

Sydney Boys High School MOORE PARK, SURRY HILLS

YEAR 10 ADVANCED MATHEMATICS

Half Yearly Examination 2018

General Instructions:

• All questions may be attempted.	Time Allowed:	90 minutes
 Write using black pen. Marks may be deducted for careless or badly arranged work. All working and answers are to be written in 	Reading Time:	5 minutes
 this test booklet. If you wish to rewrite an answer, draw a line through your faulty answer and rewrite your answer on the back pages of this booklet. Show the number and part of the answer being rewritten 		
 Leave your answers in the simplest exact form, unless otherwise stated. Board approved calculators may be used. 	Evoninou	D Vilmono
• Clearly indicate your class by placing an X next to your class.	Examiner:	B.Klimore

Name:

Class	Teacher
10 A	Mr Wang
10 B	Ms Ward
10 C	Ms Evans
10 P	Mr Fuller
10 L	Ms Millar
10 U	Ms Chan
108	Mr Choy

Section	Marks	
А	/ 15	
В	/ 13	
С	/ 13	
D	/ 15	
E	/ 14	
F	/ 14	
G	/ 15	
Total	/ 99	

Section A (15 Marks)

a)	Express 0.375 as a percentage.	(1m)
b)	Find 48% of 1 km 400m.	(1m)
c)	Convert 160km/h to m/s	(2m)
d)	Find <i>x</i> if $x:6 = 5:16$	(1m)
e)	Calculate the simple interest on \$600 for 9 months at 4% p.a.	(1m)
f)	Round 4.06352 to 4 significant figures.	(1m)
g)	If $a = -3$ find the value of $-a^2 - a$	(1m)
h)	True or False? All squares are parallelograms.	(1m)

i) Solve the following equations:

(i)
$$(6+m)(7-m) = 0$$
 (1m)

(ii)
$$2p^2 - 18 = 0$$
 (2m)

$$8x^2 = 12x \tag{1m}$$

j) Which triangles are congruent?

- A. I and II only
- B. I and III only
- **C.** II and III only
- **D.** I, II and III

k) Find the equation of the line *l*.

(1m)

Section B (13 Marks)

a) Solve this quadratic equation by factorising

$$6a^2 - a - 1 = 0$$
 (2m)

b) What is the percentage increase on an investment of \$6000 which compounds (2m) annually for 5 years at 9% pa?

c) A laptop purchased for \$3200 depreciates at the rate of 16% p.a.
(i) What is the value of the laptop after 4 years? (1m)

(ii) How long until the laptop is worth less than \$500? (1m)

d) The diagram shows a regular pentagon ABCDE. The sides AB and DC are produced to meet at X. The point Y lies on DCX produced.

Find the size of $\angle YXB$ giving reasons.

e) Find the distance between two points A(-3,7) and B(-8,-3) correct to 3 decimal places.

(1m)

(3m)

f) Match each equation with one of the graphs below.

(3m)

BLANK PAGE

Anything written on this page will NOT be marked

Section C (13 Marks)

a) State the value of a+b+c in this diagram?

b) Solve by completing the square leaving your answer in exact surd form.

$$x^2 - 12x + 10 = 0 \tag{2m}$$

c) Solve by using the quadratic formula, leaving your answer in exact form. $2x^2 - 9x + 8 = 0$ (2m)

d) Consider the quadratic $x^2 + 3x + 5$.

