Sydney Boys High School

MOORE PARK, SURRY HILLS

YEAR 10 ADVANCED MATHEMATICS

Half Yearly Examination 2018

General Instructions:

- All questions may be attempted.
- Write using black pen.
- Marks may be deducted for careless or badly arranged work.
- All working and answers are to be written in this test booklet.
- If you wish to rewrite an answer, draw a line through your faulty answer and rewrite your answer on the back pages of this booklet. Show the number and part of the answer being rewritten
- Leave your answers in the simplest exact form, unless otherwise stated.
- Board approved calculators may be used.
- Clearly indicate your class by placing an \mathbf{X} next to your class.

Time Allowed: 90 minutes
Reading Time: 5 minutes

Name:

Class	Teacher	
$10 \mathbf{A}$	Mr Wang	
$10 \mathbf{B}$	Ms Ward	
$10 \mathbf{C}$	Ms Evans	
$10 \mathbf{P}$	Mr Fuller	
$10 \mathbf{L}$	Ms Millar	
$10 \mathbf{U}$	Ms Chan	
$10 \mathbf{S}$	Mr Choy	

Section	Marks
A	$/ 15$
B	$/ 13$
C	$/ 13$
D	$/ 15$
E	$/ 14$
F	$/ 14$
G	$/ 15$
Total	$/ 99$

Section A (15 Marks)

a) Express 0.375 as a percentage.
b) Find 48% of 1 km 400 m .
c) Convert $160 \mathrm{~km} / \mathrm{h}$ to m / s
d) Find x if $x: 6=5: 16$
e) Calculate the simple interest on $\$ 600$ for 9 months at 4% p.a.
f) Round 4.06352 to 4 significant figures.
g) If $a=-3$ find the value of $-a^{2}-a$
h) True or False? All squares are parallelograms.
i) Solve the following equations:
(i) $(6+m)(7-m)=0$
(ii) $2 p^{2}-18=0$
(iii) $8 x^{2}=12 x$
j) Which triangles are congruent?

A. I and II only
B. I and III only
C. II and III only
D. I, II and III
k) Find the equation of the line I.

Section B (13 Marks)

a) Solve this quadratic equation by factorising

$$
6 a^{2}-a-1=0
$$

b) What is the percentage increase on an investment of $\$ 6000$ which compounds annually for 5 years at $9 \% \mathrm{pa}$?
c) A laptop purchased for $\$ 3200$ depreciates at the rate of 16% p.a.
(i) What is the value of the laptop after 4 years?
(ii) How long until the laptop is worth less than $\$ 500$?
d) The diagram shows a regular pentagon $A B C D E$. The sides $A B$ and $D C$ are produced to meet at X . The point Y lies on DCX produced.

Find the size of $\angle Y X B$ giving reasons.
e) Find the distance between two points $\mathrm{A}(-3,7)$ and $\mathrm{B}(-8,-3)$ correct to 3 decimal places.
f) Match each equation with one of the graphs below.
(i) $y=(x+2)^{2}$ \qquad (ii) $y=-(x+2)^{2}$ \qquad (iii) $y=x^{2}+2$
(iv) $y=-x^{2}+2$ \qquad (v) $y=(x-2)^{2}$ \qquad (vi) $y=-(x-2)^{2}$ \qquad
A

B

C

D

E

F

BLANK PAGE

Anything written on this page will NOT be marked

Section C (13 Marks)

a) State the value of $a+b+c$ in this diagram?

b) Solve by completing the square leaving your answer in exact surd form.

$$
x^{2}-12 x+10=0
$$

c) Solve by using the quadratic formula, leaving your answer in exact form.

$$
2 x^{2}-9 x+8=0
$$

d) Consider the quadratic $x^{2}+3 x+5$.
(i) What is the value of $b^{2}-4 a c$ for this quadratic?
(ii) Explain what this tells you about the graph of $y=x^{2}+3 x+5$
e) The graph below shows a parabola with x-intercepts at $(2,0)$ and $(6,0)$.

Its y-intercept Is at $(0,3)$. Determine the equation of the parabola.
You may leave your answer in factorised form.

f) In the diagram below $D E \| G H$ and $D F=H F$.

State the congruence test that proves that $\Delta D E F \equiv \Delta H G F$.

g) A is (-2.1) and B is $(4,5)$
(i) Find the midpoint of $A B$.
(ii) Find the gradient of $A B$.
(iii) Find the equation of the line which is the perpendicular bisector of $A B$.

