Section A

Shade the correct option on the answer booklet provided.

1. If $a * b=a+b-2 a b$ for all a and b, then $7 *(-2)$ is equal to
(A) 19
(B) 33
(C) -23
(D) 9
2. From the Venn diagram $P(A \mid B)$ is:
(A) $\frac{5}{12}$
(B) $\frac{4}{5}$
(C) $\frac{4}{7}$
(D) $\frac{4}{9}$
3. A bag of 5 marbles contains 2 green ones. Two marbles are selected with replacement. The probability of selecting two green marbles is
(A) $\frac{9}{20}$
(B) $\frac{2}{25}$
(C) $\frac{1}{10}$
(D) $\frac{4}{25}$
4. A quadratic graph $y=a x^{2}+b x+c$ has two x-intercepts. This tells us that
(A) The graph has a maximum turning point
(B) There is no y-intercept
(C) $b^{2}-4 a c>0$
(D) $\frac{-b}{2 a}<0$
5. A circle of radius 5 cm has a chord 4 cm from the centre of the circle. The length of the chord is
(A) 4.5 cm
(B) 6 cm
(C) 3 cm
(D) 8 cm
6. Find the smallest angle in the triangle with side lengths $8 \mathrm{~cm}, 13 \mathrm{~cm}$ and 19 cm to the nearest degree.
(A) 19°
(B) 33°
(C) 52°
(D) 24°
7. The graphs $y=3^{x}$ and $y=\frac{1}{3}$ intersect at the point:
(A) $(1,3)$
(B) $\left(-1, \frac{1}{3}\right)$
(C) $(-1,3)$
(D) $\left(1, \frac{1}{3}\right)$

SECTION B

Question 8 (7 marks)

a) Find the remainder when $\mathrm{P}(x)=x^{4}-x^{3}+3 x^{2}$ is divided by $(x+1)$
b) If $P(x)=x^{3}-4 x^{2}+m x-2$ and $\mathrm{P}(-2)=0$, find the value of m.
c) $P(x)=2 x^{3}+x^{2}-5 x-1$ and $A(x)=\left(x^{2}+3\right)$. Express the result of $P(x) \div A(x)$ in the form of $P(x)=A(x) \times Q(x)+R \quad$ where R is a function of x.
d) Find the area of the triangle below correct to two decimal places.

Question 9 (7 marks)

a) A card is selected from a standard deck of 52 playing cards.

Event A - "the card is a red heart"

Event B-" the card is a king"
Find
(i) $\mathrm{n}(\mathrm{A} \cap B)$
(ii) $P(\tilde{A})$
(iii) $\mathrm{P}(\mathrm{A} \cap B)$
b) Express $0.323232 \ldots \ldots$. as a series.

Hence find a simple fraction that is equivalent to $0.323232 \ldots \ldots \ldots$.........
c) AD is a tangent to the circle. $\mathrm{BC}=x$ and $\mathrm{AB}=7$. Find the value of x.
(No reasons required)

Question 10 (8 marks)

a) The distance between the points $(-2,-1)$ and $(a, 3)$ is $\sqrt{ } 20$. Find the value(s) of a.
b) What is the equation of the perpendicular bisector of the line segment, that joins $\mathrm{A}(1,1)$ with $\mathrm{B}(3,5)$?
c) $\mathrm{C}(-1,2)$ is the centre of a circle which touches the line $3 x+4 y-10=0$.

Find
(i) the radius 2
(ii) the equation of the circle. 1

Question 11 (10 marks)

a) Solve for θ where $0 \leq \theta \leq 360^{\circ}$: $2 \sin ^{2} \theta=1$
b) Find the exact value of x.

c) In $\triangle P Q R, \mathrm{PQ}=\mathrm{PR}=3, \angle P R Q=72^{\circ}$ and QS bisects $\angle P Q R$ meeting PR at S .

Copy the diagram into your answer booklet and show the information given.

(i) Find the value of $\angle S Q R$.
(ii) Prove that $\triangle Q S R \|| | \triangle P Q R$.
(iii) If $\mathrm{QR}=x$, show that $x^{2}+3 x-9=0$

Question 12 (9 marks)

a) Sketch a neat graph of $y=(2-x)(x+1)^{2}$ showing all important features.
b) Two similar polygons have areas of $49 \mathrm{~cm}^{2}$ and $121 \mathrm{~cm}^{2}$.
(i) What is the ratio of their sides?
(ii) If side of the smaller polygon is 2 cm , what is the length of the matching side of the larger polygon?
c) A light aircraft on a joy flight over Kakadu National Park travels due east for 125 km then on a bearing of $215^{\circ} \mathrm{T}$. Then it returns to its starting point by travelling on a bearing $337^{\circ} \mathrm{T}$.
(i) Draw a neat diagram to represent the above information.
(ii) Find the distance travelled in the third leg of the journey correct to the nearest km .

Question 13 (11 marks)

a) The lengths of the rungs of a ladder increase uniformly. The top rung is 40 cm and the bottom rung is 75 cm . If 13.8 m of wood is used to make the rungs, how many rungs are there?

b) Ray travels from town A to town B, a distance of 300 km . On his return journey, due to rain and fog, his speed is reduced by $15 \mathrm{~km} / \mathrm{h}$ and hence his journey required an extra 1 hour and 40 minutes.
Find his average speed for travelling from town A to town B.
c) A function f is defined as $f(x)=\frac{2}{3-x}$
(i) State the domain and range of function f.
(ii) Find $f^{-1}(x)$.

Question 13 (continued)

d)

If $y=a(x+b)^{2}+c$ represents the above parabola, find the values of a, b and c.

Question 14 (12 marks)

a) Tom starts working for a business at the beginning of 1995 . He wants to retire at the end of 2024. He invests $\$ 1000$ in a superannuation scheme at the beginning of each year at 9.5% per annum.
i) What is the value of his first investment at the end of 2024?
ii) Find the amount of superannuation at maturity.
b) Using the $\triangle A B C$, prove that $\sin ^{2} \theta+\cos ^{2} \theta=1$

Question 14 (continued)

c) $\triangle A B C$ is right angled. AC is a diameter and PM is a tangent at P , where P is the point at which the circle intersects the hypotenuse.
Copy the diagram into your answer booklet.

(i) Explain why, $\angle A P M=\angle A C P$. 1
(ii) Prove that $\mathrm{PM}=\mathrm{MB}$. 2
(iii) Hence show that $\mathrm{AM}=\mathrm{MB}$. 2

