EPPING BOYS' HIGH SCHOOL

YEAR 10 STAGE 3 MATHEMATICS 2006 Yearly Examination

Date: 200610275
Name: \qquad
Time allowed: 70 minutes
Class 10M \qquad

All questions may be attempted.
Figures are not necessarily drawn to scale.
Except for multiple choice questions, working must be shown.
1 mark is awarded for each correct answer to multiple choice questions.

Section	I	II	III	IV	Total	\%
Topic	Algebra	Trig	Vol \& SA	Stats		
Full marks	$\mathbf{2 0}$	$\mathbf{2 0}$	$\mathbf{1 5}$	15	70	$\mathbf{1 0 0}$
Score						

SECTION I Algebra

Questions

Answers

1. If $4 x+3=0$, then $x=$
A. $\frac{3}{4}$
B. $-\frac{3}{4}$
C. $\frac{4}{3}$
D. $-\frac{4}{3}$
2. If $\frac{1}{f}=\frac{1}{u}+\frac{1}{v}$, then $v=$
A. $\frac{u f}{u-f}$
B. $\frac{u f}{f-u}$
C. $f-u$
D. $u-f$
3. If n is a non-zero integer, which statement below is always true?
A. $2 n \geq n-7$
B. $\frac{n}{100}<n$
C. $n^{2} \geq n$
D 2^{n} is an integer.
4. $a^{2}-b^{2}=$
A. $(a-b)^{2}$
B. $(b-a)^{2}$
C. $(b-a)(b+a)$
D. $(a-b)(a+b)$

Questions

Answers
05. If $\sqrt{x^{2}-25}$ is a real number, then x cannot be
A. 36
B. -7
C. 4
D. -5
06. Solve for x :
(a) $(x-7)^{2}=8$ (Leave your answers in surd form.)
(b) $(x-5)(x+2)=0$
(c) $x^{2}-7 x+12=0$
(d) $3 x^{2}-7 x-8=0$ (Leave your answer in surd form.)
(e) $x+1=\frac{6}{x}$
07. Solve the following pair of simultaneous equations:
$2 x-5 y=30$
$14 x+15 y=-20$
08. John is six times as old as his son. In 24 years time, John will be double his son's age. How old is John now?

SECTION II Trigonometry

Questions

9. In $\triangle A B C, \angle A=59^{\circ}, \angle B=30^{\circ}$, and $B C=12 \mathrm{~cm}$.

The length of $A C$ in cm, correct to 3 decimal places is
A. $3 \cdot 051$
B. $7 \cdot 000$
C. $10 \cdot 286$
D. 11.800
10. $\sin 78^{\circ} \neq$
A. $\sin 102^{\circ}$
B. $\sin 258^{\circ}$
C. $\cos 12^{\circ}$
D. $-\cos 168^{\circ}$
11. Which of the following is the correct cosine rule?
A. $a^{2}=b^{2}+c^{2}+2 b c \cos A$
B. $a^{2}=b^{2}+c^{2}-2 b c \cos A$
C. $\cos B=\frac{b^{2}+c^{2}-a^{2}}{2 b c}$
D. $\cos C=\frac{a^{2}+b^{2}-c^{2}}{2 b c}$
12. $\tan \theta=$
A. $\frac{a d j}{o p p}$
B. $\frac{a d j}{h y p}$
C. $\frac{o p p}{h y p}$
D. $\frac{o p p}{a d j}$
13. Which of the following set of data gives rise to an ambiguous case in $\triangle A B C$?
A. $c=4 \mathrm{~cm}, b=3 \mathrm{~cm}$, and $a=6 \mathrm{~cm}$.
B. $a=20 \mathrm{~cm}, b=13 \mathrm{~cm}$, and $\angle B=29^{\circ}$.
C. $a=12 \mathrm{~cm}, \angle A=40^{\circ}$, and $\angle B=60^{\circ}$.
D. $b=7 \mathrm{~cm}, c=5 \mathrm{~cm}$, and $\angle A=45^{\circ}$.
14. In $\triangle A B C, \angle C=18^{\circ}, a=4 \mathrm{~cm}$, and $c=(\sqrt{5}-1) \mathrm{cm}$.

Find the magnitude of $\angle A$ and the area of $\triangle A B C$ to 3 decimal places.
15. In $\triangle A B C, a=23 \mathrm{~cm}, b=11 \mathrm{~cm}$, and $c=\sqrt{903} \mathrm{~cm}$.

Find the magnitude of $\angle C$, and the area of $\triangle A B C$ to 3 decimal places.
16. Town A is 12 km north-east of Town B ; Town B is 15 km from Town C .

