BAULKHAM HILLS HIGH SCHOOL

YEAR 10

MATHEMATICS
 Yearly Examination, November 2017

Time allowed: 70 minutes

Student's Name Teacher's Name

\qquad

DIRECTIONS TO CANDIDATES

- Attempt ALL questions.
- Diagrams are not to scale unless specified.
- Do NOT use liquid paper/correction tape in the exam.
- Write your teacher's name and your name on the answer booklet provided.
- You may use an approved calculator.

SECTION I - MULTIPLE CHOICE QUESTIONS (10 marks)

Answer the multiple choice questions by shading the correct option on the answer booklet provided.
$1 \quad(\sqrt{5}-\sqrt{2})^{2}=$
(A) 3
(B) 7
(C) $7-\sqrt{20}$
(D) $7-2 \sqrt{10}$
$2 \quad 2^{n+1}+2^{n+1}$ equals
(A) 2^{n+2}
(B) $2^{2 n+2}$
(C) $4^{2 n+2}$
(D) $4^{2 \mathrm{n}+1}$
$3 \quad$ Solve for $x: \quad 2 x^{2}-5 x-1=0$.
(A) $x=\frac{5 \pm \sqrt{17}}{4}$
(B) $x=\frac{-5 \pm \sqrt{17}}{4}$
(C) $x=\frac{5 \pm \sqrt{33}}{4}$
(D) $x=\frac{-5 \pm \sqrt{33}}{4}$

PQ is a tangent to the circle centre O and B is the point of contact. Find the value of x.
(A) 40°
(B) 50°
(C) 65°
(D) 80°

5 Which of the following could be the graph of $y=x(4-x)$?
(A)
(B)
(C)
(D)

6	The last digit of $3^{17}+7^{13}$ is (A) 1 (B) 6 (C) 4 (D) 0
7	The solutions of $m^{4}-m^{2}-6=0$ are (A) $m=\sqrt{3}, m=\sqrt{2}$. (B) $m= \pm \sqrt{3}, m= \pm \sqrt{2}$. (C) $m= \pm \sqrt{3}$. (D) $m= \pm \sqrt{2}$.
8	The value of x is (A) 2.5 (B) 6.25 (C) 10 (D) 12.5
9	Rows of drums are stacked three high, as shown in the diagrams above. They are held in position by wedges. How many drums can be held in position by n wedges? (Δ) - represents a wedge (A) $n(n-1)(n-2)$ (B) $(n-1)(n-2)(n-3)$ (C) $3 n-6$ (D) $3 n-3$
10	 P and Q are the points of intersection of the two graphs shown above. The x - values of P and Q are the solutions of : (A) $x^{4}-x-2=0$ (B) $x^{4}+x+2=0$ (C) $2 x^{4}+x+2=0$ (D) $2 x^{4}-x-2=0$

SECTION II (57 marks)

There are SEVEN questions in this section. Attempt ALL the questions. Show your working and answers on the appropriate page of your answer booklet.

Question 11 (9 marks)

a) Find the exact value of $\sin 150^{\circ} \cos 45^{\circ}+\sin 210^{\circ}$.
b) Rewrite the expression $a x^{2}-a-2 x^{2}+2$ as a product of linear factors.
c) If $\tan \theta=-\frac{9}{40}$ and $270^{\circ} \leq \theta \leq 360^{\circ}$, find the value of $\cos \theta$.
d) Solve $\sqrt{2} \sin x-1=0$ where $0^{\circ} \leq x \leq 360^{\circ}$.

Question 12 (11 marks)

(a) (i) On a number plane, mark the origin O and the points $A(2,1)$ and $B(3,-1)$.
(ii) Find the gradients m_{1} of $O A$ and m_{2} of $A B$.
(iii) Show that $O A$ is perpendicular to $A B$.
(iv) Find the equation of $A B$.
(v) Find the coordinates of the midpoint, D, of the interval $O B$.
(vi) Find the coordinates of the point C such that D is the midpoint of $A C$.
(vii) What shape best describes the geometric figure $O A B C$? Justify.
(b) Shade the region, on a number plane, defined by $2 x-3 y-6 \geq 0$ AND $y<\sqrt{4-x^{2}}$.

Question 13 (7 marks)

(a) In the diagram, chords $P S$ produced and $Q R$ produced intersect at M. Lines $P R$ and $S Q$ intersect at the point N, and $\angle P O Q=\beta$ where O is the centre of the circle.

Prove that $\angle P R M=180^{\circ}-\frac{1}{2} \beta$
(b) When the polynomial $P(x)$ is divided by $\left(x^{2}-1\right)$ the remainder is $3 x-1$. What is the remainder when $P(x)$ is divided by $x-1$?
(c) Find the perimeter of the triangle correct to two significant figures.

