BAULKHAM HILLS HIGH SCHOOL

YEAR 10

MATHEMATICS Yearly Examination, November 2017

Time allowed: 70 minutes

Student's Name_____ Teacher's Name_____

DIRECTIONS TO CANDIDATES

- Attempt ALL questions.
- Diagrams are not to scale unless specified.
- **Do NOT use** liquid paper/correction tape in the exam.
- Write your teacher's name and your name on the answer booklet provided.
- You may use an approved calculator.

SECTION I - MULTIPLE CHOICE QUESTIONS (10 marks)

Answer the multiple choice questions by **shading** the correct option on the answer booklet provided.

SECTION II (57 marks)

There are SEVEN questions in this section. Attempt ALL the questions. Show your **working and answers** on the appropriate page of your answer booklet.

	1		
Question 11 (9 marks)	Marks		
a) Find the exact value of $\sin 150^\circ \cos 45^\circ + \sin 210^\circ$.			
b) Rewrite the expression $ax^2 - a - 2x^2 + 2$ as a product of linear factors.	3		
c) If $\tan \theta = -\frac{9}{40}$ and $270^{\circ} \le \theta \le 360^{\circ}$, find the value of $\cos \theta$.	2		
d) Solve $\sqrt{2} \sin x - 1 = 0$ where $0^\circ \le x \le 360^\circ$.	2		
Question 12 (11 marks)			
 (a) (i) On a number plane, mark the origin <i>O</i> and the points <i>A</i>(2, 1) and <i>B</i>(3, -1). (ii) Find the gradients <i>m</i>₁ of <i>OA</i> and <i>m</i>₂ of <i>AB</i>. (iii) Show that <i>OA</i> is perpendicular to <i>AB</i>. (iv) Find the equation of AB. (v) Find the coordinates of the midpoint, <i>D</i>, of the interval <i>OB</i>. (vi) Find the coordinates of the point <i>C</i> such that <i>D</i> is the midpoint of <i>AC</i>. (vii) What shape best describes the geometric figure <i>OABC</i>? Justify. 			
(b) Shade the region, on a number plane, defined by $2x - 3y - 6 \ge 0$ AND $y < \sqrt{4 - x^2}$.	3		
Question 13 (7 marks)			
(a) In the diagram, chords <i>PS</i> produced and <i>QR</i> produced intersect at <i>M</i> . Lines <i>PR</i> and <i>SQ</i> intersect at the point <i>N</i> , and $\angle POQ = \beta$ where <i>O</i> is the centre of the circle. $P = \beta \text{ where } O \text{ is the centre of the circle}$ $P = \beta \text{ where } O \text{ is the centre of the circle}$ Prove that $\angle PRM = 180^\circ - \frac{1}{2}\beta$			
	2		

Question 13 (continued)	Marks			
(b) When the polynomial $P(x)$ is divided by $(x^2 - 1)$ the remainder is $3x - 1$. What is the remainder when $P(x)$ is divided by $x - 1$?	2			
(c) Find the perimeter of the triangle correct to two significant figures.				
24 cm				
$C \qquad 15 \text{ cm} \qquad B$				
Question 14 (10 marks)				
 (a) Consider the function f(x) = 3/(x-2) + 3 for x > 2. (i) Sketch the graph of y = f(x). (ii) Find the inverse function of f(x). (iii) State the domain of f⁻¹(x). 	2 2 1			
 (b) The numbers 2, 5, 6, 7, 8 and 9 are written on cards. A six-digit number is formed by picking one card at a time and placing it on a table in the order of the pick. (i) How many different six-digit numbers can be formed? (ii) What is the probability that the six-digit number is greater than 900000 and is divisible by 5? 	1 2			
(c) The matching sides of two similar kites are in the ratio 11:16. Find the area of the smaller kite, correct to two decimal places, if the area of the larger kite is 1.44 m^2 .	2			
Question 15 (7 marks)				
(a) The quadrilateral <i>ABCD</i> is inscribed inside a circle with centre <i>O</i> . <i>AC</i> and <i>BD</i> intersect at <i>O</i> . Prove that <i>ABCD</i> is a rectangle.	2			

