## BAULKHAM HILLS HIGH SCHOOL

## November 2016

## Mathematics

## YEAR 10 Yearly Exam

## General Instructions

- Working time - 70 minutes
- Write using non-erasable black or blue pen
- Board-approved calculators may be used
- Show all necessary working in Section II
- Marks may be deducted for careless or badly arranged work

Total marks - 68
Exam consists of 7 pages.

This paper consists of TWO sections.

Section 1-Page 2-4 (10 marks) Questions 1-10

- Attempt Question 1-10
- Allow about $\mathbf{1 2}$ minutes for this section

Section II - Pages 5-7 (58 marks)

- Attempt questions 11-15
- Allow about 58 minutes for this section

Section I - Multiple choice questions (10 marks)
Use the multiple choice Answer Sheet for Question 1-10.

1. The solutions of $4 m^{2}=m$ are:
(A) $m=0, \frac{1}{4}$
(B) $m=0,-\frac{1}{4}$
(C) $m=\frac{1}{2},-\frac{1}{2}$
(D) $m=2,-2$
2. The first three terms of an arithmetic progression are $26,23,20$. The sum of the first $n$ terms of the series is:
(A) $S_{n}=\frac{n}{2}(-3 n+55)$
(B) $S_{n}=29-3 n$
(C) $S_{n}=\frac{n}{2}(-3 n+29)$
(D) $S_{n}=26-3 n$
3. If $f(x)=2 x^{2}-3 x+4$ the value of $f(1)-f(-1)=$
(A) 2
(B) -2
(C) -6
(D) 6
4. In the diagram the radius of the larger circle is $2 \frac{1}{2}$ times the radius of the smaller circle. The ratio of the unshaded area to the shaded area is:

Not to scale.

(A) $2: 5$
(B) $4: 25$
(C) $5: 2$
(D) $4: 21$
5. If $(x+2)$ is a factor of the polynomial $2 x^{3}+k x^{2}+5 x-2$, the value of $k$ is:
(A) 7
(B) -7
(C) -12
(D) 12
6. A, B, C and D are points on a circle as shown.

The circle has centre 0 and $A C$ is a diameter of the circle.
If $\angle A B D=75^{\circ}$ and $\angle B D C=25^{\circ}$, then $\angle B C A$ is equal to:

(A) $15^{\circ}$
(B) $25^{\circ}$
(C) $65^{\circ}$
(D) $75^{\circ}$
7. In the diagram below, $\triangle A D E$ is similar to $\triangle A B C$.

$\triangle A D E$ has an area of $16 \mathrm{~m}^{2}$. The area of $\triangle A B C$ is
(A) $36 m^{2}$
(B) $40 \mathrm{~m}^{2}$
(B) $52 m^{2}$
(D) $100 \mathrm{~m}^{2}$
8. Which of the following graphs has an equation of the form

$$
y=a x^{2}+b x, \text { where } a<0 \text { and } b>0 ?
$$





9. Which of the following curves represents $y=\sin x$ where $0 \leq x \leq 180^{\circ}$



D)

10. The diagram shows a cylinder inscribed in a hemisphere


The exact volume of the cylinder is:
(A) $45 \pi \mathrm{~cm}^{3}$
(B) $36 \pi \mathrm{~cm}^{3}$
(C) $30 \pi \mathrm{~cm}^{3}$
(D) $24 \pi \mathrm{~cm}^{3}$

## End of Section I

## Section II - Extended response questions (53 marks)

## Question 11 ( 12 marks) - Start a new page

a) Solve the equation $4 \sin ^{2} A=3$ for $0^{\circ} \leq A \leq 360^{\circ}$
b) In $\triangle A B C, A B=2.5 \mathrm{~cm}, A C=3.2 \mathrm{~cm}$ and $\angle A B C=40^{\circ}$.


