

EPPING BOYS' HIGH SCHOOL

YEAR 10 STAGE 3 MATHEMATICS 2006 Yearly Examination

Date: 200610275

Time allowed: 70 minutes

Name:

Class 10M_____

All questions may be attempted. Figures are not necessarily drawn to scale. Except for multiple choice questions, working must be shown. 1 mark is awarded for each correct answer to multiple choice questions.

Section	Ι	II	III	IV	Total	%
Topic	Algebra	Trig	Vol & SA	Stats		
Full marks	20	20	15	15	70	100
Score						

SECTION I Algebra

Questions	Answers
01. If $4x + 3 = 0$, then $x =$	
A. $\frac{3}{4}$ B. $-\frac{3}{4}$ C. $\frac{4}{3}$ D. $-\frac{4}{3}$	
02. If $\frac{1}{f} = \frac{1}{u} + \frac{1}{v}$, then $v =$	
A. $\frac{uf}{u-f}$ B. $\frac{uf}{f-u}$ C. $f-u$ D. $u-f$	
03. If <i>n</i> is a non-zero integer, which statement below is always true?	
A. $2n \ge n-7$ B. $\frac{n}{100} < n$ C. $n^2 \ge n$ D 2^n is an integer.	
04. $a^2 - b^2 =$ A. $(a-b)^2$ B. $(b-a)^2$ C. $(b-a)(b+a)$ D. $(a-b)(a+b)$	

Questions				Answers
05. If $\sqrt{x^2 - 25}$	is a real number,	then <i>x</i> cannot be		
A. 36	B. −7		D. –5	
06. Solve for <i>x</i> :				[10]
		answers in surd for	orm.)	
			,	

(b) (x-5)(x+2) = 0

 $\frac{1}{(c)} \quad x^2 - 7x + 12 = 0$

(d) $3x^2 - 7x - 8 = 0$ (Leave your answer in surd form.)

(e)
$$x+1=\frac{6}{x}$$

07. Solve the following pair of simultaneous equations: 2x-5y=3014x+15y=-20

> 10A2006YR YYCyyc

[2]

08. John is six times as old as his son. In 24 years time, John will be double his son's age. How old is John now? [3]

SECTION II Trigonometry

Questions09. In $\triangle ABC$, $\angle A = 59^\circ$, $\angle B = 30^\circ$, and $BC = 12$ cm. The length of AC in cm, correct to 3 decimal places is A. 3.051 B. 7.000 C. 10.286 D. 11.800	Answers
10. $\sin 78^{\circ} \neq$ A. $\sin 102^{\circ}$ B. $\sin 258^{\circ}$ C. $\cos 12^{\circ}$ D. $-\cos 168^{\circ}$	
11. Which of the following is the correct cosine rule? A. $a^2 = b^2 + c^2 + 2bc\cos A$ B. $a^2 = b^2 + c^2 - 2bc\cos A$ C. $\cos B = \frac{b^2 + c^2 - a^2}{2bc}$ D. $\cos C = \frac{a^2 + b^2 - c^2}{2bc}$	
12. $\tan \theta =$ A. $\frac{adj}{opp}$ B. $\frac{adj}{hyp}$ C. $\frac{opp}{hyp}$ D. $\frac{opp}{adj}$	
 13. Which of the following set of data gives rise to an ambiguous case in ΔABC? A. c = 4cm, b = 3 cm, and a = 6 cm. B. a = 20 cm, b = 13 cm, and ∠B = 29°. C. a = 12 cm, ∠A = 40°, and ∠B = 60°. D. b = 7 cm, c = 5 cm, and ∠A = 45°. 	

14. In $\triangle ABC$, $\angle C = 18^\circ$, a = 4 cm, and $c = (\sqrt{5} - 1)$ cm. Find the magnitude of $\angle A$ and the area of $\triangle ABC$ to 3 decimal places.

15. In $\triangle ABC$, a = 23 cm, b = 11 cm, and $c = \sqrt{903}$ cm. Find the magnitude of $\angle C$, and the area of $\triangle ABC$ to 3 decimal places. [4]

16. Town A is 12 km north-east of Town B; Town B is 15 km from Town C. The bearing of Town C from Town B is 120°. Find the distance between Towns A and C to 3 decimal places. Find also the bearing of Town C from Town A to the nearest degree.

[5]

SECTION III Volume and Surface area

by a cone of equal radii of 3 cm. The height of the cone is 9 cm. Give your answer in terms of π . [4] 23. Find the volume and total surface area of a rectangular pyramid with height 60 cm, and the dimensions of its base is 50 cm × 22 cm. [6]

SECTION IV Statistics

24. John was awarded 76 marks for both his English and History tests. The mean and standard deviation of the English marks were 52 and 12 respectively; and those of the History marks were 65 and 4 respectively. In which of the two subjects did John do better? Justify your answer with *z*-scores. [4]

25. Complete the following frequency distribution table:

Score	frequency	Cumulative frequency
1	13	
2	26	
3	37	
4	33	
5	29	
6	12	

Find the range, mean, mode and median of the above set of scores.

Range =

Mode =

Mean =

Median =

[4]

26.