Question 14 (10 marks)
(a) Consider the function $f(x)=\frac{3}{x-2}+3$ for $x>2$.
(i) Sketch the graph of $y=f(x)$.
(ii) Find the inverse function of $f(x)$.
(iii) State the domain of $f^{-1}(x)$.
(b) The numbers 2, 5, 6, 7, 8 and 9 are written on cards. A six-digit number is formed by picking one card at a time and placing it on a table in the order of the pick.
(i) How many different six-digit numbers can be formed?
(ii) What is the probability that the six-digit number is greater than 900000 and is
(c) The matching sides of two similar kites are in the ratio 11:16. Find the area of the smaller
kite, correct to two decimal places, if the area of the larger kite is $1.44 \mathrm{~m}^{2}$.

Question 15 (7 marks)
(a) The quadrilateral $A B C D$ is inscribed inside a circle with centre O. $A C$ and $B D$ intersect at O. Prove that $A B C D$ is a rectangle.

Question 15(continued)

(b) Determine the number of solutions of $2 x^{2}-3 x+7=0$. Justify your answer.
(c) Let $x=0.2 \dot{7}$.
(i) Write x as an infinite series.
(ii) Hence, express x as a simple fraction.

Question 16 (7 marks)

(a) A telecommunications company sells 1800 mobile phones in the first month of operating. The owners plan to increase their sales by 200 mobile phones each month. How many mobile phones do they plan to sell in the last month of the third year of operation?
(b) On $1^{\text {st }}$ July 2005, Suba invested $\$ 10000$ in a bank account that paid interest at a fixed rate of 8% per annum, compounded annually.
(i) How much would be in the account after the payment of interest on 1 July 2015 if no additional deposits were made?
(ii) In fact, Suba added $\$ 1000$ to her account on 1 July each year, beginning on 1 July 2006. How much was in her account on 1 July 2015 after the payment of interest and her deposit?

Question 17 (6 marks)
(a) After a certain number of tests, Alison has scored a total of 180 marks. In the next two tests, Alison did no work and scored zero for each test and reduced her average by 3 marks.
(i) Write an algebraic equation to represent the above situation.
(ii) How many tests did Alison do altogether?
(b) A circle is inscribed inside a triangle with sides $6 \mathrm{~cm}, 8 \mathrm{~cm}$, and 10 cm . What is the radius of the circle?

8 cm

BAULKHAM HILLS HIGH SCHOOL

YEAR 10 - MATHEMATICS

Section I - Multiple Choice

Select the alternative A, B, C or D that best answers the question. Fill in the response oval completely.

Sample:

$$
2+4=
$$

(A) 2
(B) 6 $\mathrm{A} \bigcirc$
B
(C) 8
(D) 9
$\mathrm{C} \bigcirc$
D \bigcirc
If you think you have made a mistake, put a cross through the incorrect answer and fill in the new answer.
A

C

$\mathrm{D} \bigcirc$

If you change your mind and have crossed out what you consider to be the correct answer, then indicate the correct answer by writing the word correct and drawing an arrow as follows.

$\begin{aligned} & \text { Start } \\ & \text { Here } \rightarrow \text { 1. A } \bigcirc \bigcirc \end{aligned}$	B	CO	D)	6. $\mathrm{A} \bigcirc$	B	CO
2. A ?	B	CO	D	7. $\mathrm{A} \bigcirc$	B \bigcirc	C
3. $\mathrm{A} \bigcirc$	B	C (2)	DO	8. $\mathrm{A} \bigcirc$	B	CO
4. $\mathrm{A} \bigcirc$	B	c	DO	9. $\mathrm{A} \bigcirc$	B \bigcirc	C
5. $\mathrm{A} \bigcirc$	B \bigcirc	C-	D	10. $\mathrm{A} \bigcirc$	B	CO

- Q11 Page 1-

Question 11
(a)

$$
\begin{aligned}
& \sin 150^{\circ} \cos 45^{\circ}+\sin 210^{\circ} \\
& =\sin 30^{\circ} \cdot \cos 45-\sin 30^{\circ} \\
& =\frac{1}{2} \cdot \frac{1}{\sqrt{2}}-\frac{1}{2} \\
& =\frac{1}{2}\left(\frac{1-\sqrt{2})}{\sqrt{2}}\right. \\
& =\frac{1-\sqrt{2}}{2 \sqrt{2}}
\end{aligned}
$$