Section D (15 Marks)

a) How much must I invest now to save $\$ 50000$ for a trip in 3 years time if interest is 9% pa compounding monthly?
b) By using a substitution, or otherwise, solve the following equation correct to 2 decimal places:

$$
\left(x^{2}-20\right)^{2}-7\left(x^{2}-20\right)=-10
$$

c) A square centred on the origin has its vertices on the x and y-axes. The graph of the parabola $y=a x^{2}-4$, where $a>0$, passes through three of the square's vertices. Find the value of a.

d) Consider the parabola $y=-(x+1)^{2}-2$
(i) What is its vertex?
(ii) What is the y-intercept?
(iii) Sketch the parabola showing these features.

e) Prove, giving all reasons, that the diagonals of a parallelogram bisect each other.

Section E (14 Marks)

a) Find the value of the pronumerals a, b and c. You do NOT need to give reasons.

b) Solve, leaving your answer in exact form:

$$
\frac{1}{3-5 x}+\frac{4}{3+5 x}=-1
$$

c) Keith invested $\$ 3000$ in shares at the start of the year. The shares rose in value by 5\% per month for the first 6 months and then fell in value by 5\% per month for the next 6 months.
Find the value of the shares at the end of the year.
d) A woman invested $\$ 40000$ at 9% pa compounding monthly for 2 years. At the end of that time she reinvested the capital plus interest at an annual rate that compounded quarterly for 4 years. If the investment has accrued to $\$ 56000$ at the end of the 6 years, what was the second annual interest rate?
e) ABCD is a rhombus. Find the value of m, giving reasons.

Section F (14 Marks)

a) Solve by completing the square: $3 x^{2}-4 x-1=0$
b) Solve the equation $3 m-11 \sqrt{m}=4$
c) Sketch the graph of $y=-3 x^{2}-5 x+2$ showing the x and y intercepts and the vertex.

d) David has just bought a boat and has a mortgage of $\$ 120000$ at 6% p.a. compounding monthly. He has to make payments of $\$ 750$ per month. How much does he owe after the third payment?
e) Find the values of m for which $4 x^{2}-(6+m) x+1=0$ has only one real root.

Section G (15 Marks)

a) In the diagram you are given that $A B \| C E$. Also $P Q$ bisects $\angle A B D$ and $R S$ bisects $\angle B D E$. Prove that $P Q \| R S$, giving reasons.

b) An amount of money compounds for 3 years at 12% pa compounding 6 monthly and then for 4 years more at 11.75% pa compounding monthly. If the final value is $\$ 28034$, find the original amount invested.
c) $A B C D$ is a quadrilateral in which the diagonals $B D$ and $A C$ intersect at right angles. Also $\angle B A S=\angle D A S$.

(I) By using congruent triangles, prove that $A D=B A$ giving all reasons.
(II) Hence prove that $C D=B C$.
d) The diagram below shows a square $A B C D$ with side length 2 cm . The point E is on side $A D$ with $A E=x$. The point F is on side $B C$ with $C F=2 x^{2}$.
Let y be the area of the shaded region $A B F E$.

(i) What are the permissible values of x ?
(ii) Show that $y=2+x-2 x^{2}$.
(iii) Find the maximum area of $A B F E$.
(iv) Find the minimum area of $A B F E$.

End of Test

Extra Working Page

Extra Working Page

SYDNEY
BOYS
HIGH
SCHOOL

2018

YEAR 10 HALF YEARLY
STAGE 5.3 MATHEMATICS

Sample Solutions

Section A (15 Marks)

a) Express 0.375 as a percentage. 37.5%
b) Find 48% of $1 \mathrm{~km} 400 \mathrm{~m} .0 .48 \times 1400=672 \mathrm{~m}$
c) Convert $160 \mathrm{~km} / \mathrm{h}$ to m / s. (Exact answer)

$$
\begin{aligned}
1.60 \mathrm{~km} / \mathrm{h} & =160000 \mathrm{~m} / \mathrm{h} \\
& =\frac{8000}{3} \mathrm{~m} / \mathrm{mch} \\
& =\frac{400}{9} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

(1m)

$$
\begin{aligned}
I & =P r t \\
& =600 \times 0.04 \times \frac{9}{12} \\
& =\$ 18 .
\end{aligned}
$$

f) Round 4.06352 to 4 significant figures.

$$
4.064
$$

g) If $a=-3$ find the value of $-a^{2}-a$

$$
\begin{aligned}
& -(-3)^{2}-(-3) \\
= & -6
\end{aligned}
$$

h) True or False? All squares are parallelograms.