The bearing of Town C from Town B is 120°. Find the distance between
Towns A and C to 3 decimal places. Find also the bearing of Town C from Town A to the nearest degree.

SECTION III Volume and Surface area

Questions

17. The formula for the volume of a sphere is
A. $4 \pi r^{2}$
B. $\frac{4}{3} \pi r^{2}$
C. $\frac{4}{3} \pi r^{3}$
D $2 \pi r^{3}$
18. The formula for the volume of a cone is
A. $2 \pi r$
B. $\frac{1}{3} \pi r h$
C. $\frac{1}{3} \pi r^{2} h$
D. $\pi r^{2} h$
19. The formula for the curved surface area of a cone is
A. $3 \pi r^{2}$
B. $\frac{1}{3} \pi r h$
C. $\pi r h$
D. $\pi r s$
20. Given that $A B=11 \mathrm{~cm}, B C=28 \mathrm{~cm}$, and the perpendicular distance between $A D$ and $B C$ is 9 cm , the area of parallelogram $A B C D$ in cm^{2} is

A. 308
B. 252
C. 154
D. 126
21. Given that $A B=17 \mathrm{~cm}, A C=16 \mathrm{~cm}$, the area of rhombus $A B C D$ in cm^{2} is

A. 136
B. 240
C. 272
D. 480
22. Find the volume of the solid below which consists of a hemisphere surmounted by a cone of equal radii of 3 cm . The height of the cone is 9 cm . Give your answer in terms of π.
23. Find the volume and total surface area of a rectangular pyramid with height 60 cm , and the dimensions of its base is $50 \mathrm{~cm} \times 22 \mathrm{~cm}$.

SECTION IV Statistics

24. John was awarded 76 marks for both his English and History tests. The mean and standard deviation of the English marks were 52 and 12 respectively; and those of the History marks were 65 and 4 respectively. In which of the two subjects did John do better? Justify your answer with z-scores.
25. Complete the following frequency distribution table:

Score	frequency	Cumulative frequency
1	13	
2	26	
3	37	
4	33	
5	29	
6	12	

Find the range, mean, mode and median of the above set of scores.

Range $=$	Mode $=$
Mean $=$	Median $=$

26.

Class 10MA		Class 10MB
Leaf	Stem	Leaf
	1	8
2	2	345
	3	0226
9887	4	1222578
9986	5	457899
99988766	6	233
8876543	7	0027
766	8	
985	9	13

The above stem-and-leaf plot shows the marks of a mathematics test of classes 10MA and 10 MB . Find the range, median and mode for each of the two classes.

	Class 10MA	Class 10MB
Range		
Median		
Mode		

End of the Paper

EPPING BOYS' HIGH SCHOOL

YEAR 10 STAGE 3 MATHEMATICS 2006 Yearly Examination

Date: 200610275
Name: Solution

Time allowed: 70 minutes
Class 10M \qquad

All questions may be attempted.
Figures are not necessarily drawn to scale.
Except for multiple choice questions, working must be shown.
1 mark is awarded for each correct answer to multiple choice questions.

Section	I	II	III	IV	Total	\%
Topic	Algebra	Trig	Vol \& SA	Stats		
Full marks	20	20	15	15	70	100
Score						

SECTION I Algebra

Questions

Answers

1. If $4 x+3=0$, then $x=$
A. $\frac{3}{4}$
B. $-\frac{3}{4}$
C. $\frac{4}{3}$
D. $-\frac{4}{3}$
B
2. If $\frac{1}{f}=\frac{1}{u}+\frac{1}{v}$, then $v=$
A. $\frac{u f}{u-f}$
B. $\frac{u f}{f-u}$
C. $f-u$
D. $u-f$

A
03. If n is a non-zero integer, which statement below is always true?
A. $2 n \geq n-7$
B. $\frac{n}{100}<n$
C. $n^{2} \geq n$
D 2^{n} is an integer.
C
04. $a^{2}-b^{2}=$
A. $(a-b)^{2}$
B. $(b-a)^{2}$
C. $(b-a)(b+a)$
D. $(a-b)(a+b)$
D

Questions

Answers
05. If $\sqrt{x^{2}-25}$ is a real number, then x cannot be
A. 36
B. -7
C. 4
D. -5
C
06. Solve for x :
(a) $(x-7)^{2}=8$ (Leave your answers in surd form.)

$$
\begin{aligned}
& x-7= \pm 2 \sqrt{2} \\
& x=7 \pm 2 \sqrt{2}
\end{aligned}
$$

(b) $(x-5)(x+2)=0$

$$
x=5 \text { or }-2
$$

(c) $x^{2}-7 x+12=0$
$(x-3)(x-4)=0$
$x=3$ or 4
(d) $3 x^{2}-7 x-8=0$ (Leave your answer in surd form.)

