BAULKHAM HILLS HIGH SCHOOL

YEAR 10

YEARLY EXAMINATION

2011

MATHEMATICS

Time allowed: 60 minutes mill be the ideal $\begin{aligned} & \text { mime for the paper } \\ & \text { tim }\end{aligned}$ Instructions:

- Attempt ALL questions
- Write using black or blue pen only.
- You may use pencil for diagrams
- Write your answers on the paper provided
- Start a new page for each question

Question 1 - Start a new page

marks
a) Simplify $\frac{2^{3 x+4}}{2^{2+x}}$. 1
b) If $\log _{10} x=2$, find x. 1
c) Give the following in scientific notation: $\left(6 \times 10^{-3}\right)^{3}$ 2
d) Find integers a and b such that $(5+\sqrt{3})^{2}=a+b \sqrt{3}$ 2
e) If $\log _{a} 2=0.27$ and $\log _{a} 3=0.428$, find $\log _{a} 4.5$. 2
f) Solve $2 \cos \alpha-1=0$ for $0^{\circ} \leq \alpha \leq 360^{\circ}$ 2
g) Factorise fully: $4 x^{3}-32$ 2

Question 2 - Start a new page

a) Draw a number plane and plot $\mathrm{P}(-2,1), \mathrm{Q}(1,6)$ and $\mathrm{R}(6,3)$.
(i) Show that the mid-point, M, of PR is $(2,2)$.
(ii) Find the gradient of PR.
(iii) If M is also the mid-point of QS , find the coordinates of S . 2
(iv) Show that QM is perpendicular to PR.
b) If I buy a car for $\$ 54000$ now and keep it for three years, what will its value be at the end of this period if it has depreciated at 20% p.a.?
c) Solve for $t: 7-4 t<12 \quad 2$
d) If $f(x)=13-2 x$, find the value of
(i) $f(-5)$
(ii) x if $f(x)=100$.2

Question 3 - Start a new page

a) If $\mathrm{F}(x)=3 x+5$ and $\mathrm{y}=\mathrm{F}^{-1}(x)$ is its inverse.
(i) Find the inverse function.
(ii) Evaluate $\mathrm{F}^{-1}(2) \times \mathrm{F}(2)$
(iii) Sketch the graph of the inverse function
b) Find the value of x in the following: (No reasons required)

c) $\sin \theta=-\frac{3}{4}$ and $180^{\circ}<\theta<270^{\circ}$. Find the exact value of $\tan \theta$.
d)

$\mathrm{AC}=10 \mathrm{~cm}$. Area of the rhombus is $80 \mathrm{~cm}^{2}$. Find the length of AB to two significant figures,
e)

Find the length of RQ correct to ONE decimal place.

Question 4 - Start a new page

a) If $P(x)=(x-2)(x+1)^{2}$, sketch the graph of $y=P(x)$ on a number plane.
b) Sketch the following graphs showing all important features:
(i) $y=-2^{x}$
(ii) $x^{2}+(y-2)^{2}=16$
c)

AB is the diameter of a circle with centre $\mathrm{O} . \mathrm{AC}$ and BD are any two chords.
Copy the diagram into your answer sheet. Show that $\angle B D O=\angle A C D$.
d) If $(x-2)(x+p)=x^{2}+q x+10$, find the values of p and q.
e) Two similar statues were to be made at Jeya's studio. The smaller one was 1.6 m tall, had a volume of $0.384 \mathrm{~m}^{3}$ and needed 400 mL of paint to complete the required two coats. If the height of the larger statue is 2.0 m how much paint will be required to give the larger statue two coats?

Question 5 - Start a new page.

a) Find x.

Question 5 (continued)

b) An airplane takes off from an airport and travels in a direction $140^{\circ} \mathrm{T}$ at 600 km h for 1.5 hours and then in a direction $280^{\circ} \mathrm{T}$ for 2 hours at $800 \mathrm{~km} / \mathrm{h}$.
(i) Draw a neat diagram to represent the above information.
(ii) Find the distance, correct to nearest km , and bearing of the airplane from the airport after this time.
c) Find the coordinates of the vertex of $y=x^{2} \div 4 x+2$
d) A rectangular swimming pool, with a flat floor, is 25 m by 15 m and is filled from pipes which deliver 500 L of water per minute. How long will it take for the water to rise 10 cm ?
e) If $P(x)=x^{3}-x^{2}-10 x-8$ and $Q(x)=x+2$
(i) Find the remainder when $P(x)$ is divided by $Q(x)$.
(ii) Express $\mathrm{P}(\mathrm{x})$ as a product of its factors.

Question 6 - Start a new page

a) Thirty randomly chosen patients were surveyed about the length of time they spent waiting for a hospital service.