(i) What is the value of
$$b^2 - 4ac$$
 for this quadratic? (1m)

(ii) Explain what this tells you about the graph of $y = x^2 + 3x + 5$ (1m)

e) The graph below shows a parabola with x-intercepts at (2,0) and (6,0).
(2m) Its y-intercept Is at (0,3). Determine the equation of the parabola.
You may leave your answer in factorised form.

f) In the diagram below $DE \parallel GH$ and DF = HF.(1m)State the congruence test that proves that $\Delta DEF \equiv \Delta HGF$.

g) A is (-2.1) and B is (4,5)

(i) Find the midpoint of AB. (1m)

- (ii) Find the gradient of AB. (1m)
- (iii) Find the equation of the line which is the perpendicular bisector of AB.(1m)

Section D (15 Marks)

a) How much must I invest now to save \$50000 for a trip in 3 years time if interest is
 9% pa compounding monthly?

b) By using a substitution, or otherwise, solve the following equation correct to 2 decimal places: $(x^2-20)^2-7(x^2-20)=-10$ (3m)

c) A square centred on the origin has its vertices on the x and y -axes. The graph of the parabola $y = ax^2 - 4$, where a > 0, passes through three of the square's vertices. Find the value of a.

(3m)

d) Consider the parabola $y = -(x+1)^2 - 2$

(2m)

- (ii) What is the y-intercept? (1m)
- (iii) Sketch the parabola showing these features.

e) Prove, giving all reasons, that the diagonals of a parallelogram bisect each other. (3m)

Section E (14 Marks)

a) Find the value of the pronumerals a, b and c. You do NOT need to give reasons. (3m)

b) Solve, leaving your answer in exact form:

$$\frac{1}{3-5x} + \frac{4}{3+5x} = -1$$
 (3m)

c) Keith invested \$3000 in shares at the start of the year. The shares rose in value by 5% per month for the first 6 months and then fell in value by 5% per month for the next 6 months.Find the value of the shares at the end of the year.

(2m)

d) A woman invested \$40000 at 9% pa compounding monthly for 2 years. At the end of that time she reinvested the capital plus interest at an annual rate that compounded quarterly for 4 years. If the investment has accrued to \$56000 at the end of the 6 years, what was the second annual interest rate?

e) ABCD is a rhombus. Find the value of m, giving reasons.

(3m)

Section F (14 Marks)

a) Solve by completing the square: $3x^2 - 4x - 1 = 0$

b) Solve the equation $3m - 11\sqrt{m} = 4$

c) Sketch the graph of $y = -3x^2 - 5x + 2$ showing the x and y intercepts and the vertex. (3)

(3m)

(3m)

 d) David has just bought a boat and has a mortgage of \$120000 at 6%p.a. compounding monthly. He has to make payments of \$750 per month. How much does he owe after the third payment? (3m)

e) Find the values of *m* for which $4x^2 - (6+m)x + 1 = 0$ has only one real root. (2m)

Section G (15 Marks)

a) In the diagram you are given that $AB \parallel CE$. Also PQ bisects $\angle ABD$ and RS bisects $\angle BDE$. Prove that $PQ \parallel RS$, giving reasons. (3m)

b) An amount of money compounds for 3 years at 12 % pa compounding 6 monthly and then for 4 years more at 11.75% pa compounding monthly. If the final value is \$28 034, find the original amount invested.
 (3m)

c) ABCD is a quadrilateral in which the diagonals BD and AC intersect at right angles. Also $\angle BAS = \angle DAS$.

(I) By using congruent triangles, prove that AD = BA giving all reasons. (2m)

(II) Hence prove that CD = BC.

(2m)

d) The diagram below shows a square ABCD with side length 2 cm. The point E is on side AD with AE = x. The point *F* is on side *BC* with $CF = 2x^2$. Let y be the area of the shaded region *ABFE*.

(i) What are the permissible values of x?

(ii) Show that $y = 2 + x - 2x^2$. (2m)

(iii) Find the maximum area of ABFE.

(iv) Find the minimum area of ABFE.