TRUE.
i) Solve the following equations:
(i) $\quad(6+m)(7-m)=0$

$$
m=-6,7
$$

(ii) $2 p^{2}-18=0$

$$
\begin{aligned}
2 p^{2} & =18 \\
p^{2} & =9 \\
p & = \pm 3
\end{aligned}
$$

(iii) $8 x^{2}=12 x$

$$
\begin{gathered}
8 x^{2}-12 x=0 \\
4 x(2 x-3)=0 \\
x=0, \frac{3}{2}
\end{gathered}
$$

j) Which triangles are congruent?

A. Sand II only
(RUS)
B. I and III only
C. II and III only

* Many students got
this wrong.

Note:

D. I, II and III
k) Find the equation of the line 1 .

$$
\begin{aligned}
& m=\frac{4-0}{0-2} \\
&=-2 \\
& y=m x+5 \\
& y=-2 x+4 \\
& \text { or } \\
& 2 x+y-4=0
\end{aligned}
$$

$$
\begin{aligned}
& x-6 \\
& x-1
\end{aligned}
$$

Section B (13 Marks)
a) Solve this quadratic equation by factorising

$$
\begin{aligned}
& 6 a^{2}-a-1=0 \\
& 6 a^{2}-3 a+2 a-1=0 \\
& 3 a(2 a-1)+1(2 a-1)=0 \\
& (3 a+1)(2 a-1)=0 \\
& a=-1 / 3, \quad a=1 / 2
\end{aligned}
$$

Some student used Quad formula.

* full marks only fo correct sons and by factorisif
b) What is the percentage increase on an investment of $\$ 6000$ which compounds annually for 5 years at 9% pa?

$$
\begin{aligned}
A & =6000(1+0.09)^{5} \\
I=9231.14 & -6000 \\
\% & =\frac{3231.74}{6000} \times 100 \\
& =53.862 \%(\therefore d p)
\end{aligned}
$$ with (2m) ${ }^{(2 m)}$ king $(1 / 2,9231.74$

(1/2) 2231.74
c) A laptop purchased for $\$ 3200$ depreciates at the rate of 16% p.a.
(i) What is the value of the laptop after 4 years?

$$
\begin{aligned}
& 3200(1-0.16)^{4} \\
& =\$ 1593.19 \mathrm{~V}
\end{aligned}
$$

(ii) How long until the laptop is worth less than $\$ 500$?

$$
3200(1-0.16)^{n}<500
$$

Guess \& check is ok

$$
\begin{gathered}
0.84^{n}<0.15625 \\
n<\frac{\ln 0.15625}{\ln 0.84} \\
n>10.65 \\
n=11 \text { yrs }
\end{gathered}
$$

in llyrs

$$
\$ 470.13
$$

d) The diagram shows a regular pentagon $A B C D E$. The sides $A B$ and $D C$ are produced to meet at X. The point Y lies on $D C X$ produced.

$$
\text { int } \angle \frac{3 \times 180}{5}
$$

Student need to fomilar themselve w) the SBHS Geometrical
 or $360 \div 5$ Abbreviations \& Reasoning!

Find the size of $\angle Y X B$ giving reasons.
(1) Reason $1 \rightarrow$ int L of regular pent agon ${ }^{(3 \mathrm{~m})}$ \& St line OR $e x+L$ of regular pentagon
(1) $72^{\circ} \rightarrow$ st line
(1) $\angle B x y=144^{\circ}(e x+L$ of $\Delta)$
or
$\operatorname{Lsum} A$ and st line
e) Find the distance between two points $\mathrm{A}(-3,7)$ and $\mathrm{B}(-8,-3)$ correct to 3 decimal places.

$$
x_{1} y_{1} \quad x_{2} y_{2}
$$

(lm)

$$
\begin{aligned}
d & =\sqrt{\left(y_{2}-y_{1}\right)^{2}+\left(x_{2}-x_{1}\right)^{2}} \\
& =\sqrt{(-3-7)^{2}+(-8-3)^{2}} \\
& =\sqrt{100+25} \\
& =\sqrt{125} \\
& =11.180 \text { mils } 2 d p
\end{aligned}
$$

f) Match each equation with one of the graphs below.
(i) $y=(x+2)^{2}$
(iv) $y=-x^{2}+2$ \qquad
(ii) $y=-(x+2)^{2} \quad E$
(v) $y=(x-2)^{2}$ \qquad
(iii) $y=x^{2}+2$
(vi) $y=-(x-2)^{2}$ c