Stem	leaf
0	5889
1	22789
2	01468
3	244677899
4	$001455 \square$

(i) if the range of scores is 44 , find the value of $\square . \quad 1$
(ii) find the median waiting time. $\quad 1$
(iii) Draw a box-and-whisker plot of this data. 3
b) Evaluate $\log _{5} 25-\log _{5} \sqrt{5}$. 2
c) Solve for $\mathrm{x}: 4^{2 \mathrm{x}+3}=8^{\mathrm{x}-5} \quad 2$
d) On a number plane shade in the region given by the two conditions: $x \leq-1$ and $y>x^{2}-9 \quad 2$

Question 7 - Start a new page

a) Three green and two yellow cards are in a basket. Two are drawn at random one after the other without replacement. What is the probability that
(i) both cards are yellow
(ii) both are the same colour.
b) Solve for $\mathrm{x}: \log _{10} x-\frac{3}{\log _{10} x}=2$
c) ABCD is a square.

Prove that (i) $\triangle P B Q \equiv \triangle Q C R$
(ii) $\angle P Q R=90^{\circ}$

2
d)

Show that pq $=216$.
End of Examination

YEAR 10, Yearly exam 2011.
D)
(a) $2^{3 x+4-(2+x)}=2^{2 x+2}$
(b) $x=10^{2} ; x=1001$
(c) $6^{3} \times 10^{-9}=2.16 \times 10^{-7 v}$
(d)

$$
\begin{aligned}
(5+\sqrt{3})^{2} & =25+10 \sqrt{3}+3 \\
& =28+10 \sqrt{3} \\
\therefore a & =28 \sqrt{ } ; b=10
\end{aligned}
$$

(e)

$$
\begin{aligned}
& \log _{a} 4.5=\log _{a}\left(\frac{9}{2}\right) \\
= & 2 \log _{a} 3-\log _{a} 2 \sqrt{ } \\
= & 0.586
\end{aligned}
$$

(f) $\quad \cos \alpha=1 / 2$

$$
\alpha=60^{\circ}, 300^{\circ}
$$

(9)

$$
\begin{aligned}
& 4^{\checkmark}\left(x^{3}-8\right) \\
& =4 \cdot(x-2)\left(x^{2}+2 x+4\right)
\end{aligned}
$$

Question 2

(i) $M\left(\frac{4}{2}, \frac{4}{2}\right)=(2,2)^{\sqrt{~}}$
(ii) $m_{P_{R}}=\frac{3-1}{6-2}=\frac{2}{8}=\frac{1}{4} \sqrt{ }$
(iii) $\begin{aligned} \frac{a+1}{2}=2 & \Rightarrow a=3^{\prime} \\ n+k & \Rightarrow b=-2\end{aligned}$

$$
\begin{aligned}
& s(3,-2) \\
& \text { (iv) } m_{Q S}=\frac{-2-6}{3-1}=\frac{-8}{2}=-4 \\
& m_{Q S} \times m_{P R}=\frac{1}{4} \times-4=-1 \\
& \therefore Q S \perp P R
\end{aligned}
$$

(b)

$$
V=54000(1-0.2)^{3 V}
$$

$$
=\$ 27648
$$

(c)

$$
\begin{aligned}
-4 t & <5 \\
4 t & >-5 \\
t & >-5 / 4
\end{aligned}
$$

(d) ii $f(-5)=13+10=23$
(ii)

$$
\begin{aligned}
100 & =13-2 x / \\
2 x & =-87 \therefore x=-87 / 2
\end{aligned}
$$

ㄴ)

Question 3
(i)

$$
\begin{aligned}
& y=3 x+5 \\
& x=3 y+5 \Rightarrow y=\frac{x-5}{3} \\
& \therefore f^{-1}(x)=\frac{x-5}{3} .
\end{aligned}
$$

(ii)

$$
\begin{aligned}
& f^{-1}(2)=-1 \quad f(2)=11 . \\
& \therefore f^{-1}(2) \times f(2)=-11
\end{aligned}
$$

事两
(iii)

$$
\frac{-1}{f(x)}=\frac{1}{3} x-\frac{5}{3}
$$

(b)

$$
\begin{aligned}
& \frac{x+2}{x+5}=\frac{x}{2} \\
& 2 x+4=x^{2}+5 x \\
& x^{2}+3 x-4=0 \\
& (x+4)(x-1)=0 \\
& \therefore x=1 \quad x=-4 x
\end{aligned}
$$

(c)

$$
\tan \theta=3 / \sqrt{7}
$$

(d)

$$
\begin{aligned}
& \frac{1}{2}: 10 \times B D=80 \\
& B D=16 \\
& \sqrt{5^{2}+4^{2}}=A B=6.4 \text { (2sig). }
\end{aligned}
$$

(e)

$$
\begin{aligned}
& \frac{R Q}{\sin 113^{\circ}}=\frac{40}{\sin 43^{\circ}} \\
& R Q^{\circ}=54.0,(1 \text { decinop } p \cdot) .
\end{aligned}
$$

Question 4

b) (1)

