 3 (16 Marks)

(a) Given A and B are the points $(1,2)$ and $(-5,-4)$.
(i) Find the gradient of $A B$.

$$
\begin{aligned}
m & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{-4-2}{-5-1} \\
& =\frac{-6}{-6} \\
& =1
\end{aligned}
$$

[Comment: Generally well answered, but several candidates cancelled the fraction in the second last line to get -1.]
(ii) Find the midpoint of $A B$.

$$
\left.\begin{array}{rlrl}
x & =\frac{1-5}{2} \\
& =-2 & & y
\end{array}\right)=-\frac{2-4}{2} \quad \text { So Mid-Point }(-2,-1)
$$

[Comment: Again well answered. The most common error was to subtract, rather than add, in the formula.]
(iii) Find the equation of the line that is perpendicular to $A B$ and passes through the midpoint of $A B$.

$$
\begin{aligned}
m_{\perp} & =-1 ; \quad M P(-2,-1) \\
y-y_{1} & =m\left(x-x_{1}\right) \\
y+1 & =-1(x+2) \\
& =-x-2
\end{aligned}
$$

$$
x+y+3=0
$$

[Comment: Many failed to simplify the formula correctly, some used the wrong gradient, and most failed to give the answer in general form (but lost no marks for this).]
(b) If the sides of a cube are increased by 15%, then what is the percentage increase of the volume?

$$
\begin{aligned}
V_{2} & =(1.15)^{3} \\
& =1.520875
\end{aligned}
$$

\therefore Increase is 52.0875%
[Comment: Generally well answered. The most common error was to state the increase as 152%, or thereabouts.]
(c) Factorise completely:
(i) $x^{2}-13 x+42$

$$
=(x-7)(x-6)
$$

[Comment: Almost everyone got this right. Some thought they were solving a quadratic equation.]
(ii) $a^{2}-4(b+c)^{2}$

$$
=(a+2(b+c))(a-2(b+c))
$$

[Comment: Many thought they could factorise this further, but they were wrong.]
(iii) $4 x^{3}+28 x^{2}-9 x-63$

$$
\begin{aligned}
& =4 x^{2}(x+7)-9(x+7) \\
& =\left(4 x^{2}-9\right)(x+7) \\
& =(2 x-3)(2 x+3)(x+7)
\end{aligned}
$$

[Comment: The most common error was to stop at the second last line.]
(iv) $x^{4}-13 x^{2}+36$ 2

$$
\begin{aligned}
& =\left(x^{2}-4\right)\left(x^{2}-9\right) \\
& =(x-2)(x+2)(x-3)(x+3)
\end{aligned}
$$

[Comment: Generally well answered by those who attempted it (most), but as above some stopped short, and some tried to solve a quartic.]
(d) Express as a single fraction in the simplest form $\frac{2 x-3}{2}-\frac{x-1}{5}$.

$$
\begin{aligned}
\frac{2 x-3}{2}-\frac{x-1}{5} & =\frac{5(2 x-3)-2(x-1)}{10} \\
& =\frac{10 x-15-2 x+2}{10} \\
& =\frac{8 x-13}{10}
\end{aligned}
$$

[Comment: Then most common error (it was very common) was to write -2 at the end of the numerator in the second line. How can candidates persist in making this error after three and a half years of advanced maths?]
(e) Solve these equations simultaneously.

$$
\begin{aligned}
5 x+2 y & =16 \\
x-y & =-1
\end{aligned}
$$

$$
\begin{array}{rlr}
5 x+2 y & =16 & ---(1) \\
x-y & =-1 & --(2) \\
2 \mathrm{x}(2): & 2 x-2 y & =-2
\end{array}--(3)
$$

Solution: $(2,3)$
[Comment: Generally well answered. Some made addition or subtraction errors.]