(b)

$$
\begin{aligned}
& a x^{2}-a-2 x^{2}+2 \\
= & a\left(x^{2}-1\right)-2\left(x^{2}-1\right) . \\
= & (a-2)\left(x^{2}-1\right) \\
= & (a-2)(x-1)(x+1)
\end{aligned}
$$

$$
\therefore \quad \cos \theta=\frac{40}{41}
$$

(d) $\sqrt{2} \sin x-1=0$

$$
\begin{aligned}
& \sin x=\frac{1}{\sqrt{2}} \quad \text { reference angle }=45^{\circ} \\
& \therefore x=45^{\circ}, 135^{\circ}
\end{aligned}
$$

- Q12 page 1 -

Question 12
(a)(i)

iii) Gradient of $O A=m_{1} ;$ gradient of $A B=m_{2}$

$$
m_{1}=\frac{1-0}{2-0} \quad m_{2}=\frac{-1-1}{3-2}=-2
$$

$$
\begin{aligned}
& =\frac{1}{2} \\
& \text { that } \quad m_{1} \times m_{2}=-1, \quad \because \quad m_{1} \times m_{2}=\frac{1}{2} \times-2=-1
\end{aligned}
$$

$$
\therefore \quad O A \perp A B \text {. }
$$

(iv) $\quad y-y_{1}=\frac{m}{2}\left(x-x_{1}\right)$

$$
\begin{array}{r}
y-(-1)=-2(x-3) \\
\therefore y+1=-2 x+6 \\
2 x+y-5=0
\end{array}
$$

(v) $\quad O(0,0) ; B(3,-1)$ Let D be (a, b)

$$
\begin{array}{lll}
a=\frac{3+0}{2} & \Rightarrow & a=1 \frac{1}{2} \\
b=\frac{-1+0}{2} & \Rightarrow & b=-\frac{1}{2}
\end{array}
$$

- Q12 page 2 -
(vi) Let C be $(p, q) ; A(2,1) ; D(1+2,-1 / 2)$

$$
\begin{array}{ll}
\frac{2+p}{2}-\frac{3}{2} & \Rightarrow p=1 \\
\frac{1+q}{2}=-\frac{1}{2} & \Longrightarrow q=-2
\end{array}
$$

$$
\therefore c(1,-2) .
$$

(vii) From the above work, in the quadrilalival $O A B C$ $O A \perp A B$ (Note these are adjacent sides). chiagomals $O B$ and $A C$ bisect each other at D.
$\therefore O A B C$ is a rectangle.
Also note $O A=A B=\sqrt{5}$ cunts \Rightarrow adjacent soles are equal.
$\therefore O A B C$ IS A SQUARE.

12 (b)

- Q13 Page 1-

Question 13
(c) Let $A B$ be x.

$$
\begin{aligned}
& \therefore \text { Perimeter }=24+15+x . \\
& \begin{aligned}
x^{2} & =24^{2}+15^{2}-2 \times 24 \times 15 \times \cos 54^{\circ} \\
& =377.7946 \cdots \\
x & =19.436 \ldots
\end{aligned}
\end{aligned}
$$

Perineter is 58 cm (2 sig.fis).
(b)

$$
\begin{aligned}
P(x) & =Q(x)\left(x^{2}-1\right)+3 x-1 \\
& =Q(x)(x-1)(x+1)+3 x-1
\end{aligned}
$$

when $P(x)$ sidivided by $(x-1), R=P(1)$.

$$
P(1)=0+3-1=2
$$

\therefore Remainder is 2

13(a)

$\angle P O Q=\beta$
$\therefore \quad \angle P R Q=\frac{\beta}{2} \quad[\angle$ ot the centre is trice the \angle at the circumstance $]$

$$
\begin{aligned}
\angle P R M+\angle P R Q & =180^{\circ} \quad[\text { L sum m a straight lin QRM } \\
\angle P R M+\beta / 2 & =180^{\circ} \\
\therefore \angle P R M & =180-\beta / 2 .
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
You may ask for extra writing paper if you need more space to answer question 13.

Question 14
(a) (i)

$$
f(x)=\frac{3}{x-2}+3
$$

(b)
(i) $6[5] 4] 13] 12$

$$
=61 .
$$

$$
\begin{aligned}
\therefore & P(\text { number greater than } 900000 \text { and divisibleby } 5)=\frac{24}{8!} \\
& =\frac{26}{30} \\
& =\frac{41}{61}=\frac{1}{30}
\end{aligned}
$$

(c) $A_{L}: A_{S}=l_{L}^{2}: l_{3}^{2}$

$$
\begin{aligned}
\frac{1.44}{A_{s}} & =\frac{16^{2}}{11^{2}} \\
\therefore A_{3} & =\frac{1.44 \times 11^{2}}{16^{2}}=0.68062 \ldots
\end{aligned}
$$

Area of the smaller kite is $0.68 \mathrm{~m}^{2}(2 \mathrm{dp})$.