A

C

E

B

$$
\frac{1}{2} \text { each }
$$

D

F

a) State the value of $a+b+c$ in this diagram?

b) Solve by completing the square leaving your answer in exact surd form.

$$
\left.\begin{array}{rl}
x^{2}-12 x+10=0 \\
x^{2}-12 x+\left(\frac{-12}{2}\right)^{2} & =-10+\left(\frac{-12}{2}\right)^{2} \\
(x-6)^{2} & =26 \\
x-6 & = \pm \sqrt{26} \\
x & =6 \pm \sqrt{26} \quad[\text { generally well }
\end{array}\right]
$$

c) Solve by using the quadratic formula, leaving your answer in exact form.

$$
\begin{equation*}
2 x^{2}-9 x+8=0 \tag{2m}
\end{equation*}
$$

$$
x=\frac{-(-9) \pm \sqrt{(-9)^{2}-4(2)(8)}}{2(2)}
$$

$$
=\frac{9 \pm \sqrt{17}}{4}
$$

d) Consider the quadratic $x^{2}+3 x+5$.
(i) What is the value of $b^{2}-4 a c$ for this quadratic?
some students gave decimals as their exact answers]
(lm)

$$
\begin{aligned}
\Delta & =3^{2}-4(1)(5) \\
& =9-20 \\
& =-11
\end{aligned}
$$

(ii) Explain what this tells you about the graph of $y=x^{2}+3 x+5$
-the graph has no x-intercepts.
[very poorly answered]
e) The graph below shows a parabola with x-intercepts at $(2,0)$ and $(6,0)$.

Its y-intercept Is at $(0,3)$. Determine the equation of the parabola.
You may leave your answer in factorised form.

$$
y=a(x-2)(x-b)
$$

$$
\therefore y=\frac{1}{4}(x-2)(x-6)
$$

[very poorly done]
f) In the diagram below $D E \| G H$ and $D F=H F$.

State the congruence test that proves that $\triangle D E F \equiv \triangle H G F$.

ABS
$\left[\begin{array}{l}\text { many students } \\ \text { said } \\ \text { similarity tests }\end{array}\right]$
g) A is $(-2,1)$ and B is $(4,5)$
(i) Find the midpoint of $A B . \quad \begin{aligned} A B & =\left(\frac{-2+4}{2}, \frac{1+5}{2}\right) \\ & =(1,3))\end{aligned}$
(ii) Find the gradient of $A B$.

$$
\begin{equation*}
m=\left(\frac{5-1}{4-(-2)}\right)=\frac{4}{6}=\frac{2}{3} \tag{lm}
\end{equation*}
$$

(iii) Find the equation of the line which is the perpendicular bisector of $A B$ in general form.

$$
\begin{gathered}
\therefore y-3=-\frac{3}{2}(x-1) \\
2 y-6=-3 x+3 \\
\therefore 3 x+2 y-9=0
\end{gathered}
$$

$\left[\begin{array}{l}\text { (i) and (ii) very well done } \\ \text { (iii) very poorly done }\end{array}\right]$

Section D (15 Marks)
a) How much must I invest now to save $\$ 50000$ for a trip in 3 years time if interest is
(2m) 9\% pa compounding monthly?

Let P be the amount invested

$$
\begin{aligned}
& P(1: 0075)^{36}=50000 \\
& \therefore P=38207.45
\end{aligned}
$$

b) By using a substitution, or otherwise, solve the following equation correct to 2 decimal places:

$$
\begin{align*}
& \left(x^{2}-20\right)^{2}-7\left(x^{2}-20\right)=-10 \quad \text { LeT } \mu=x^{2}-20 \tag{3~m}\\
& \therefore \mu^{2}-7 \mu+10=0 \\
& (\mu-5)(\mu-2)=0 \\
& \left(e \quad x^{2}-25=0\right. \\
& x^{2}-22=0
\end{align*}
$$

c) A square centred on the origin has its vertices on the x and y-axes. The graph of the parabola $y=a x^{2}-4$, where $a>0$, passes through three of the square's vertices. Find the value of a.