$$
\begin{aligned}
x & =\frac{7 \pm \sqrt{49+96}}{6} \\
& =\frac{7 \pm \sqrt{145}}{6}
\end{aligned}
$$

(e) $x+1=\frac{6}{x}$

$$
\begin{aligned}
& x^{2}+x-6=0 \\
& (x+3)(x-2)=0 \\
& x=2 \text { or }-3
\end{aligned}
$$

7. Solve the following pair of simultaneous equations:
$2 x-5 y=30$
$14 x+15 y=-20$
$x=3 \frac{1}{2}$ and $y=-4 \frac{3}{5}$
8. John is six times as old as his son. In 24 years time, John will be double his son's age. How old is John now?

Let x be the present age of John.
$x+24=2\left(\frac{x}{6}+24\right)$
$3 x+72=x+144$
$x=36$

John is 36 years old now.

SECTION II Trigonometry

Questions

9. In $\triangle A B C, \angle A=59^{\circ}, \angle B=30^{\circ}$, and $B C=12 \mathrm{~cm}$.

The length of $A C$ in cm , correct to 3 decimal places is B
A. $3 \cdot 051$
B. $7 \cdot 000$
C. $10 \cdot 286$
D. $11 \cdot 800$
10. $\sin 78^{\circ} \neq$
A. $\sin 102^{\circ}$
B. $\sin 258^{\circ}$
C. $\cos 12^{\circ}$
D. $-\cos 168^{\circ}$
B
11. Which of the following is the correct cosine rule?
A. $a^{2}=b^{2}+c^{2}+2 b c \cos A$
B. $a^{2}=b^{2}+c^{2}-2 b c \cos A$
C. $\cos B=\frac{b^{2}+c^{2}-a^{2}}{2 b c}$
D. $\cos C=\frac{a^{2}+b^{2}-c^{2}}{2 b c}$

B
12. $\tan \theta=$
A. $\frac{a d j}{o p p}$
B. $\frac{a d j}{h y p}$
C. $\frac{o p p}{h y p}$
D. $\frac{o p p}{a d j}$

D
13. Which of the following set of data gives rise to an ambiguous case in $\triangle A B C$?
E. $c=4 \mathrm{~cm}, b=3 \mathrm{~cm}$, and $a=6 \mathrm{~cm}$.
F. $a=20 \mathrm{~cm}, b=13 \mathrm{~cm}$, and $\angle B=29^{\circ}$.
G. $a=12 \mathrm{~cm}, \angle A=40^{\circ}$, and $\angle B=60^{\circ}$.
H. $b=7 \mathrm{~cm}, c=5 \mathrm{~cm}$, and $\angle A=45^{\circ}$.
14. In $\triangle A B C, \angle C=18^{\circ}, a=4 \mathrm{~cm}$, and $c=(\sqrt{5}-1) \mathrm{cm}$.

Find the magnitude of $\angle A$ and the area of $\triangle A B C$ to 3 decimal places.

$$
\begin{array}{rlrl}
\frac{\sin A}{4} & =\frac{\sin 18^{\circ}}{\sqrt{5}-1} & \text { area of } \triangle A B C & =\frac{1}{2}(\sqrt{5}-1)(\sqrt{10+2 \sqrt{5}}) \\
A= & =20^{\circ} & & \\
C A & =\sqrt{16-(\sqrt{5}-1)^{2}} & \\
& =\sqrt{10+2 \sqrt{5}} & &
\end{array}
$$

15. In $\triangle A B C, a=23 \mathrm{~cm}, b=11 \mathrm{~cm}$, and $c=\sqrt{903} \mathrm{~cm}$.

Find the magnitude of $\angle C$, and the area of $\triangle A B C$ to 3 decimal places.

$$
\begin{aligned}
\cos C & =\frac{23^{2}+11^{2}-903}{2 \times 23 \times 11} \\
\angle C & =120^{\circ}
\end{aligned}
$$

Area of $\triangle A B C=\frac{1}{2} \times 23 \times 11 \times \sin 120^{\circ}$

$$
\begin{aligned}
& =\frac{253 \sqrt{3}}{4} \mathrm{~cm}^{2} \\
& =109 \cdot 552 \mathrm{~cm}^{2}
\end{aligned}
$$

16. Town A is 12 km north-east of Town B ; Town B is 15 km from Town C .

The bearing of Town C from Town B is 120°. Find the distance between Towns A and C to 3 decimal places. Find also the bearing of Town C from Town A to the nearest degree.