Question 15
(a)

(a) In the quadrilateral $A B C D$,
diagonal $A C$ and BD bisects each other [0 is the ante]
$D A B=90^{\circ} \quad\left[\angle\right.$ in a Semicircle is $\left.90^{\circ}\right]$
$\therefore A B C D$ is a rectangle.
(b)

$$
\begin{aligned}
& y=2 x^{2}-3 x+7 \\
& y=0 \Rightarrow 2 x^{2}-3 x+7=0 \\
& a=2 ; b=-2 ; c=7 \\
& \Delta
\end{aligned}=b^{2}-4 a c .
$$

ie $\Delta<0$.
$\therefore y=0$ han no real solutions.
(c) (i)

$$
\begin{aligned}
x & =0.27 \\
& =0.2+0.07 \\
& =0.2+0.07+0.007+0.0077+\cdots
\end{aligned}
$$

(ii) $0.07+0.007+0.0007+\cdots$ is a GP with the first term 0.07 and Common ration,

$$
\begin{aligned}
\frac{1}{10} \cdot \text { As } r & <1 \\
S_{\alpha} & =\frac{a}{1-r} \\
& =\frac{0.07}{1-0.1}=\frac{7}{90}
\end{aligned}
$$

$$
\begin{aligned}
\therefore \quad x & =0.2+\frac{7}{90} \\
& =\frac{2}{10}+\frac{7^{90}}{90} \\
& =25 \\
& =\frac{5}{18}
\end{aligned}
$$

You may ask for extra writing paper if you need more space to answer question 15.

- Q16 Page 1-

Question 16

	list month	and	ard $\ldots \ldots$	
	1800	2000	2200	\ldots

Sales in a months forms the terms of an AP.
\therefore in 3 years.

$$
\begin{aligned}
T_{n} & =a+(n-1) d \\
T_{36} & =1800+(36-1) \times 200 \\
& =8800 .
\end{aligned}
$$

$\therefore 8800$ mobile phone.
(b) Investment is $\$ 10000$ @ 8% pa. from list July 2005 to $30^{\text {it }}$ Juno 2015
\therefore (i) $A_{t_{a}}=P(1+r)^{n} \quad(10$ years.)

$$
=10000\left(1+\frac{8}{100}\right)^{10}
$$

$$
=21589.2499 \ldots
$$

$\therefore \$ 21589.25$ will be in the account on th list John 2015
(ii)
$\begin{array}{cccc}\text { Extra deports } \$ 1000 \quad \text { is Jul, } 2006 \text { list July } 2007 & \text { is Jut } 2008 \\ \text { on }\end{array}$

On the list July 2015
Deposit for the mont,
Grown ineonthly deposits.

$$
1000+\left(1000 \times 1.08^{1}+1000 \times 1.08^{2}+\cdots+1000 \times 1.08^{9}\right)^{2}
$$

This is a GP.
with the first term $1000 \frac{8}{4}$ and common ratio 1.08 and 1000 o there are 10 terms.

$$
\therefore S_{10}=1000 \frac{\left(1.08^{10}-1\right)}{0.08}=14486.56
$$

\qquad
\therefore On the 1st July 2015 ,
Extra deposits wort $=\$ 14486.56$
$\$ 10000$ initial investmen worth $=\$ 21589.25$

$$
\text { Total }=36075.81
$$

\qquad
\therefore Account balance is $\$ 36075.81$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

You may ask for extra writing paper if you need more space to answer question 16.

Question 17
(a) (i)Let Alison sat for n tests in total.

$$
\therefore \frac{180}{n-2}-\frac{180}{7}=3
$$

(ii) $n(180)-180(n-2)=3 n(n-2)$.
$180 n-180 n+360=3 n^{2}-6 n$

$$
\begin{aligned}
& n^{2}-2 n-120=0 \\
& (n-12)(n+10)=0 \\
& \therefore n=12 ; n=-10 \text { (reject). }
\end{aligned}
$$

\therefore Alison sat for 12 tests.

Note that $\{6,8,10\}$ is a Pythagorean triad.
\therefore The Δ is a right $L e d$ rat B.

$$
\begin{aligned}
&|\triangle A B C|=|\triangle A O B|+|\triangle A O C|+|\triangle B O C| \\
& \frac{1}{2} \cdot 8 \cdot 6=\frac{1}{2} \cdot 8 \times \cdot r+\frac{1}{2} \cdot 10 \cdot r+\frac{1}{2} \cdot 6 \cdot r \\
& 48=24 r \Rightarrow r=2
\end{aligned}
$$

\therefore radius is 2 cm