Class 10MA		Class 10MB
Leaf	Stem	Leaf
	1	8
2	2	345
	3	0226
9887	4	1222578
9986	5	457899
99988766	6	233
8876543	7	0027
766	8	
985	9	13

The above stem-and-leaf plot shows the marks of a mathematics test of classes 10MA and 10MB. Find the range, median and mode for each of the two classes.

[6]

	Class 10MA	Class 10MB
Range		
Median		
Mode		

End of the Paper

[1]

EPPING BOYS' HIGH SCHOOL

YEAR 10 STAGE 3 MATHEMATICS 2006 Yearly Examination

Date: 200610275

Time allowed: 70 minutes

Name: Solution

Class 10M

All questions may be attempted. Figures are not necessarily drawn to scale. Except for multiple choice questions, working must be shown. 1 mark is awarded for each correct answer to multiple choice questions.

Section	Ι	II	III	IV	Total	%
Topic	Algebra	Trig	Vol & SA	Stats		
Full marks	20	20	15	15	70	100
Score						

SECTION I Algebra

Questions	Answers
01. If $4x + 3 = 0$, then $x =$	
A. $\frac{3}{4}$ B. $-\frac{3}{4}$ C. $\frac{4}{3}$ D. $-\frac{4}{3}$	В
02. If $\frac{1}{f} = \frac{1}{u} + \frac{1}{v}$, then $v =$	
A. $\frac{uf}{u-f}$ B. $\frac{uf}{f-u}$ C. $f-u$ D. $u-f$	Α
03. If <i>n</i> is a non-zero integer, which statement below is always true?	
A. $2n \ge n-7$ B. $\frac{n}{100} < n$ C. $n^2 \ge n$ D 2^n is an integer.	С
04. $a^2 - b^2 =$ A. $(a-b)^2$ B. $(b-a)^2$ C. $(b-a)(b+a)$ D. $(a-b)(a+b)$	D

Questions	Answers
05. If $\sqrt{x^2 - 25}$ is a real number, then x cannot be A. 36 B7 C. 4 D5	С
06. Solve for x: (a) $(x-7)^2 = 8$ (Leave your answers in surd form.) $x-7 = \pm 2\sqrt{2}$ $x = 7 \pm 2\sqrt{2}$	[10]
(b) $(x-5)(x+2) = 0$ x = 5 or -2	
(c) $x^2 - 7x + 12 = 0$ (x - 3)(x - 4) = 0 x = 3 or 4	
(d) $3x^2 - 7x - 8 = 0$ (Leave your answer in surd form.) $x = \frac{7 \pm \sqrt{49 + 96}}{6}$ $= \frac{7 \pm \sqrt{145}}{6}$	
(e) $x+1 = \frac{6}{x}$ $x^{2} + x - 6 = 0$ (x+3)(x-2) = 0 x = 2 or -3	

07. Solve the following pair of simultaneous equations: 2x-5y = 30 14x+15y = -20 $x = 3\frac{1}{2}$ and $y = -4\frac{3}{5}$

[2]

08. John is six times as old as his son. In 24 years time, John will be double his son's age. How old is John now? [3]

Let *x* be the present age of John.

$$x + 24 = 2(\frac{x}{6} + 24)$$

3x + 72 = x + 144
x = 36

John is 36 years old now.

SECTION II Trigonometry

Questions	Answers
09. In $\triangle ABC$, $\angle A = 59^{\circ}$, $\angle B = 30^{\circ}$, and $BC = 12$ cm. The length of <i>AC</i> in cm, correct to 3 decimal places is A. 3.051 B. 7.000 C. 10.286 D. 11.800	В
10. $\sin 78^{\circ} \neq$ A. $\sin 102^{\circ}$ B. $\sin 258^{\circ}$ C. $\cos 12^{\circ}$ D. $-\cos 168^{\circ}$	В
11. Which of the following is the correct cosine rule? A. $a^2 = b^2 + c^2 + 2bc\cos A$ B. $a^2 = b^2 + c^2 - 2bc\cos A$ C. $\cos B = \frac{b^2 + c^2 - a^2}{2bc}$ D. $\cos C = \frac{a^2 + b^2 - c^2}{2bc}$	В
12. $\tan \theta =$ A. $\frac{adj}{opp}$ B. $\frac{adj}{hyp}$ C. $\frac{opp}{hyp}$ D. $\frac{opp}{adj}$	D
 13. Which of the following set of data gives rise to an ambiguous case in ΔABC? E. c = 4cm, b = 3 cm, and a = 6 cm. F. a = 20 cm, b = 13 cm, and ∠B = 29°. G. a = 12 cm, ∠A = 40°, and ∠B = 60°. H. b = 7 cm, c = 5 cm, and ∠A = 45°. 	В

14. In $\triangle ABC$, $\angle C = 18^\circ$, a = 4 cm, and $c = (\sqrt{5} - 1)$ cm. Find the magnitude of $\angle A$ and the area of $\triangle ABC$ to 3 decimal places.