End of Test

(1m)

(1m)

Extra Working Page

Extra Working Page

Sample Solutions

Section A (15 Marks)

- a) Express 0.375 as a percentage.
- b) Find 48% of 1 km 400m. $0.48 \times 1400 = 672 \text{ m}$
- (1m) c) Convert 160km/h to m/s. (Exact answer) = 400 m/s. (1m) d) Find x if x:6=5:162 = 5 6 x= 15 8 (1m) e) Calculate the simple interest on \$600 for 9 months at 4% p.a. I=P-t = 600 × 0.04 × 9/12 = \$18. (1m) f) Round 4.06352 to 4 significant figures. 4-064

37.5%

g) If
$$a = -3$$
 find the value of $-a^2 - a = (-3)^2 - (-3)$ (1m)
= -6 x 1 + is a good i'dea to
rewrite putting (-3) in
brackets wherever an
a is.
(1m)

h) True or False? All squares are parallelograms.

2

TRUE

(1m)

i) Solve the following equations:

(i)
$$(6+m)(7-m) = 0$$

 $m = -6, 7$

(ii)
$$2p^2 - 18 = 0$$

 $p^2 = 9$
 $p = \pm 3$
(iii) $8x^2 = 12x$
 $x = 0, \frac{3}{2}$
(iii) $2p^2 - 18 = 0$
 $p = \pm 3$
(2m)
A common mistake
was to write only
one solution. (2m)

(1m)

Many students got Mis wrong. ★ Note: corresponding sides must be equal not just any two

k) Find the equation of the line *l*.

(1m)

Section B (13 Marks)

a) Solve this quadratic equation by factorising

$$6a^{2}-a-1=0$$
 (2m)
 $6a^{2}-3a+2a-1=0$
 $3a(2a-1)+1(2a-1)=0$ Some students
 $(3a+1)(2a-1)=0$ V formula.
 $a=-1/3$, $a=1/2$ V full marks only
 $a=-1/3$ (1/2) 23.1.74
(1/2) 32.31.74
(1/2) 32.31.74
(1/2) 32.31.74
(1/2) 32.31.74
(1/2) 32.31.74
(1/2) 32.31.74
(1/2) 32.31.74
(1/2) 32.31.74
(1/2) 32.31.74
(1/2) 32.31.74
(1/2) 32.31.74
(1/2) 32.31.74
(1/2) 32.31.74
(1/2) 32.31.74
(1/2) 32.31.74
(1/2) 32.31.74
(1/2) 32.31.74
(1/2) 32.31.74
(1/2) 32.31.74
(1/2) 32.31.74
(1/2) 32.31.74
(1/2) 32.31.74
(1/2) 32.31.74
(1/2) 32.31.74
(1/2) 32.31.74
(1/2) 32.31.74
(1/2) 32.31.74
(1/2) 32.31.74
(1/2) 32.31.74
(1/2) 32.31.74
(1/2) 32.31.74
(1/2) 32.31.74
(1/2) 32.31.74
(1/2) 32.31.74
(1/2) 32.31.74
(1/2) 32.31.74
(1/2) 32.31.74
(1/2) 32.31.74
(1/2) 32.31.74
(1/2) 32.31.74
(1/2) 32.31.74
(1/2) 32.31.74
(1/2) 32.31.74
(1/2) 32.31.74
(1/2) 32.31.74
(1/2) 32.31.74
(1/2) 32.31.74
(1/2) 32.31.74
(1/2) 32.31.74
(1/2) 32.31.74
(1/2) 32.31.74
(1/2) 32.31.74

c) A laptop purchased for \$3200 depreciates at the rate of 16% p.a.

(i) What is the value of the laptop after 4 years?

3200(1-0.16)4 = \$1593.191

(ii) How long until the laptop is worth less than \$500?