(c) Cot well done at all:
Mor-coulds

$$
\text { hot even } 4
$$

wo ked out
the y-condinate
$y=-4$.
cowmen t
(a) p wite a few students compound then inter est in terms of year ty instead. of monthly. A few used the formula for deprreclatioin wittead of appreclatm.
(b) Mort know how to reduce this quartic equation to quadevatic but unable to form the quadratic equation. quite a Ansi Nan 1 those are 2 solutions in a quadrate.

$$
\begin{aligned}
& \text { cent } \\
& \cdot x^{2}=\frac{4}{a} \\
& w h=0, y=-4 \\
& \therefore 16=\frac{4}{a} \Rightarrow a=\frac{1}{4} .
\end{aligned}
$$

d) Consider the parabola $y=-(x+1)^{2}-2$
(i) What is its vertex?

$$
(-1,-2)
$$

(Welland ${ }^{(m)}$
(ii) What is the y-intercept? $\quad W$ hen $x=0, y=-3$
(well done? (lm)
(iii) Sketch the parabola showing these features. $(0,-3)$
(2m)

e) Prove, giving all reasons, that the diagonals of a parallelogram bisect each other. Do not assume any properties other than the property that opposite sides are parallel.
any properties other than
Mos, students $\uparrow 4(b, c) \quad B(b+a, c)$.
thanks
prong the
troayles
are similar
is order to
get the midst of $A C\left(\frac{a+b}{2}, \frac{c}{2}\right)$.
marks.
Reasons were mid β t of $O B\left(\frac{a+b}{2}, \frac{c}{2}\right)$.
poorly ser out: diagonals bisect each other.

Section E (14 Marks)
a) Find the value of the pronumerals a, b and c. You do NOT need to give reasons.

$$
\begin{aligned}
& a=46^{\circ} \\
& b=55^{\circ} \\
& c=44^{\circ} .
\end{aligned}
$$

Generally well done. most common error was all 3 (or at least 2) angles being 55°
b) Solve, leaving your answer in exact form:

$$
\begin{align*}
& \frac{1}{3-5 x}+\frac{4}{3+5 x}=-1 \\
& \frac{1(3+5 x)+4(3-5 x)}{(3-5 x)(3+5 x)}=-1 \\
& 3+5 x+12-20 x=-1\left(9-25 x^{2}\right) \\
& 15-15 x=-9+25 x^{2} \\
& 25 x^{2}+15 x-24=0 \\
& x=\frac{-15 \pm \sqrt{15^{2}-4 \times 25 \times-24}}{2 \times 25} \\
& =\frac{-15 \pm 5 \sqrt{105}}{50} \tag{12}
\end{align*}
$$

many students didnit:

- execute the difference of 2 squares correctly getting $9-25 x$.
- multiply (9-25x) by -1 correctly
- simplify the final fraction/surd correctly.
c) Keith invested $\$ 3000$ in shares at the start of the year. The shares rose in value by 5% per month for the first 6 months and then fell in value by 5% per month for the next 6 months.
Find the value of the shares at the end of the year.

$$
\begin{aligned}
A & =3000(1+0.05)^{6} \\
& =4020.29
\end{aligned}
$$

common mistakes:

- not recognising the
interest rate was already in months

$$
\begin{aligned}
A_{2} & =4020 \cdot 29(1-0.05)^{6} \\
& =\$ 2955 \cdot 28
\end{aligned}
$$

d) A woman invested $\$ 40000$ at 9% pa compounding monthly for 2 years. At the end of that time she reinvested the capital plus interest at an annual rate that compounded quarterly for 4 years. If the investment has accrued to $\$ 56000$ at the end of the 6 years, what was the second annual interest rate?
(Bm)

$$
\begin{aligned}
& A_{1}=40000\left(1+\% / 11_{1}\right)^{24} \\
& A_{1}=47856 \cdot 54 \\
& \frac{56000}{}=A_{1}\left(1+r_{1}\right)^{16} \\
& \frac{56000}{A_{1}}=(1+r / 41 \cdot)^{16}
\end{aligned}
$$

$$
\begin{aligned}
& 1+r / 4 \%=\sqrt[16]{\frac{56000}{A_{1}}} \\
& r / 4 \%=\sqrt[10]{\frac{56000}{A_{1}}}-1 \\
& r=3.95 \% \text { p.a. }
\end{aligned}
$$

common eros:

- not converting time frames a interest rates to correct time periods.
e) $A B C D$ is a rhombus. Find the value of m, giving reasons.
(Bm)

$$
\begin{aligned}
& \therefore \angle C B D=29^{\circ} \\
& \therefore \angle M=(180-(61+61+29)) \\
& (\angle \text { sum } \triangle) \\
& \therefore m=29^{\circ}
\end{aligned}
$$

$\angle C A B=61^{\circ}$ (alt \angle 's on 11 lines)
$\angle A C B=6 i$ (base \angle 's ios $\Delta=$)
$\angle C O E=61^{\circ}$ (alt \angle 's on 11 lines $=$)

$$
\angle C O B=\angle C B D\left(b a x \quad(b \text { iss } \Delta=)^{13}\right.
$$

$$
\begin{aligned}
\angle C D B+\angle C B D & =180-122(\angle \operatorname{sum} \triangle) \\
& =58^{\circ}
\end{aligned}
$$

Section F (14 Marks)
a) Solve by completing the square: $3 x^{2}-4 x-1=0$
(Bm)

$$
\begin{aligned}
& x^{2}-\frac{4}{3} x-\frac{1}{3}=0 \\
& x^{2}-\frac{4}{3} x+\left(-\frac{2}{3}\right)^{2}=\frac{1}{3}+\left(-\frac{2}{3}\right)^{2} \\
& \left(x-\frac{2}{3}\right)^{2}=\frac{7}{9} \\
& x=+\frac{2}{3} \pm \sqrt{\frac{7}{9}} \\
& =\frac{2 \pm \sqrt{9}}{3}
\end{aligned}
$$

FAIRLY POORLY DONE
b) Solve the equation $3 m-11 \sqrt{m}=4$
(Bm)

$$
\begin{aligned}
& x=\sqrt{m} \\
& 3 x^{2}-11 x-4=0 \\
& 3 x^{2}-12 x+x-4=0 \\
& 3 x(x-4)+(x-4=0 \\
& (3 x+1)(x-4)=0 \\
& 3 \sqrt{m}=-1 \text { or } \sqrt{m}=4
\end{aligned}
$$

or
$43 m-4=11 \sqrt{m}$

$$
(3 m-4)^{2}=121 m
$$

$$
9 m^{2}-24 m+16=121 m
$$

$$
9 m^{2}-145 m+16=0
$$

2 marks max.

$$
m=145 \pm \frac{\sqrt{45^{2}-4(9)(16)}}{2(9)}
$$

$$
m=\frac{1}{9} \text { or } m=16
$$

Solution $m=11$
c) Sketch the graph of $y=-3 x^{2}-5 x+2$ showing the coordinates of the x and y intercepts and the vertex.

Vertex $=\frac{-b}{2 a}$
(Bm)

MANY STUDENTS DID NUT
WRTE CO-ORDNATES AS REQUIRED
x intercept $y=0=-3 x^{2}-5 x+2$

$$
0=(1-3 x)(x+2)
$$

$$
\begin{gathered}
x=\frac{1}{3},-2 \\
\frac{\left(\frac{1}{3}, 0\right)(-2,0)}{x=0}
\end{gathered}
$$

Fairly well done.
d) David has just bought a boat and has a mortgage of $\$ 120000$ at 6% p.a. compounding monthly. He has to make payments of $\$ 750$ per month. How much does he owe after the third payment? $f\left(()\left({ }_{2} 0,000 \times 1.0055^{-}\right.\right.$
$=\$ 119547.75$ $1065-750) \times 1.005-750)(\mathrm{Bm}$

Full Marks awarded
e) Find the values of m for which $4 x^{2}-(6+m) x+1=0$ has only one real root.

For only 1 root $\Delta=b^{2}-4 a c=0$

$$
\begin{aligned}
&(-(b+m))^{2}-4-4 \times 1 \\
&(-6)^{2}-(-12 m)^{\prime}+(m)^{2}-16=0 \\
& m^{2}+12 m+20=0 \\
&(m+10)(m+2)=0 \\
& m=-2 \text { or } m=-10
\end{aligned}
$$

Fairly Poorly Done Many died not know the condition. for one real root.

Section G (15 Marks)
a) In the diagram you are given that $A B \| C E$. Also $P Q$ bisects $\angle A B D$ and $R S$ bisects $\angle B D E$. Prove that $P Q \| R S$, giving reasons.