Find the value of $\angle A C B$.
c) Find the equation of the line that passes through the point $(2,-1)$ and is parallel to the line $2 x+y=4$
d) For the following parabola $y=2 x^{2}-2 x+1$
(i) Find the equation of the axis of symmetry. $\quad \mathbf{1}$
(ii) Find the minimum value of $y$. 1
(iii) Sketch the parabola showing all the important features. 2
e) Tap A can fill a tank full of water in 30 minutes; tap B can fill the same tank full of water in $\mathbf{2}$ 15 minutes.

How long will it take to fill the same tank using both taps simultaneously?

Question 12 ( 12 marks) - Start a new page
a) Factorise fully: $a^{2} c-b^{2} c-a b c^{2}+a b$.
b) i) Show that the line through BC has equation $x+7 y-26=0$ where $B=(5,3)$ and $C=(-2,4)$.
ii) Find the perpendicular distance from the point $A(2,1)$ to line $B C$.
c) Solve for $x: 5^{x} \times 25^{2 x+1}=125^{x}$
d) If $\tan A=-\frac{12}{5}$ and $\sin A>0$, find the exact value of $\cos A$.
e) Write the domain and range of $y=\sqrt{25-x^{2}}$

## Question 13 ( 12 marks) - Start a new page

a) Solve $3 x^{2}+4 x-3=0$. (Leave your answer(s) in exact surd form).
b) ABCD is a rhombus. CB is produced to E such that $\mathrm{CB}=\mathrm{BE}$.

Copy the diagram into your answer booklet.

(i) Prove that $\triangle A B E \equiv \triangle D C B \quad 3$
(ii) Hence explain why $A E$ is parallel to $D B$
(iii) State giving reasons, what type of quadrilateral is $A E B D$
c) Shade the region satisfying the inequality $(x-1)^{2}+(y-1)^{2} \leq 1$
d) Find the value(s) of $x$ such that the three following successive terms:
$(x-1),(x+3),(5 x+3)$ form a geometric sequence.

## Question 14 ( 10 marks) - Start a new page

a) Find the points of intersection of the graphs $y=4-2 x$ and $y=x^{2}+4 x-3$.
b) Sketch the graph $f(x)=3^{x}$, and the graph $y=-f(x)$ on the same number plane
c) $A B C D$ is a cyclic quadrilateral and $F A E$ is a tangent at $A$.
$\angle D A E=50^{\circ}$ and $B D / / F E$. Copy the diagram into your booklet.

(i) Calculate $\angle B A F$, giving reasons.
(ii) Calculate $\angle B C D$, giving reasons
d) Mr Zhao has three children. The product of the children's ages is 200 and the two youngest are twins. What is the age of the oldest child? (if the ages of the children are integers and none of the children are over 40)

Question 15 ( 12 marks) - Start a new page
a) (i) Graph $y=x(x+1)(x+3)^{2}$
(ii) Hence solve $x(x+1)(x+3)^{2} \leq 0$
b) Find the values of $k$ for which $x^{2}-2 k x+6 k=0$ has real roots.
c) Ivan lives in Parramatta and is starting a new job in the city. He needs to catch a train to get to work. His new boss says he cannot be late on the first two days of his new job or he will lose it. The probability that his train will arrive on time is 0.96 .
(i) What is the probability that Ivan's train is late on the first day?
(ii) What is the probability of the train being late on the first two days?
(iii) What is the probability of Ivan keeping his job?
(iv) What is the probability that Ivan arrives late on exactly one of the first three days of his new job? (do not round off your answer).
d) (i) Show that $\frac{x}{n(n+1)}=\frac{x}{n}-\frac{x}{n+1}$
(ii) Hence or otherwise simplify the following

$$
\frac{x}{2}+\frac{x}{6}+\frac{x}{12}+\frac{x}{20}+\ldots+\frac{x}{9900}
$$

Y 10 Yearly 2016
Multiple choice questions
1.A 2.A 3.C 4.D 5.A 6.C T.D
8. B 9. B 10.B
(Q1i) a)

$$
\begin{array}{ccc}
4 \sin ^{2} A=3 & \sin A=\frac{\sqrt{3}}{2} & \sin A=\frac{-\sqrt{3}}{2} \\
\sin ^{2} A=\frac{3}{4} & A=60^{\circ}, 120^{\circ} & A=240^{\circ}, 300^{\circ} \\
\sin A= \pm \frac{\sqrt{3}}{2} & \text { (1) } & \tag{1}
\end{array}
$$