(1m)

6

e) Find the distance between two points A(-3,7) and B(-8,-3) correct to 3 decimal places.

$$d = \sqrt{(y_2 - y_1)^2 + (x_2 - x_1)^2}$$

= $\sqrt{(-3 - 7)^2 + (-8 - -3)^2}$
= $\sqrt{100 + 25}$
= $\sqrt{125}$

21. 4 X2 42

Section C (13 Marks)

c) Solve

a) State the value of a+b+c in this diagram?

b) Solve by completing the square leaving your answer in exact surd form.

$$x^{2}-12x+10=0$$

$$(2m)$$

$$\chi^{2}-12\chi + \left(\frac{-12}{2}\right)^{2} = -10 + \left(\frac{-12}{2}\right)^{2}$$

$$(\chi - 6)^{2} = 26$$

$$\chi - 6 = \pm \sqrt{26}$$

$$\chi = 6 \pm \sqrt{26}$$
[generally well]
$$d = 6 \pm \sqrt{26}$$
by using the quadratic formula, leaving your answer in exact form.
$$2x^{2}-9x+8=0$$

$$\chi = -(-9) \pm \sqrt{(-9)^{2}-4}(2)(8)$$
(2m)

2(2)

$$= 9 \pm \sqrt{17}$$
3
Some students
gave decimals as
their exact answers
(i) What is the value of b² - 4ac for this quadratic?

$$\Delta = 3^{2} - 4(1)(5)$$

$$= 9 - 20$$
[well done]

$$= -11$$
(ii) Explain what this tells you about the graph of $y = x^{2} + 3x + 5$
The graph has no pl-intercepts.
[Very poorly answered]

e) The graph below shows a parabola with x-intercepts at (2,0) and (6,0).
(2m) Its y-intercept Is at (0,3). Determine the equation of the parabola.
You may leave your answer in factorised form.

f) In the diagram below $DE \parallel GH$ and DF = HF. State the congruence test that proves that $\Delta DEF \equiv \Delta HGF$.

AAS [many students said similarity tests]

g) A is (-2,1) and B is (4,5)
(i) Find the midpoint of AB.
$$mp_{AB} = \left(-\frac{2+4}{2}, \frac{1+5}{2}\right)$$
(1m)

$$= \left(1,3\right)$$
(iii) Find the gradient of AB.

$$m = \left(\frac{5-1}{4-(-2)}\right) = \frac{4}{5} = \frac{2}{3}$$
(iii) Find the equation of the line which is the perpendicular bisector of AB in general form.

$$m_{\perp} = -\frac{3}{2}, (1,3)$$

$$2y - b = -3x + 3$$

$$\therefore 3x + 2y - 9 = 0$$
(i) and (ii) Very well done]

[(iii) very poorly done]

Section D (15 Marks)

a) How much must I invest now to save \$50000 for a trip in 3 years time if interest is
 9% pa compounding monthly?

Let P be the amount invested

$$P(1.0075)^{36} = 50000$$

 $\therefore P = 38207.45$

b) By using a substitution, or otherwise, solve the following equation correct to 2 decimal places:

$$(x^{2}-20)^{2}-7(x^{2}-20) = -10 \quad \text{Let } \mathcal{M} = \chi^{2}-20 \quad (3m)$$

$$\therefore \quad \mathcal{M}^{2}-7\mathcal{M} + 10 = 0 \quad (\mathcal{M}-5)(\mathcal{M}-2) = 0' \quad (\mathcal{M}-2) = 0' \quad (\mathcal{M}-2) = 0' \quad (\mathcal{M}-2) = 0 \quad$$

c) A square centred on the origin has its vertices on the x and y -axes. The graph of the parabola $y = ax^2 - 4$, where a > 0, passes through three of the square's vertices. Find the value of a.

d) Consider the parabola
$$y = -(x+1)^2 - 2$$

(i) What is its vertex? $(-1, -2)$ (Welldord!m)
(ii) What is the y-intercept? When $y = 0$, $y = 3$ (1m)
(iii) Sketch the parabola showing these features. $(0_1 - 3)$ (2m)
Contained d (iii) y
Mont knew the 1
has is work but i
the dragtam i i
the dragtam $(-1, -2)$
Contained a $(-1, -2)$
 $(-1, -2)$

e) Prove, giving all reasons, that the diagonals of a parallelogram bisect each other. Do not assume any properties other than the property that opposite sides are parallel. (3m)

Comment le Most students (e) 14 (b, c) B(b+a, c)thenks prong the trayles are simila ${}^{(\!\mathcal{O}\!)}$ A (a, 0) in order to get the midpt of Ac (atb, C). Reasons were mid pt of OB (atb) y set out: diagonals bisect each other. poor

Section E (14 Marks)

a) Find the value of the pronumerals *a*, *b* and *c*. You do NOT need to give reasons.