(ii)

c)

$$
\begin{aligned}
& \angle O D B=\angle O B D,(\text { Base } \angle \text { of iso } \Delta ;=0 \text { radic })
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \angle B D O=\angle A C D
\end{aligned}
$$

d)

$$
\begin{align*}
& x^{2}+(p-2) x-2 p=x^{2}+q x+100 \\
& -2 p=10 \Rightarrow p=-5 \\
& p-2=q^{2} \Rightarrow q=-7 \tag{14}
\end{align*}
$$

e) $\frac{400}{V}=\frac{1.6^{2}}{2^{2}}$

$$
V=\frac{400 \times 2^{2}}{\sqrt{1.6^{2}}}=625 \mathrm{~mL}
$$

Question 5
a) $10 \times 6=x^{2}$

$$
x^{2}=60 .
$$

$$
x=\sqrt{60}=7.75
$$

b)

(Finalposition)
(ii)

$$
\begin{aligned}
& A C^{2}=1600^{2}+900^{2}-2 \times 900 \times 16 m \times \cos 40^{\circ} \\
& A C=1078.79 \simeq 1079 \mathrm{km!} \\
& \frac{1079}{\sin 40}=\frac{1600}{\sin \theta} \\
& \theta=72^{\circ} 24^{\prime}
\end{aligned}
$$

\therefore Bearing $140+72^{\circ} 24^{\prime}$

$$
=212^{\circ} 24^{\prime} \mathrm{T}
$$

c)

$$
\begin{aligned}
x & =-\frac{4}{2}=-2 \\
\therefore y & =4-8+2=-2
\end{aligned}
$$

Vertex $(-2,-2)$
d)

$$
V=25 \times 15 \times 0.1=37.5 \mathrm{~m}^{3}
$$

0.5 KL per minute.

$$
\therefore T=\frac{37.5}{0.5} \mathrm{~min}=75 \mathrm{~min}
$$

or 1 hour 15 min .
e)
(i)

$$
R=P(-2)
$$

$$
=-8-4+20-8=0 . V
$$

(ii)

Question 6
(i) $\square=9$
(ii) $\frac{32+34}{2}=33 \mathrm{~min}$.
(iii)

$$
\begin{aligned}
& Q_{1}=\frac{17+18}{2}=17.5 \\
& Q_{2}=33 \\
& Q_{3}=\frac{39+39}{2}=39.00
\end{aligned}
$$

b) $2 \log _{5} 5$

$$
=1 \frac{1}{2}
$$

c) $\left(2^{2}\right)^{2 x+3}=\left(2^{3}\right)^{x+5}$

$$
\begin{aligned}
4 x+6 & =3 x+15 \\
x & =9
\end{aligned}
$$

$$
\begin{align*}
& x + 2 \longdiv { x ^ { 3 } - x ^ { 2 } - 1 0 x - 8 } \\
& \begin{array}{l}
\frac{x^{3}+2 x^{2}}{-3 x^{2}-10 x} \\
-3 \frac{x^{2}-6 x}{-4 x-8} \\
-4 x-8
\end{array} \tag{12}\\
& P(x)=\left(x^{2}-3 x-4\right)\left(x^{0}+2\right) \\
& =(x-4)(x+1)(x+2) \text {. }
\end{align*}
$$

1)

Question 7
i) $P(y y)=\frac{2}{5} \times \frac{1}{4}=\frac{1}{10}$
(ii)

$$
\begin{aligned}
P(\text { sameconw }) & =P(y y)+P(G c)^{2} \\
& =\frac{1}{10}+\frac{6}{25}=\frac{17}{50} .
\end{aligned}
$$

b) let $\log _{10} x=m$

$$
\begin{aligned}
& m^{2}-3=2 m \\
& m^{2}-2 m-3=0 \Rightarrow \text { a }=3 w-1 \\
& \log _{10} x=3 \Longrightarrow x=1000 \mathrm{~V} \\
& \log _{10} x=-1 \Rightarrow x=\frac{1}{10 .}
\end{aligned}
$$

c) (i) In $\triangle P B Q$ and $\triangle Q C R$

$$
\begin{aligned}
& B Q=C R \text { (given) } \\
& \angle P B C=\angle Q C R=90^{\circ},[\angle O \text { of asquan }]
\end{aligned}
$$

$$
\begin{aligned}
& B P=Q C . \\
& \therefore \triangle P B Q \equiv \triangle Q C R \text { [S.A.S] }
\end{aligned}
$$

(ii) Let $\angle B P Q=x$.

$$
\begin{aligned}
& \therefore \angle P Q B=90-x \quad\left[\angle \sin 0 \mathrm{~g} 日 \Delta^{T}\right]
\end{aligned}
$$

$$
\begin{aligned}
& 90-x+\angle Q Q R+x=180[45 \text { mansht. } \\
& \therefore \angle P Q R=90^{\circ} \mathrm{V}
\end{aligned}
$$

(d)

$$
\begin{aligned}
& \triangle A E B \| \triangle E B D \\
& \frac{A E}{E B}=\frac{E B}{B D} \Rightarrow \frac{27}{q}=\frac{q}{p} V \\
& \triangle E B D \| \triangle B D C \\
& \frac{E B}{B D}=\frac{B D}{D C} \Rightarrow \frac{q}{p}=\frac{p}{8} \\
& \therefore \frac{27}{q}=\frac{p}{8} \Rightarrow p q=216 .
\end{aligned}
$$