Question (4).
(i)

$$
\begin{aligned}
& \frac{x}{300}=\tan 62 \\
& \Rightarrow x=300 \tan 62^{\circ}
\end{aligned}
$$

Somment: Toget the Thek: diagram weith angle 62° in the right place and the expression
(ii) $D=y-x$

$$
\begin{aligned}
& =300\left(\tan 68^{\circ}-\tan 62^{\circ}\right) \\
& =178-31^{\circ}
\end{aligned}
$$

Swmment: To gect 2 mis
i) Conect expressiow
ii) and correctly evakest. to $2 d . p$.
(b) $x^{2}-12 x-64=0^{\prime}$
(i) $(x-16)(x+4)=0$

$$
\Rightarrow \quad x=16,-4 .
$$

(ii) $2 x^{2}-15 x-11=0$

Apply_foruula
commart $x=\frac{15 \pm \sqrt{313}}{4} \quad 2 m k c$
(IS,E), and ro
(iii)

$$
\begin{aligned}
& (2 x+3)^{2}=4 \\
& 2 x+3= \pm 2
\end{aligned}
$$

Comment: $x=-\frac{5}{2},-1 / 2$ I m ark for each ausmen
(c)

$$
\begin{gathered}
0.06 \times 50=3 L(\text { choc. }) \\
\therefore \frac{3}{50+12} \times \frac{100}{1}=4.84 \% \\
(2 . d . p)
\end{gathered}
$$

(d)

$$
\begin{aligned}
& \frac{(p-1)(p-1)+1}{p^{2}-1}=\frac{p}{p-1} \\
& (p \neq 1) \\
& p^{2}-2 p+2=p(p+1) \\
& -2 p+2=p \\
& 3 p=2 \\
& \Rightarrow p=2 / 3
\end{aligned}
$$

$<$ aument:
ack knoulerige.
(e)

$$
\begin{aligned}
& V=(3 x-10)(x-10) \\
& 3 x^{2}-40 x-768=0 \\
& x=24, x=\frac{40 \pm \sqrt{10816}}{6}
\end{aligned}
$$

lengh, width.

$$
\begin{aligned}
x=24 \quad \therefore \quad W & =14 \\
L & =62
\end{aligned}
$$

Comuaent:
Comment on megathe roor (inaduissibel $x=24 \ldots$ but mot L, w asked

Question 5 (15 Marks)
(a) If $x=3+\sqrt{8}$.

CHS

$$
\begin{aligned}
& =3+\sqrt{8}+\frac{1}{3 \sqrt{8}} \\
& =3+\sqrt{8}+\left(\frac{1}{3+\sqrt{8}} \times \frac{31-\sqrt{8}}{3-\sqrt{8}}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =3+\sqrt{8}+\left(\frac{3-\sqrt{8}}{9-8}\right) \\
& =3+\sqrt{8}+3-\sqrt{8} \\
& =6=\text { RHS }
\end{aligned}
$$

(ii) Hence or otherwise evaluate $x^{2}+\frac{1}{x^{2}}$.

$$
\begin{aligned}
& (3+\sqrt{8})^{2}+\frac{1}{(3+\sqrt{8})^{2}} \\
& =9+6 \sqrt{8}+8+\frac{1}{17+6 \sqrt{8}} \\
& =17+6 \sqrt{8}+\left(\frac{1}{17+6 \sqrt{8}} \times \frac{17-6 \sqrt{8}}{17-6 \sqrt{8}}\right)
\end{aligned}
$$

(b) Simplify and evaluate $\frac{81^{n+1} \times 9^{n}}{9^{3 n+2}}$.