$\angle B D E=\angle A B D$ (Alternate angles, $A B \| C D)$

$$
\begin{aligned}
& \therefore \frac{1}{2} \angle B D E=\frac{1}{2} \angle A B D \\
& \therefore \angle B D S=\frac{1}{2} \angle B D E\binom{\text { RS bisects }}{\angle B D E}
\end{aligned}
$$

$$
\angle Q B D=\frac{1}{2} \angle A B D \quad\left(P Q \text { bisects } \begin{array}{c}
\\
\angle A B D)
\end{array}\right.
$$

$$
\therefore \angle B D S=\angle Q B D
$$

$\therefore P Q \| R S$ (Alternate \angle 's ave equal)

* Students should write down briefly on the test paper that $P Q$ bisects $\angle A B D$ and RS bisects $\angle B D E$ if they want to state $\angle A B Q=\angle Q B D$ and $\angle C D Q=\angle B D S$.
* Full marls given for correct reasoning and structure.
b) An amount of money compounds for 3 years at 12% pa compounding 6 monthly and then for 4 years more at 11.75% pa compounding monthly. If the final value is $\$ 28034$, find the original amount invested.
let P be the original amount invested.

$$
\begin{aligned}
& P\left(1+\frac{12 \%}{2}\right)^{3 \times 2}\left(1+\frac{11.75 \%}{12}\right)^{4 \times 12}=\$ 28034 \\
& P=\frac{\$ 28034}{(1.06)^{6}\left(1+. \frac{47}{48} \%\right)^{48}} \\
& =\$ 12380.1049
\end{aligned}
$$

$\approx \$ 12380.11$ (To achieve \$28034)
c) $A B C D$ is a quadrilateral in which the diagonals $B D$ and $A C$ intersect at right angles. Also $\angle B A S=\angle D A S$.

(1) By using congruent triangles, prove that $A D=B A$ giving all reasons.

In $\triangle A B S$ and $\triangle A D S$

$$
\angle B A S=\angle D A S \text { (given) }
$$

$$
\angle A S B=\angle A S D \text { (given) }
$$

As is common

$$
\therefore \triangle A B S \equiv \triangle A D S \text { (MAS) }
$$

* Students reed to write the introduction for a congruent test proof.
$\therefore A D=B A$ (carresp ending sides of
(II) Hence prove that $C D=B C$. Congruent \triangle 's)

In $\triangle A B C$ and $\triangle A D C$

$$
A D=B A(\text { proved in (i) })
$$

$A C$ is common

$$
\begin{gathered}
\angle B A C=\angle D A C \text { (given) } \\
\therefore \triangle A B C \equiv \triangle A D C \text { (SA) } \\
\therefore B C=C D(\text { corresponding } \\
\text { Sides of } \\
\text { congruent } \\
\Delta ' s \text {) }
\end{gathered}
$$

* Students whom used triangles $\triangle A B C$ and $\triangle A D C$ were mare
successful than
$\triangle A B S$ and $\triangle A D S$.
d) The diagram below shows a square $A B C D$ with side length 2 cm . The point E is on side $A D$ with $A E=x$. The point F is on side $B C$ with $C F=2 x^{2}$.
Let y be the area of the shaded region $A B F E$.

(i) What are the range of values that x can take?

$$
\begin{aligned}
& 0<2 x^{2}<2 \\
& 0<x^{2}<1 \\
& 0<x<1 \\
& t y=2+x-2 x^{2}
\end{aligned}
$$

(ii) Show that $y=2+x-2 x^{2}$.

Since $y=-2 x^{2}+x+2$, will produce $\left\lvert\, \therefore y=-2\left(\frac{1}{4}\right)^{2}+\left(\frac{1}{4}\right)+2\right.$ a concave down parabola.
\therefore Maximum Ane can befannd at vertex.
Axis of symmetry $=\frac{-b}{2 a}=\frac{1}{4}$
(iv) Find the minimum area of $A B F E$.

$$
\begin{aligned}
\therefore y= & -2\left(\frac{1}{4}\right)^{2}+\left(\frac{1}{4}\right)+2 \\
& =2.125 \text { units }^{2} \\
& (\text { mark. }
\end{aligned}
$$

(1m)

Test endpoints of (i)
At $x=0$

$$
y=2+0-2(0)=2
$$

At $x=1 \quad$ End of Test

$$
y=2+1-2(1)=1
$$