Question 15(continued)	
(b) Determine the number of solutions of $2x^2 - 3x + 7 = 0$. Justify your answer.	2
 (c) Let x = 0.27. (i) Write x as an infinite series. (ii) Hence, express x as a simple fraction. 	1 2
Question 16 (7 marks)	
(a) A telecommunications company sells 1800 mobile phones in the first month of operating. The owners plan to increase their sales by 200 mobile phones each month. How many mobile phones do they plan to sell in the last month of the third year of operation?	2
(b) On 1 st July 2005, Suba invested \$10000 in a bank account that paid interest at a fixed rate of 8% per annum, compounded annually.	
(i) How much would be in the account after the payment of interest on 1 July 2015 if no additional deposits were made?	2
 (ii) In fact, Suba added \$1000 to her account on 1 July each year, beginning on 1 July 2006. How much was in her account on 1 July 2015 after the payment of interest and her deposit? 	3
Question 17 (6 marks)	Marks
(a) After a certain number of tests, Alison has scored a total of 180 marks. In the next two tests, Alison did no work and scored zero for each test and reduced her average by 3 marks	
(i) Write an algebraic equation to represent the above situation.(ii) How many tests did Alison do altogether?	2 2
(b) A circle is inscribed inside a triangle with sides 6 cm, 8 cm, and 10 cm. What is the radius of the circle? 8 cm	2
. 6 cm	
END OF PAPEK	

BAULKHAM HILLS HIGH SCHOOL YEAR 10 - MATHEMATICS

Section I – Multiple Choice

Select the alternative A, B, C or D that best answers the question. Fill in the response oval completely.

Sample:

2 + 4 =

(D) 9 D

If you think you have made a mistake, put a cross through the incorrect answer and fill in the new answer.

If you change your mind and have crossed out what you consider to be the correct answer, then indicate the correct answer by writing the word *correct* and drawing an arrow as follows.

			correct				
			A	в	СС) DC	\supset
Start Here→ 1. A 〇	вО	сO	D	6. A O	вО	сO	D
2. A 🥥	вО	сO	DO	7. A O	вО	С 🎯	DO
3. A 🔿	вО	С 🎯	DO	8. A O	В	С О	DO
4. A 🥏	вО	СO	DO	9. A O	вО	С 🧼	DO
5. A 🔿	вО	С 🎯	DO	10. A 🔿	вО	сO	D

(a) Sin 150° Cos 45° + Sin 210'
= Sin30. Cos45 - Sin 30
$=$ \downarrow \downarrow $ \downarrow$
2 52 2
$= L(1-\sqrt{2})$
2 JZ
$= 1 - \sqrt{2}$
252
(b) $ax^2 - a - 2x^2 + 2$
$= a(x^2-1) - 2(x^2-1).$
$= (a - 2)(x^{2} - 1)$
= (a-2)(x-1)(x+1)
(c) $\tan \theta = -9$: $\cos \theta = +(?)$
40
41 9
50
$Cos \rho = 40$
<u></u> +1
$(d) \sqrt{2} \sin x - 1 = 0$
Sinor = 1 référence angle = 45°
$\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$ $\sqrt{2}$

- Q12 page 2 -(Vi) Let Che (A, 2); A(2,1); D(12,-12) $\frac{2+P}{2} = \frac{3}{2} \implies P=1$ => 2=-2 1+2 --1 :. c(1,-2). (Vii) From the above work, in the quedrileteral OABC OALAB (Note these as adjacent sides). diagonals OB and AC biseck each other at D. : OABC is a rectangle. Also note OA = AB = 55 units =) adjacent Sides are regul. . OABC is a SQUARE.