Generally well done. Most common error was all 3 (or atleast 2) angles being 55°

$$\frac{1}{3-5x} + \frac{4}{3+5x} = -1$$

$$\frac{1(3+5x) + 4(3-5x)}{(3-5x)(3+5x)} = -1$$

$$(3-5x)(3+5x)$$

$$3+5x + 12 - 20x = -1(9-25x^{2})$$

$$15 - 75x = -9 + 25x^{2}$$

$$15 - 75x = -9 + 25x^{2}$$

$$25x^{2} + 15x - 24 = 0$$

$$2 = -15 \pm \sqrt{15^{2} - 4x} + 25x - 24$$

$$2 = -25x^{2} + 15x^{2} - 4x^{2} + 25x^{2} + 15x^{2}$$

$$= -\frac{3 \pm \sqrt{105}}{10}$$

Many students didnit: - Oxecute the difference of 2 squares correctly getting 9 - 25x. - multiply (9-25x') by -1 correctly - simplify the final fractor/surd correctly.

(3m)

(3m)

į

c) Keith invested \$3000 in shares at the start of the year. The shares rose in value by 5% per month for the first 6 months and then fell in value by 5% per month for the next 6 months.

Find the value of the shares at the end of the year.

$$A = 3000(1 + 0.05)^{6}$$
$$= 4020 \cdot 29$$

$$A_2 = 4020 \cdot 29 (1 - 0.05)^{\circ}$$

Common mistakes: - not recognising the interest rate was already in months

d) A woman invested \$40000 at 9% pa compounding monthly for 2 years. At the end of that time she reinvested the capital plus interest at an annual rate that compounded guarterly for 4 years. If the investment has accrued to \$56000 at the end of the 6 years, what was the second annual interest rate? (3m)

e) ABCD is a rhombus. Find the value of m, giving reasons.

LCAB= 61° (alt L's on 11 lines) LACB = 6i (base L's isos $\Delta =)$ LCDE=61" (alt L's on Illines =) LCOB=LCBO (bax L6 isos A=) 13 $LCOB + LCBD = 180 - 122 (LSUM A) = 58^{2}$

: LCBD=29°

$$(L SUM \Delta)$$

 $:= m = 29^{\circ}$ Well done by most. Common Brior not providing correct reasoning. There are many ways to do this question - this is just 1. long way is

(2m)

Section F (14 Marks)

a) Solve by completing the square: $3x^2 - 4x - 1 = 0$

$$\begin{aligned} x^{2} - \frac{4}{3}x - \frac{1}{3} = 0 \\ x^{2} - \frac{4}{3}x + \left(-\frac{2}{3}\right)^{2} = \frac{1}{3} + \left(-\frac{2}{3}\right)^{2} \\ (x - \frac{2}{3})^{2} = \frac{1}{9} \\ x = \frac{1}{3} = \frac{1}{3} + \sqrt{\frac{1}{9}} \\ = \frac{2 \pm \sqrt{\frac{1}{9}}}{3} \end{aligned}$$
FAIRLY POORLY DONE

b) Solve the equation
$$3m-11\sqrt{m}=4$$

 $x=\sqrt{m}$ or $43m-4=11\sqrt{m}$
 $3x^{2}-11x-4=0$ $(3m-4)^{2}=121m$.
 $3x^{2}-12x+x-4=0$ $(3m-4)^{2}=121m$.
 $3x(x-4)+(x-4=0)$ $9m^{2}-24m+1b=121m$.
 $(3z+1)(x-4)=0$ $9m^{2}-145m+1b=0$
 $(3z+1)(x-4)=0$ $9m^{2}-145m+1b=0$
 $3\sqrt{m}=-1$ or $\sqrt{m}=4$ $m=145\pm\sqrt{45^{2}-4(9)(1b)}$
 $3\sqrt{m}=-1$ or $\sqrt{m}=4$ $m=\frac{1}{9}$ or $m=1b$
 $m=\frac{1}{9}$ or $m=1b$