$$
\begin{aligned}
& \qquad \begin{aligned}
& A C^{2}=12^{2}+15^{2}-2 \times 12 \times 15 \times \cos 75^{\circ} \\
&=369-90(\sqrt{6}-\sqrt{2}) \\
& A C=3 \sqrt{41-10 \sqrt{6}+10 \sqrt{2}} \\
&=16 \cdot 608(\text { correct to } 3 \text { dec. pl. }) \\
& \frac{\sin \angle B A C}{15}=\frac{\sin 75^{\circ}}{A C} \\
& \angle B A C=60^{\circ} 44^{\prime} 21 \cdot 56^{\prime \prime}
\end{aligned} \\
& \text { The bearing of } C \text { from } A \text { is } S 16^{\circ} E \text { or } 164^{\circ}
\end{aligned}
$$

SECTION III Volume and Surface area

Questions

Answers
17. The formula for the volume of a sphere is
A. $4 \pi r^{2}$
B. $\frac{4}{3} \pi r^{2}$
C. $\frac{4}{3} \pi r^{3}$
D $2 \pi r^{3}$
C
18. The formula for the volume of a cone is
A. $2 \pi r$
B. $\frac{1}{3} \pi r h$
C. $\frac{1}{3} \pi r^{2} h$
D. $\pi r^{2} h$
C
19. The formula for the curved surface area of a cone is
A. $3 \pi r^{2}$
B. $\frac{1}{3} \pi r h$
C. $\pi r h$
D. $\pi r s$
D
20. Given that $A B=11 \mathrm{~cm}, B C=28 \mathrm{~cm}$, and the perpendicular distance between $A D$ and $B C$ is 9 cm , the area of parallelogram $A B C D$ in cm^{2} is

A. 308
B. 252
C. 154
D. 126
21. Given that $A B=17 \mathrm{~cm}, A C=16 \mathrm{~cm}$, the area of rhombus $A B C D$ in cm^{2} is

B
A. 136
B. 240
C. 272
D. 480
22. Find the volume of the solid below which consists of a hemisphere surmounted by a cone of equal radii of 3 cm . The height of the cone is 9 cm . Give your answer in terms of π.

$$
\begin{aligned}
V & =\frac{1}{3} \pi \times 3^{2} \times 9+\frac{2}{3} \pi \times 3^{3} \\
& =45 \pi \mathrm{~cm}^{3}
\end{aligned}
$$

23. Find the volume and total surface area of a rectangular pyramid with height 60 cm , and the dimensions of its base is $50 \mathrm{~cm} \times 22 \mathrm{~cm}$.

$$
\begin{aligned}
V & =\frac{1}{3} \times 60 \times 50 \times 22 \\
& =22,000 \mathrm{~cm}^{3}
\end{aligned}
$$

S.A. $=50 \times 22+61 \times 50+65 \times 22$
$=5580 \mathrm{~cm}^{2}$

SECTION IV Statistics

24. John was awarded 76 marks for both his English and History tests. The mean and standard deviation of the English marks were 52 and 12 respectively; and those of the History marks were 65 and 4 respectively. In which of the two subjects did John do better? Justify your answer with z-scores.

$$
\begin{aligned}
z_{E} & =\frac{76-52}{12} & z_{H} & =\frac{76-65}{4} \\
& =2 & & =2.75
\end{aligned}
$$

$z_{H}>z_{E}$
Therefore, John did better in History.
25. Complete the following frequency distribution table:

Score	frequency	Cumulative frequency
1	13	$\mathbf{1 3}$
2	26	$\mathbf{3 9}$
3	37	$\mathbf{7 6}$
4	33	$\mathbf{1 0 9}$
5	29	$\mathbf{1 3 8}$
6	12	$\mathbf{1 5 0}$

Find the range, mean, mode and median of the above set of scores.

$$
\text { Range }=\mathbf{5} \quad \text { Mode }=\mathbf{3}
$$

$$
\text { Mean }=3 \cdot 5 \quad \text { Median }=\mathbf{3}
$$

26.

Class 10MA		Class 10MB
Leaf	Stem	Leaf
	1	8
2	2	345
	3	0226
9887	4	1222578
9986	5	457899
99988766	6	233
8876543	7	0027
766	8	
985	9	13

The above stem-and-leaf plot shows the marks of a mathematics test of classes 10MA and 10MB. Find the range, median and mode for each of the two classes. [6]

	Class 10MA	Class 10MB
Range	$\mathbf{7 7}$	$\mathbf{7 5}$
Median	$\mathbf{6 9}$	$\mathbf{5 1}$
Mode	$\mathbf{6 9}$	$\mathbf{4 2}$

End of the Paper