$$\frac{\sin A}{4} = \frac{\sin 18^{\circ}}{\sqrt{5} - 1}$$
 area of $\Delta ABC = \frac{1}{2}(\sqrt{5} - 1)(\sqrt{10 + 2\sqrt{5}})$

$$A = 90^{\circ} = 2 \cdot 35 \, \text{lcm}^2 \text{ (correct to 3 dec. pl.)}$$

$$CA = \sqrt{16 - (\sqrt{5} - 1)^2}$$

$$= \sqrt{10 + 2\sqrt{5}}$$

15. In
$$\triangle ABC$$
, $a = 23$ cm, $b = 11$ cm, and $c = \sqrt{903}$ cm.
Find the magnitude of $\angle C$, and the area of $\triangle ABC$ to 3 decimal places. [4]

$$\cos C = \frac{23^2 + 11^2 - 903}{2 \times 23 \times 11}$$

\$\alpha C = 120°

Area of $\triangle ABC = \frac{1}{2} \times 23 \times 11 \times \sin 120^{\circ}$

$$=\frac{253\sqrt{3}}{4}cm^2$$
$$=109\cdot552cm^2$$

16. Town A is 12 km north-east of Town B; Town B is 15 km from Town C.
The bearing of Town C from Town B is 120°. Find the distance between
Towns A and C to 3 decimal places. Find also the bearing of Town C from Town A
to the nearest degree.[6] $AC^2 = 12^2 + 15^2 - 2 \times 12 \times 15 \times \cos 75^\circ$

 $= 369 - 90(\sqrt{6} - \sqrt{2})$ $AC = 3\sqrt{41 - 10\sqrt{6} + 10\sqrt{2}}$ $= 16 \cdot 608 \quad \text{(correct to 3 dec. pl.)}$ $\frac{\sin \angle BAC}{15} = \frac{\sin 75^{\circ}}{AC}$ $\angle BAC = 60^{\circ}44'21 \cdot 56'$ The bearing of C from A is S16°E or 164°

[5]

SE(CTI	ON I	I Vo	lume	e and	Surf	ice ai	rea					
Que	estio	ons										An	swer
17.	The	e form	nula fo	or the	e volur	ne of	a sph	nere is					
	A.	$4\pi r^2$	B	• $\frac{4}{3}$	πr^2	C.	$\frac{4}{3}\pi$	3	D	$2\pi r^3$			С
8.	The	e form	nula fo	or the	e volur	ne of	a cor	ne is					
	A.	2 <i>m</i> r		B.	$\frac{1}{3}\pi rh$	ı	C.	$\frac{1}{3}\pi$	^{2}h	D.	$\pi r^2 h$		С
9.	The	e form	nula fo	or the	curve	ed sur	face	area of	a con	e is			
	A.	$3\pi r^2$		B.	$\frac{1}{3}\pi rh$		C	. πrh		D.	πrs		D
0.					,			-	-	1	lar distance BCD in cm ² is		B
2													
	A.	308		B	. 252		C.	154		D. 126			
			t <i>AB</i> =	= 17	cm, A	C = 1	6 cm	, the a	rea of	rhombus	ABCD		
	in ci	m ² is											
2			· · · · · · · · · · · · · · · · · · ·										В
	A.	136		B	. 240		C.	272	D	. 480			
2.	by a	a cone	e of eq	lual i		f 3 cr	n. Tł			sts of a h the cone	emisphere sur is 9 cm.	mounted	
		2	$x^3^2 \times 9$ $\tau \ cm^3$	$+\frac{2}{3}7$	$\tau \times 3^3$								

23. Find the volume and total surface area of a rectangular pyramid with height 60 cm, and the dimensions of its base is 50 cm × 22 cm. [6]

$$V = \frac{1}{3} \times 60 \times 50 \times 22$$

= 22,000cm³
S.A. = 50 \times 22 + 61 \times 50 + 65 \times 22
= 5580cm²

SECTION IV Statistics

24. John was awarded 76 marks for both his English and History tests. The mean and standard deviation of the English marks were 52 and 12 respectively; and those of the History marks were 65 and 4 respectively. In which of the two subjects did John do better? Justify your answer with *z*-scores. [4]

$$z_E = \frac{76 - 52}{12} \qquad \qquad z_H = \frac{76 - 65}{4} \\ = 2 \qquad \qquad = 2 \cdot 75$$

 $z_H > z_E$

Therefore, John did better in History.

25. Complete the following frequency distribution table:

Score	frequency	Cumulative frequency
1	13	13
2	26	39
3	37	76
4	33	109
5	29	138
6	12	150

Find the range, mean, mode and median of the above set of scores.

Range = 5	Mode = 3

Mean = 3.5	Median = 3	[4]
--------------	--------------	-----

26.

Class 10MA		Class 10MB
Leaf	Stem	Leaf
	1	8
2	2	345
	3	0226
9887	4	1222578
9986	5	457899
99988766	6	233
8876543	7	0027
766	8	
985	9	13

The above stem-and-leaf plot shows the marks of a mathematics test of classes 10MA and 10MB. Find the range, median and mode for each of the two classes.

[6]

	Class 10MA	Class 10MB
Range	77	75
Median	69	51
Mode	69	42

End of the Paper