c) Sketch the graph of $y = -3x^2 - 5x + 2$ showing the coordinates of the x and y intercepts and the vertex. (3m)

Vertex 30-5

$$a = \frac{-(-5)}{2(-3)} = \frac{-5}{6}$$

 $y = -3(-5)_{6}^{2} - 5(5)_{6}^{2} + 2$
 $= \frac{-49}{12}$
 $\frac{12}{12} + u^{a} | 18$
 $y = 0 = -3x^{2} - 5x + 3$
 $0 = (1 - 3x)(x + 3)$
 $y = 1 + der (cep + x = 0)$
 $\frac{y = a}{(0, 2)}$

(3m)

d) David has just bought a boat and has a mortgage of \$120000 at 6%p.a. compounding monthly. He has to make payments of \$750 per month. How much does he owe after the third payment? ((20,000 × 1.005) -750) × 1.005-750) × 1.005-750) (3m) =8119547.75 Full Marks awarded

e) Find the values of m for which $4x^2 - (6+m)x + 1 = 0$ has only one real root.

(2m)

For only 1 root
$$A=b^2 - 4ac = 0$$

 $(-(b+m))^2 - 4 \cdot x + 4 \times 1$
 $(-6)^2 - (12m)^2 + (m)^2 - 16 = 0$
 $m^2 + 12m + 20 = 0$
 $(m+10)(m+2) = 0$
 $m=-2 \text{ or } m=-10$.

FAIREY POORLY DONE Many dud not know the conduts on . for one real root.

Section G (15 Marks)

a) In the diagram you are given that $AB \parallel CE$. Also PQ bisects $\angle ABD$ and RS bisects $\angle BDE$. Prove that $PQ \parallel RS$, giving reasons.

(3m)

b) An amount of money compounds for 3 years at 12 % pa compounding 6 monthly and then for 4 years more at 11.75% pa compounding monthly. If the final value is \$28 034, find the original amount invested.
 (3m)

c) ABCD is a quadrilateral in which the diagonals BD and AC intersect at right angles. Also $\angle BAS = \angle DAS$.

В

#

d) The diagram below shows a square ABCD with side length 2 cm. The point E is on side AD with AE = x. The point F is on side BC with $CF = 2x^2$. Let v be the area of the shaded region ABFE.

(i) What are the range of values that x can take?

0122212

(1m)

(ii) Show that $y = 2 + x - 2x^2$. Show that $y=2+x-2x^2$. Area y = Area of trapezium $\therefore Y = \frac{h}{2}(a+b)$ $= \frac{2}{2}(x+2-2x^2)$ $\therefore V = 2+x-2x^2$ $\therefore V = 2+x-2x^2$ To gain full marks in the show question, Students Must explain the formulae they are using. (1m) (2m) $\therefore \quad y = 2 + \pi - 2\pi^2$ (iii) Find the maximum area of ABFE. Since $y = -2\pi^2 + \pi + 7$, will produce $| \cdot y = -2(\frac{1}{4})^2 + (\frac{1}{4}) + 2$ a concare down parabola. - Maximum Area can be found = 2.125 units² (1, marh. at vertex. Axis of symmetry = $\frac{-b}{2a} = \frac{1}{4}$ (iv) Find the minimum area of ABFE. (1m) Test endpoints of(i) . Minimum Area = 1 unit? At 7(=0)V = 2 + 0 - 2(0) = 2A + 2C = 1End of Test Y = 2 + 1 - 2(1) = 118