$$
\begin{aligned}
81^{n+1} & =\left(9^{2}\right)^{n+1} \\
& =9^{2 n+2}
\end{aligned}
$$

$$
\frac{9^{2 n+2} \times 9^{n}}{9^{3 n+2}}
$$

$$
=\frac{9^{3 n+2}}{9^{3 n+2}}
$$

$$
=1
$$

$$
\begin{aligned}
& =17+6 \sqrt{8}+\left(\frac{17-6 \sqrt{8}}{289-288}\right) \\
& =17+6 \sqrt{8}+17-6 \sqrt{8} \\
& =34
\end{aligned}
$$

$$
\begin{aligned}
& \text { OR: }\left(x+\frac{1}{x}\right)^{2}=x^{2}+\frac{1}{x^{2}}+2^{2} \\
& \begin{aligned}
\therefore x^{2}+\frac{1}{x^{2}} & =\left(x+\frac{1}{x}\right)^{2}-2 \\
& =6^{2}-2 \\
& =34
\end{aligned}
\end{aligned}
$$

OR: put $(3+\sqrt{8})^{2}+\frac{1}{(3+\sqrt{8})^{2}}$
in your calculator
(c) In the square, $A B C D, E$ and F are points lying on the sides $B C$ and $C D$ respectively, such that $A E=B F$. Also, $A E$ and $B F$ intersect at G.

(i) Prove that $\triangle A B E$ is congruent to $\triangle B C F$.

$$
\begin{aligned}
& \text { congruent to } \triangle B C F \text {. (sides of square) } \\
& A B=B F \quad \text { (given) } \\
& \angle A B E=90^{\circ}=\angle B C F \text { (prop of square) }
\end{aligned}
$$

$$
\therefore \triangle A B E \equiv \triangle B C F \quad(R H S)
$$

- I for wrong $\equiv \triangle$ test.
(ii) Show that $\triangle B G E$ is right angled.

$$
\begin{aligned}
& \angle C B F=\angle G B E \text { (common) } \\
& \angle B F C=\angle B E G \text { (corresp. L's in } \equiv \triangle ' s \text {) }
\end{aligned}
$$

$$
\therefore \angle B C F=\angle B G E(\angle \text { sum } \triangle)
$$

$$
\text { a } \angle B C F=90^{\circ}
$$

$\therefore \triangle B G E$ is right angled
(iii) If $C F=15 \mathrm{~cm}$ and $E G=9 \mathrm{~cm}$, find the length of $B G$.

$$
\begin{aligned}
C F=15 \therefore B E & =15 \quad \text { (correup. sides in } \equiv D^{\prime} \text {) } \\
B G & =\sqrt{15^{2}-9^{2}} \\
& =\sqrt{144} \\
& =12 \mathrm{~cm}
\end{aligned}
$$

(d) In the trapezium $A B C D$ has three equal sides $A B=A D=D C$. The base $B C$ is 2 cm less than the sum of the lengths of the other three sides. The distance between the parallel sides is 5 cm .

Calculate the area of trapezoid $A B C D$.
let $A B, A D \subset D C=x$

$$
\begin{aligned}
\therefore \quad B C & =3 x-2 \\
B E+F C & =(3 x-2)-x \\
& =2 x-2
\end{aligned}
$$

$$
\begin{aligned}
\therefore A D & =13 \\
B C & =3 \times 13-2 \\
& =37
\end{aligned}
$$

$$
\begin{aligned}
& B E=F C \\
& \therefore B E=\frac{2 x-2}{2} \\
& B E=x-1
\end{aligned}
$$

\therefore Area $A B C D$

$$
=\frac{1}{2}(37+13) \times 5
$$

$$
=125 \mathrm{~cm}
$$

In $\triangle A B E$

$$
\begin{aligned}
x^{2} & =5^{2}+(x-1)^{2} \\
& =25+x^{2}-2 x+1 \\
\therefore & 2 x=26 \\
& x=13
\end{aligned}
$$

1 mark for

$$
\begin{aligned}
A & =\frac{1}{2}(3 x-2+x) \times 5 \\
& =10 x-5
\end{aligned}
$$

this question was poorly done.