$$
\begin{align*}
& =0.502170  \tag{1}\\
\angle C=\angle A C B & =\sin ^{-1}(0.5021778) \\
& =30.14^{\circ} \text { or } 30^{\circ} 9^{\prime}
\end{align*}
$$

c)

$$
\begin{gathered}
2 x+y=4 \\
y=-2 x+4 \\
m=-2
\end{gathered}
$$

Parallel $m_{1}=m_{2}$

$$
m_{1}=-2
$$

Equintin of the line
(1) $y-y_{1}=m\left(x-x_{1}\right)$ Equation of the line

$$
\begin{aligned}
& y--1=-2(x-2) \\
& y+1=-2 x+4
\end{aligned}
$$

d) $y=2 x^{2}-2 x+1$
i) equation of axis of symmetry

$$
\begin{align*}
x & =-\frac{b}{2 a} \\
& =-\frac{-2}{2 \times 2} \\
& =\frac{1}{2} \tag{1}
\end{align*}
$$

$$
y=f\left(\frac{1}{2}\right)=\frac{1}{2}
$$

$\operatorname{Vertex}\left(\frac{1}{2}, \frac{1}{2}\right)$
ii) Minimum value of $y$

$$
\begin{aligned}
& \text { Limum valloe of } y \\
& \begin{aligned}
f\left(\frac{1}{2}\right) & =2 \times\left(\frac{1}{2}\right)^{2}-2 \times \frac{1}{2}+1 \\
& =\frac{1}{2}+1+1 \\
& =\frac{1}{2} .
\end{aligned}
\end{aligned}
$$

Shape (1)
(ii)

(1) Vertex, y intercut
e) Let $V=$ Volume of the tank (Full volume)

In ore minute, Tap $A$ can fill $\frac{V}{30}$
, Tap B can fill $\frac{V}{15}$.
Together, in one minute bott tops can file
(1) $\quad \frac{V}{30}+\frac{V}{15}=\frac{V+2 V}{30}=\frac{3 V}{30}=\frac{V}{10}$.
$\therefore$ To gel fol tank $V_{1}$, it take bott tops 10 minter.
(Q12)

$$
\text { a) } \begin{align*}
& a^{2} c-b^{2} c-a b c^{2}+a b \\
= & a^{2} c-a b c^{2}-b^{2} c+a b \\
= & a c(a-b c)+b(a-b c)  \tag{1}\\
= & (a c+b)(a-b c) \tag{1}
\end{align*}
$$

b)

$$
\begin{align*}
& B(5,3) c(-2,4) \\
& m_{B C}=\frac{y_{2}-y_{1}}{x_{2}-x_{4}} \\
&=\frac{4-3}{-2-5} \\
&=-\frac{1}{7} \tag{1}
\end{align*}
$$

equation of the live

$$
\begin{align*}
y-y_{1} & =m\left(x-x_{1}\right) \\
y-3 & =-\frac{1}{7}(x-5) \\
7(y-3) & =-x+5 \\
7 y-21 & =-x+5 \\
x+7 y-26 & =0 \tag{1}
\end{align*}
$$

iii) perperbicular distance from $A(2,1)$ to

$$
\begin{align*}
d_{\text {per }} & =\frac{\left|A x_{1}+B y_{1}+C\right|}{\sqrt{A^{2}+B^{2}}}  \tag{1}\\
& =\frac{|1 \times 2+7 \times 1-26|}{\sqrt{1^{2}+7^{2}}}=\frac{17}{\sqrt{50}} \tag{1}
\end{align*}
$$