12 (b)

(c) Let ABbe 2.
:. Perimeter = 24+15+ x.
$\chi^2 = 24^2 + 15^2 - 2x 24x 15x \cos 54^2$
= 377,7946
x = 19.436
Perimeter is 58 cm (2sig. fis).
(b) $P(x) = Q(x)(x^2 - 1) + 3x - 1$
= Q(x) (x-1) (x+1) + 3x - 1
when $P(x)$ is divided by $(x-i)$, $R = P(i)$.
P(i) = 0 + 3 - i = 2
: Remainder is 2
,

'n

13(**a**)

P O N R M
$LPOQ = \beta$
. LPRQ = B: [Lat the centre is trice that L at the circumperse
LPRM+LPRQ = 180 [C Sum ma straight line QRM]
$PRm + B_{f} = 180$
$\frac{12}{12}$ 12
12:

You may ask for extra writing paper if you need more space to answer question 13.

- Q14 page 2 –

You may ask for extra writing paper if you need more space to answer question 14.

(a)

- Q15 Page 2-

(ن) (ک) $\mathcal{D} = Q \cdot 27$ = 0.2 + 0.07= 0.2 + 0.07 + 0.007 + 0.0077+ - - cij 0.07 + 0.007+ 0.0007+--is a GP with the first term 0:07 and common ration Asr<1 S. -0.07 1 - 0.10, 2 10 90 25 90 5 18

You may ask for extra writing paper if you need more space to answer question 15.

(a)		1st month	200	×	3rd			
	Sales	1800	201	20	2200			
	Sales 1	n a morr	the f	Wind "	the terms	of an	AP.	
	* 3	In 3 yea	, 2~					
	B	$T_{p} = a$	+(n-1)	q				
	-20	$T_{30} = 1$	800 + (36-1) x 200			
		=	8500	. (
	•	8800	mobile	phe	me			
				•				
(b)	Investme	ent is \$	10000	0	8% p.a.	from 15	+ July 2	005
_		·				to 3	30th June	2015
. 1	A di	= P ($ +r\rangle^{r}$	١		C	10 yes	urs.)
		ha						
		= 100	000 (1+	8-10			
				1	00)			
		= 2	158-9	1.2	499-	~	- 194	
	* 1	\$ 2158	9,25	wil	Il be mi	the acco	nut on H	U Ist Jahons
	(ii)							
	Extre de	post \$ 1000	Ist	- July	2006	1st July :	2007	1 st Jul 2005
с.	ر لىھ	0			[`			
			9:	years	1	8 yea	~s	
)				- I years
	Mahnit	y lite 30th	im 205		V	L		T
	Investi	nent will equa	eto	100	0(1.08)9	1000/1	80.	[000 (1.08)

- Q16 Page 2-

On the 1st July 2015 Defosil fulte month Grown inon the deposits. 1000 + (1000×1.08 + 1000×1.08 + - - - + 1000×1.08) This is a GP. with the first term 1000 35 and Common radio 1.08. and 1000% there are 10 terms, $... S_{10} = 1000 (1.08^{10} - 1) = 14486.56$ 0.08 . On the 1st July 2015 Extra deposits world = \$ 14486.56 \$10000 initial investmen worth = \$ 21589,25 Total = 36075.81. Account balance is \$36075.81

You may ask for extra writing paper if you need more space to answer question 16.

(a) (i) Let Alison Sat for n tests in total. $\frac{180}{180} = \frac{180}{180} = 3.$ 17 • • n(180) - 180(n-2) = 3n(n-2).(11) $180h - 180h + 360 = 3h^2 - 6h$ $n^2 - 2n - 120 = 0$ (n - 12)(n + 10) = 0i, n = 12; n = -10 (reject), : Alison Sat for 12 fests. 8 B 5) A : 6 0 10 Note that 36, 8, 103 is a Pythayorean triad . The D is a right Led D at B. DABC = DAOB + DAOC + ABOCI $\frac{18.6}{2} = 1.8 \times .7 + 1.10.7 + 1.6.7$ $48 = 24r \implies r=2$... radius is 2cm