Question 6 (15 Marks)
(a) If $\left(2^{4}\right)\left(3^{6}\right)=9\left(6^{x}\right)$, what is the value of x ?

$$
\begin{aligned}
2^{4} \times \frac{3^{6}}{3^{2}} & =6^{x} \\
2^{4} \times 3^{4} & =6^{x} \\
6^{4} & =6^{x} \\
\therefore x & =4
\end{aligned}
$$

(b) By completing the square, find the values of a, b and c in $2 x^{2}-12 x+25=a(x-b)^{2}+c$.

$$
\begin{aligned}
& 2\left(x^{2}-6 x\right)=-25 \quad *{ }^{\prime} x^{\prime} \text {. Find the values of } a, b, c . \\
& 2\left(x^{2}-6 x+9\right)=-25+18 \text { (1) comp. squares } \\
& 2(x-3)^{2}=-7 \\
& \begin{array}{ll}
\text { (1) factorised form }
\end{array} \\
& \begin{array}{ll}
\text { (1) solutions: } a, b, c
\end{array} \\
& 2 x^{2}-12 x+25=2(x-3)^{2}+7
\end{aligned}
$$

No marks for $a=2$ simply by

$$
\therefore a=2, b=3, c=7 \begin{aligned}
& a=2 \text { simply by } \\
& \text { equating without } \\
& \text { proper completing }
\end{aligned} \quad \begin{aligned}
& \text { pres }
\end{aligned}
$$ proper completing squares

(c) Luke and Jayden run a 10-lap race around a housing block. For the first 5 laps Luke ran at an average speed of $2 \mathrm{~km} / \mathrm{h}$ faster than Jayden. For the last 5 laps Luke ran at an average speed of $2 \mathrm{~km} / \mathrm{h}$ slower than Jayden. Who won the race?

* 1 st

Luke: $\quad T=\frac{D}{x+2}$
let Jayden run at $x \mathrm{~km} / \mathrm{h}$

$$
\text { Jayder: } \frac{D}{x}=T
$$

* Last 5 laps.

$$
\text { Luke: } T=\frac{D}{x-2}
$$

Hayden: $T=\frac{D}{x}$.
Jayden's time - Luke's time.

$$
\begin{aligned}
& =\frac{2 D}{x}-\left(\frac{D}{x+2}+\frac{D}{x-2}\right) \\
& =\frac{2 D\left(x^{2}-4\right)-D(x(x-2)+x(x+2))}{x(x+2)(x-2)} \\
& =D \frac{\left(2 x^{2}-8-\left(x^{2}-2 \not x+x^{2}+2 x\right)\right)}{x(x+2)(x-2)} \\
& =\frac{-8 D / x(x+2)(x-2)<0 \therefore \text { Jaydunferster }}{}=\frac{14}{x(x)}
\end{aligned}
$$

(2) working.
(1) Jayden
(d) In the diagram $A B C$ is an isosceles triangle where $\angle A B C=\angle B C A=72^{\circ}$ and $A B=A C=1$. Angle $A B C$ is bisected by $B D$, and $B C=x$.

(i) Show that triangles $A B C$ and $B C D$ are similar.

$$
\text { In } \triangle A B C, B C D
$$

$$
\angle B A C=36^{\circ}(\angle \text { sum of } \triangle)
$$

(1) reason
$\angle B D C=72^{\circ}(\angle$ sum of $\triangle)$
(1) equiangular w) appropriate reasoning
(ii) By using (i) find the exact value of x.

$$
\begin{aligned}
& \text { By using (i) find the exact value of } \left.x \text {. } \quad \angle B A D=36^{\circ} \text { (} \text { sum }^{2} \text { of } \triangle\right) \text {) } \\
& \angle B O C=108^{\circ}(\text { st } \angle) \text { and } \angle B A D
\end{aligned}
$$