C)

$$
\begin{align*}
& 5^{x} \times 25^{2 x+1}=125^{x} \\
& 5^{x} \times 5^{2(2 x+1)}=5^{3 x}  \tag{1}\\
& 5^{x+4 x+2}=5^{3 x} \\
& 5 x+2=3 x \\
& 2 x=-2 \\
& x=-1
\end{align*}
$$

d)


$$
\begin{aligned}
& \tan A<0 \\
& \\
& \sin A>0 \\
& \therefore \cos A<0
\end{aligned}
$$

$$
\begin{equation*}
\left.\cos A=-\frac{5}{13}\right) \tag{1}
\end{equation*}
$$

$$
25-x^{2} \geqslant 0
$$

Domain -5 $\leq x \leq 5$
Ramee $0 \leq y \leq 5$

Q13)
a)

$$
\begin{aligned}
& 3 x^{2}+4 x-3=0 \\
& \begin{aligned}
\Delta=b^{2}-4 a c & =4^{2}-4 \times 3 x-3 \\
& =16+36 \\
& =5^{2}
\end{aligned} \\
& \begin{aligned}
x & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{-4 \pm \sqrt{52}}{2 \times 3} \\
& =\frac{-4 \pm 2 \sqrt{13}}{6} \\
& =\frac{-2 \pm \sqrt{13}}{3}
\end{aligned}
\end{aligned}
$$

b)
i) In $\triangle A B \& \triangle D C B$

$$
C B=B E \text { (giren) }
$$

$A B=D C$ (opposite siter of a rhambur are 二)
$\angle D A B=\angle A B E$ (alternato $(' s, A D / / C E$ )
$\angle D A B=\angle D C B$ (apposite L's of a rhombes are equal)

$$
\therefore \quad \triangle A B E \equiv \triangle D C B(S A S)
$$

ii): $\therefore \angle A E B=\angle D B C$ (matchy $($ 's of congment $\triangle$ 's)
$\therefore A E \| D B$ (Corresponding ('s equal)
iii) $A D \| B E \quad(A B / / B C$ opposite siler of rombua //)
$A E \| D B$ (proten) parallelogram ( 2 pairs of Opposite sides II)
c)

d)

$$
\begin{gather*}
\frac{x+3}{x-1}=\frac{5 x+3}{x+3}  \tag{1}\\
(x+3)(x+3)=(x-1)(5 x+3) \\
x^{2}+6 x+9=5 x^{2}-2 x-3 \\
5 x^{2}-x^{2}-2 x-6 x-3-9=0 \\
4 x^{2}-8 x-12=0 \\
4\left(x^{2}-2 x-3\right)=0 \\
x^{2}-2 x-3=0 \\
(x-3)(x+1)=0 \\
x=3 \text { or } x=-1
\end{gather*}
$$

Centre $(1,1)$ $\left.\begin{array}{l}x \& y \text { intercgts } \\ (1,0),(0,1)\end{array}\right]$

Region (1)

Q14)

$$
\text { a) }\left\{\begin{array}{l}
y=4-2 x  \tag{1}\\
y=x^{2}+4 x-3 \\
y-2 x
\end{array}\right.
$$

$$
x^{2}+4 x-3=4-2 x
$$

$$
x^{2}+4 x+2 x-3-4=0
$$

$$
x^{2}+6 x-7=0
$$

$$
(x-1)(x+7)=0
$$

$$
\begin{aligned}
& x=1 \\
y= & 4-2 \times 1= \\
= & 2
\end{aligned}
$$

$$
\begin{aligned}
x & =-7 \\
y & =4-2 x-7 \\
& =18
\end{aligned}
$$

points of intersection $(x=1, y=2) ;(x=-7, y=18)$
b)

c)

1). $\angle B D A=\angle D A E=50^{\circ}$ (Altermate $\angle$ 's, $B D H F E$ ) (1)
$\angle B A F=\angle B D A=50^{\circ}$ (alternate segment theorem)
ii)

$$
\begin{align*}
\angle B A D & =180^{\circ}-\angle B F A-\angle D A E  \tag{1}\\
& =180^{\circ}-50^{\circ}-50^{\circ} \quad \text { (angle sum of } \angle \text { 's } \\
& \text { on straighl line) } \\
& =80^{\circ}
\end{align*}
$$

$$
\angle B C D=180^{\circ}-\angle B A D
$$

$=100^{\circ}$ (opposite L's of a cyclir guadibtal
(1)
d)

$$
\text { Oldest child's age }=8 \text { yrsodd } \quad(8 \times 4 \times 4=200)
$$

