Section A

Shade the correct option on the answer booklet provided.

1. If a * b = a + b - 2ab for all a and b, then 7 * (-2) is equal to

- (A) 19
- (B) 33
- (C) -23
- (D) 9

2. From the Venn diagram P (A|B) is:

3. A bag of 5 marbles contains 2 green ones. Two marbles are selected with replacement. The probability of selecting two green marbles is

- (A) $\frac{9}{20}$
- (B) $\frac{2}{25}$
- (C) $\frac{1}{10}$
- (D) $\frac{4}{25}$

4. A quadratic graph $y = ax^2 + bx + c$ has two x –intercepts. This tells us that

- (A) The graph has a maximum turning point
- (B) There is no y-intercept
- (C) $b^2 4ac > 0$

$$(D) \quad \frac{-b}{2a} < 0$$

5. A circle of radius 5cm has a chord 4cm from the centre of the circle. The length of the chord is

- (A) 4.5 cm
- (B) 6 cm
- (C) 3 cm
- (D) 8 cm
- 6. Find the smallest angle in the triangle with side lengths 8cm, 13cm and 19cm to the nearest degree.
- (A) 19°
- (B) 33°
- (C) 52°
- (D) 24^o

7. The graphs $y = 3^x$ and $y = \frac{1}{3}$ intersect at the point:

- (A) (1,3)
- (B) $(-1, \frac{1}{3})$
- (C) (-1, 3)
- (D) $(1, \frac{1}{3})$

END OF SECTION A

SECTION B

Question 8 (7 marks)

a)	Find the remainder when	$P(x) = x^4 - x^3 + 3$	$3x^2$ is divided by $(x + 1)$) 1
----	-------------------------	------------------------	--------------------------------	-----

- b) If $P(x) = x^3 4x^2 + mx 2$ and P(-2) = 0, find the value of *m*.
- c) $P(x) = 2x^3 + x^2 5x 1$ and $A(x) = (x^2 + 3)$. Express the result of $P(x) \div A(x)$ in the form of $P(x) = A(x) \times Q(x) + R$ where R is a function of x. 2
- d) Find the area of the triangle below correct to two decimal places.

2

2

Question 9 (7 marks)

a) A card is selected from a standard deck of 52 playing cards. *Event A - " the card is a red heart"*

Find

(i) n($A \cap B$)	1
(ii) P (Ã)	1
(iii) $P(A \cap B)$	1

- b) Express 0.323232..... as a series.Hence find a simple fraction that is equivalent to 0.323232.....2
- c) AD is a tangent to the circle. BC = x and AB = 7. Find the value of x. (No reasons required)

Question 10 (8 marks)

- a) The distance between the points (-2, -1) and (a, 3) is $\sqrt{20}$. Find the value(s) of a. 2
- b) What is the equation of the perpendicular bisector of the line segment, that joins A(1,1) with B(3,5)?
- c) C(-1,2) is the centre of a circle which touches the line 3x + 4y 10 = 0.

Find

(i)	the radius	2
(ii)	the equation of the circle.	1

3

2

Question 11 (10 marks)

a)	Solve for θ where $0 \le \theta \le 360^{\circ}$:	$2\sin^2\theta = 1$	3
----	---	---------------------	---

b) Find the exact value of *x*.

c) In $\triangle PQR$, PQ= PR = 3, $\angle PRQ = 72^{\circ}$ and QS bisects $\angle PQR$ meeting PR at S. Copy the diagram into your answer booklet and show the information given.

(i) Find the value of $\angle SQR$.	1
(ii) Prove that $\Delta QSR \parallel \Delta PQR$.	2
(iii) If QR = <i>x</i> , show that $x^2 + 3x - 9 = 0$	2

Question 12 (9 marks)

a) Sketch a neat graph of $y = (2 - x)(x + 1)^2$ showing all important features.	3	
b) Two similar polygons have areas of 49cm^2 and 121cm^2 .		
(i) What is the ratio of their sides?	1	
(ii) If side of the smaller polygon is 2cm, what is the length of the matching side of the larger polygon?	f 1	
c) A light aircraft on a joy flight over Kakadu National Park travels due east for 125km then on a bearing of 215°T. Then it returns to its starting point by travelling on a bearing 337°T.		
(i) Draw a neat diagram to represent the above information.	2	
(ii) Find the distance travelled in the third leg of the journey correct to the nearest km.	2	

Question 13 (11 marks)

a) The lengths of the rungs of a ladder increase uniformly. The top rung is 40cm and the bottom rung is 75cm. If 13.8m of wood is used to make the rungs, how many rungs are there?

2

b) Ray travels from town A to town B, a distance of 300km. On his return journey, due to rain and fog, his speed is reduced by 15km/h and hence his journey required an extra 1hour and 40 minutes.
Find his average speed for travelling from town A to town B

	Find his average speed for travelling from town A to town B.	2
c)	A function f is defined as $f(x) = \frac{2}{3-x}$	
	(i) State the domain and range of function f .	2
	(ii) Find $f^{-1}(x)$.	2

Question 13 continued over the page

If $y = a(x + b)^2 + c$ represents the above parabola, find the values of *a*, *b* and *c*. 3

Question 14 (12 marks)

a) Tom starts working for a business at the beginning of 1995. He wants to retire at the end of 2024. He invests \$1000 in a superannuation scheme at the beginning of each year at 9.5% per annum.

i)	What is the value of his first investment at the end of 2024?	2
ii)	Find the amount of superannuation at maturity.	2

Find the amount of superannuation at maturity. ii)

3

Question 14 (continued)

c) $\triangle ABC$ is right angled. AC is a diameter and PM is a tangent at P, where P is the point at which the circle intersects the hypotenuse.

Copy the diagram into your answer booklet.

(i)	Explain why, $\angle APM = \angle ACP$.	1
(ii)	Prove that $PM = MB$.	2
(iii)	Hence show that $AM = MB$.	2

End of Examination