$\therefore \triangle B A D$ is an iss $\triangle \therefore A D=x$ (sicies oppo equal $\angle S$).
$\therefore \frac{1}{x}=\frac{x}{1-x}$ (matching sides in proportion in $111 \Delta s$)
(1) ratio

$$
x^{2}=1-x \quad \text { ie } \quad x^{2}+x-1=0
$$

(1) Answer
$\therefore x=\frac{-1+\sqrt{5}}{2}$
$(x>0)-\frac{1}{2}$ for n_{3}^{2} g. soon.
(e) In a pack of construction paper, the numbers of blue and red sheets are originally in the ratio $2: 7$. Each day, Laura uses 1 blue sheet and 3 red sheets. One day, she uses 3 red sheets and the last blue sheet, leaving her with 15 red sheets. How many sheets of construction paper were in the pack originally?
Each day 1 blue sheet for x number of days \therefore there are x blue sheets.
(1) eqn.or equivalent

$$
\begin{align*}
\frac{x}{15+3 x}=\frac{2}{7} \quad \therefore 7 x & =30+6 x \\
x & =30 \tag{1}
\end{align*}
$$

(1) final answer.

Total amount of papers originally is

$$
\frac{30}{2} \times 9=135 \text { sheets OK for (3) if }
$$ they work through the ratios successfully

Question 7 (14 Marks)
(a) Ned adds the degree measures of the interior angles of a convex polygon and arrives at a sum of 2017. He then discovers that he forgot to include one angle. What is the size of the forgotten angle?
Angle sum of n-sided polygon $=180(n-2)$
Let $n=13, L$ sum $=180 \times 11=1980 \Rightarrow$ too small.
Let $n=14, \mathrm{Lsum}=180 \times 12=2160$
Let $x=$ missed angle

$$
\begin{aligned}
\angle \operatorname{Sin}-x & =2017 \\
2160-x & =2017 \\
x & =143^{\circ} \quad(\text { convex } \Rightarrow
\end{aligned}
$$

Some students were able to get this question out. Many did not read the question correctly and assumed the polygon was regular.
(b) Three rugs have a combined area of $200 \mathrm{~m}^{2}$. By overlapping the rugs to cover a floor area of $140 \mathrm{~m}^{2}$, the area which is covered by exactly two layers of rug is $24 \mathrm{~m}^{2}$. What area of floor is covered by three layers of rug?

(c) Two identical perfect cubes (similar to dice) each having faces numbered $0,1,2,3,4,5$ are rolled. A score for the roll is determined as the product of the two numbers on the two uppermost faces.
What is the probability that if the cubes are rolled twice and the scores for each roll are added, what is the probability of a combined score of at least 41 ?

1 mark was awarded for the sample space. If students had correct denominator and the correct combinations of 16,20 and 25 then they scored 2 marks. The last mark was for correctly finding the number of ways each combination could occur.
(d) The y-intercepts of three parallel lines are 2,3 and 4. The sum of the x-intercepts of the

$$
\begin{aligned}
& \text { (d) The } y \text {-intercepts of three parallel lines are 2, } 3 \text { and 4. The sum of the } x \text {-intercepts of the } \\
& \text { three lines is } 36 \text {. What is the slope of these parallel lines? } \\
& y=m x+2
\end{aligned}
$$ awarded as above.

(e) Solve for x : $\frac{x-\sqrt{x+1}}{x+\sqrt{x+1}}=\frac{11}{5}$.

$$
\begin{aligned}
& 5 x-5 \sqrt{x+1}=11 x+11 \sqrt{x+1} \\
& -6 x=16 \sqrt{x+1} \\
& \text { Squaring } \Rightarrow 36 x^{2}=256(x+1) \\
& 36 x^{2}-256 x-256=0 \\
& 9 x^{2}-64 x-64=0 \\
& x=\frac{64 \pm \sqrt{64^{2}+4(9)(64)}}{18} \\
& x=8 \text { or } \frac{-8}{9}
\end{aligned}
$$

Again most students did not get this question out. Squaring or multiplying by the conjugate and then expanding was generally not helpful.