Q15
a) i)
curve (1) $x, y$ intercepls (1)
 $-1 \leq x \leq 0$ from gropl.
b) $\quad x^{2}-2 k x+6 k=0$

TB have real roots $\Delta=b^{2}-4 a c \geqslant 0$

$$
\begin{align*}
& \Delta=(-2 k)^{2}-4 \times 1 \times 6 k \geqslant 0  \tag{1}\\
& 4 k^{2}-24 k \geqslant 0  \tag{1}\\
& 4 k(k-6) \geqslant 0
\end{align*}
$$



$$
k \leqslant 0 \text { or } k \geqslant 6
$$


c) Ore doy $P$ (ontime) $=0.96$
i)

$$
\begin{aligned}
\therefore P(\text { late }) & =1-0.96 \\
& =0.04 .
\end{aligned}
$$

ii) $p$ (late on the firsl twodays)

$$
\begin{aligned}
& =P(\text { late }) \times P(\text { late }) \\
& =0.04 \times 0.06 \\
& =0.0016
\end{aligned}
$$

iii) $P($ keep his job $)$

$$
\begin{aligned}
& =P(\text { not late/on the first twa days) } \\
& =1-P \text { (rate on the first two days) } \\
& =1-0.0016 \\
& =0.91984 .
\end{aligned}
$$

iv) $P$ (late on exactly one of the first threedoys)

$$
\begin{aligned}
&= 3 \times 0.04 \times 0.96^{2} \\
& \uparrow \begin{array}{l}
\text { On time, late, late } \\
\text { late, on tine, late } \\
\text { late, late, on time }
\end{array} \\
& \text { coneday late Two days on time }
\end{aligned}
$$ Three arrangements

$$
=0.110592
$$

d) i)

$$
\begin{aligned}
\frac{x}{n}-\frac{x}{n+1} & =\frac{(n+1) x-n \times x}{n(n+1)} \\
& =\frac{n x+x-n x}{n(n+1)} \\
& =\frac{x}{n(n+1)}
\end{aligned}
$$

$$
\text { ii) } \begin{aligned}
& \frac{x}{2}+\frac{x}{6}+\frac{x}{12}+\cdots+\frac{x}{9900} \\
= & \frac{x}{1 \times 2}+\frac{x}{2 \times 3}+\frac{x}{3 \times 4}+\cdots+\frac{x}{99 \times 100} \\
= & \frac{x}{1}-\frac{x}{2}+\frac{x}{2}-\frac{x}{3}+\frac{x}{3}-\frac{x}{4}+\cdots-\frac{x}{90}-\frac{x}{100} \\
= & x-\frac{x}{100}=\frac{99 x}{100}
\end{aligned}
$$

$\therefore 1 i)$

* If late on both days:

Scenario 1: $\quad P($ late on 1st day $) \times P\left(\right.$ late on $2^{\text {rd }}$ day $)$

$$
\begin{aligned}
& =0.04 \times 0.04 \\
& =0.0016
\end{aligned}
$$

* If (late $1^{\text {st }}$ day; on tine $2^{\text {nd }}$ day)
+ (on time $1^{\text {st }}$ day, late $2^{\text {no dory }}$ )
Scenont 2:

$$
\begin{aligned}
+ & \left(\text { late } 1^{4} \text { dory, late } 2^{n} \text { day }\right) \\
= & 0.04 \times 0.96+0.96 \times 0.04 \\
& +0.04 \times 0.04 \\
= & 0.0784 .
\end{aligned}
$$

(ii) If students assume scenario 1.

Answer for pant (iii)

$$
1-0.0016=0.9954
$$

If studats assume scenario 2 :

Answer:

$$
\begin{aligned}
& 1-0.0784 \\
& =0.9216
\end{aligned}
$$

