BAULKHAM HILLS HIGH SCHOOL

YEAR 10 YEARLY MATHEMATICS
 October 2010

Time allowed: 70 minutes

Students Name:

\qquad
Teacher's Name: \qquad

DIRECTIONS TO CANDIDATES

- Attempt ALL questions.
- Diagrams are not to scale unless specified.
- NO liquid paper/tape is to be used in the exam
- Write your teacher's name and your name on the cover sheet provided.
- At the end of the exam, staple your answers in order behind the cover sheet provided, and your questions on the back

QUESTION	MARK
1	
2	
3	
4	
5	
6	
7	
TOTAL	

a) Evaluate $\sqrt{\frac{3.74^{4}}{32.5-1.12^{2}}}$ correct to 2 decimal places $\quad \mathbf{2}$
b) Simplify $2 y-y(3-4 y) \quad 1$
c) Solve $\frac{3 x-2}{5}=2+x$
d) Solve $(x+5)(2 x-3)=0 \quad \mathbf{2}$
e) Rationalise the denominator, leaving your answer in simplest form.

$$
\frac{3 \sqrt{5}}{\sqrt{8}}
$$

f) Given $f(x)=x^{2}-5$
i) find $f(2) \quad 1$
ii) find $f(x+h)$. Simplify your answer.

Question 2 (12 marks) - Start a new page

Given $A(5,0), B(8,4)$ and $C(0,10)$

i) Find the gradient of $A B \quad 1$
ii) Find the length of $A B \quad 1$
iii) Show that the equation of the line $A B$ is $4 x-3 y-20=0 \quad 2$
iv) Show that $A B$ is perpendicular to $B C \quad 2$
v) Show that $\triangle O A C \equiv \triangle A B C \quad 3$
vi) Hence or otherwise, find the area of the quadrilateral $O A B C$

Question 3 (12 marks) - Start a new page

a) A computer valued at $\$ 2200$ depreciates at a rate of 15% per annum. Find the value of the computer after 5 years.
b)

Find the value of x correct to 2 decimal places.
c) Find the axis of symmetry of the parabola $y=x^{2}+x+1$

Hence or otherwise, find the minimum value of $x^{2}+x+1$
d) A coin is tossed 3 times.
i) Draw a tree diagram
ii) Find the probability of getting
a) 2 heads and 1 tail in any order
β) only tails
e) Simplify, giving your answers without negative indices.

$$
\frac{a^{3} b^{-1}}{(a b)^{2}}
$$

f) Factorise completely $4 x^{2}-16$

Question 4 (12 marks) - Start a new page
a) Solve $|3 x-2|=5$
b) Thirty randomly chosen passengers at Sydney Airport were surveyed about the length of time in minutes, they spent waiting in line at the Customs.
The data is displayed in a stem and leaf plot.

Stem	Leaf
0	5889
1	22789
2	01468
3	244677899
4	001459Δ

i) If the range of scores is 44 , find the value of Δ
ii) Find the median waiting time 1
iii) Draw a box and whiskers plot of this data 2
c) If the height of a smaller cone is half the height of a larger similar cone, $\mathbf{1}$ what is the ratio of their volumes.
d) Solve $2 \cos \theta=1$ for $0 \leq \theta \leq 360^{\circ} 3$
e) Simplify $\sqrt{x^{3}}+\sqrt{x}-\sqrt{9 x} \quad \mathbf{2}$
a) Sketch the following, showing x and y intercepts and other important features
i) $y=\frac{3}{x-2}-2$
ii) $x^{2}+(y-2)^{2}=16$
b)

Note: This solid is formed by joining a cone and hemisphere.
i) Find the exact height of the cone. 2
ii) Calculate the volume of the solid correct to 2 decimal places.
c) For the following set of scores 1727374028353720 , determine:-
i) the mean 1
ii) the standard deviation 1

Question 6 (12 marks) - Start a new page
a) Sketch the following region $y \leq \sqrt{9-x^{2}}$
b) If $(x-2)(x+k)=x^{2}+a x+10$, find a and k.
c) Answer the following. No reasons required
i) Given the radius $r=5 \mathrm{~cm}$ and the length of the chord $A B=6 \mathrm{~cm}$
Find the distance of O from the chord $A B$.

ii) Find x

d)

A ship leaves port and sails on a bearing of 305° for 200 km to get to point B At B it changes course to 060° and sails for further 100 km to get to point C.
i) How far is the ship west of the port at point B.
ii) Find $\angle P B C \quad 1$
iii) How far is C from the port?
a) Solve $4^{x}-5\left(2^{x}\right)+4=0 \quad 3$
b) Given that α is obtuse and $\sin \alpha=\frac{1}{\sqrt{5}}$, find the exact value of $\cos \alpha$
c) Given $P(x)=2 x^{3}+x^{2}-5 x+2$ and $Q(x)=x+2$
i) What is the remainder when $P(x)$ is divided by $Q(x)$? $\quad 1$
ii) Express $P(x)$ as a product of its factors 1
iii) Hence or otherwise sketch $y=P(x)$ showing x and y-intercepts. 2
d) Given is a circle with centre O and radius 2 units. If $P D=2$ units and $P A=A B$ show $\cos \theta=\frac{1}{4}$

- END OF PAPER -

