EPPING BOYS' HIGH SCHOOL

YEAR 10 YEARLY EXAMINATION 2007
MATHEMATICS
Stage 5.1-5.3

Time allowed: $\mathbf{6 5}$ minutes

Name: \qquad
Class: 10M
Teacher: \qquad

DIRECTIONS TO CANDIDATES:

- ALL questions must be attempted.
- Figures are not necessarily drawn to scale.
- Full marks may not be awarded for careless or badly arranged work.
- Approved calculators may be used.

SECTION 1	SECTION 2	SECTION 3		TOTAL
Multiple Choice Questions	Short Answer Questions	Short Answer Questions		
		150		

SECTION 1 - Multiple choice Questions
Write your answers in the Answers column.

	Questions (two marks each)	Answers
01	What is $\frac{6.2}{\sqrt{7.29}+5.1}$ correct to 1 decimal place equal to? A 0.5 B 0.8 C 6.0 D 7.4	
02	Michelle's car has a fuel economy of $8.5 \mathrm{~L} / 100 \mathrm{~km}$. Michelle's fuel tank has a capacity of 55 L . The maximum distance that Michelle can travel on a full tank of fuel is: A 467.5 km B 647 km C 15.45 km D 850 km	
03	The answer to $4 p^{0}$ is: A $4 p \quad$ B $4 \quad$ C $41 \quad$ D $4+p$	
04	The answer to $\frac{\left(3.2 \times 10^{4}\right) \times\left(1.5 \times 10^{2}\right)}{2.4 \times 10^{3}}$ is: $\text { A } 2 \times 10^{3} \text { B } 4.8 \times 10^{3} \quad \text { C } 2 \times 10^{9} \text { D } 4.8 \times 10^{9}$	
05	In the diagram shown the sum of the interior angles is equal to: A 540 B 720 C 900 D 1080	
06	The value of x° in the figure shown is:	
07	The expression $\frac{2 x}{5}-\frac{3 x}{4}$ is simplified to: A $-\frac{x}{20}$ B $-\frac{x}{1}$ C $-\frac{7 x}{20}$ D $\frac{6 x^{2}}{20}$	

08	The solution to the inequality $4(2-x)>16$ is: $\begin{array}{llll} \text { A } x>2 & \text { B } x>-4 & \text { C } x<-2 & \text { D } x>-2 \end{array}$	
09	Rearrange the formula $\frac{x+2 y}{3}=q$, so that y is the subject. A $y=3 q-x$ B $y=3 q-0.5 x$ C $y=1.5 q-x$ D $y=1.5 q-0.5 x$	
10	$-\sqrt{5}(3 \sqrt{10}-2 \sqrt{20})$ is equal to: A $-3 \sqrt{50}+10$ B $-3 \sqrt{50}-10$ C $20-15 \sqrt{2}$ D $-15 \sqrt{2}-20$	
11	The value of θ accurate to the nearest degree is: A 59° B 47° C 31° D 62°	
12	The gradient of the line parallel to $3 x+11 y-2=0$ is: A $\frac{3}{11}$ B $-\frac{3}{11}$ C $\frac{11}{3}$ D $-\frac{11}{3}$	
13	The digits 2, 4, and 7 are arranged to form a three digit number. The probability that the number formed is even is: A $\frac{1}{3}$ B $\frac{1}{2}$ C $\frac{2}{3}$ D $\frac{4}{9}$	
14	The solutions to $(3 x+2)(5 x-4)=0$ are: A $x=-2, x=4$ B $x=\frac{2}{3}, x=\frac{4}{5}$ C $x=-\frac{2}{3}, x=\frac{4}{5}$ D $x=\frac{2}{3}, x=-\frac{4}{5}$	
15	The solution to the following pair of simultaneous equations is: $\begin{aligned} & 3 x-y=18 \\ & 4 x+y=10 \end{aligned}$ $\mathrm{A}(5,-3) \quad \mathrm{B}(-3,5) \quad \mathrm{C}(4,-6) \quad \mathrm{D}(4,6)$	

SECTION 2 - Short Answer Questions
Write your answers in the Answers column.

	Questions (two marks each)	Answers
01	Solve: $x^{2}+4 x-6=0$ Leave the answers in surd form.	
02	Yani borrowed $\$ 12500$ from the bank to buy a car. Simple interest is charged on the loan at a rate of 8.5% per annum over 5 years. How much interest did Yani pay?	
03	If the population of Uraniumgong is decreasing by 20% of its population every year. What would be the population in three years if it is now 7000 ?	
04	The point $(-1,5)$ is the midpoint of the segment AB . If A has coordinates (w, v) and B has coordinates $(4,7)$ find w and v.	
05	For the following parabola $y=4 x^{2}-4 x-3$ Find (a) the y-intercept (b) the x -intercepts (c) the equation of the axis of symmetry (d) the coordinates of the vertex	(a) (b) (c) (d)
06	A cone has a diameter of 12 cm and a height of 8 cm . Find: (a) the slant height s (b) the total surface area of the cone, to two decimal places. (c) the volume of the cone, correct to 2 decimal places.	(a) (b) (c)
07	Find the surface area of the box whose dimensions are shown in the figure below.	

08 Determine the equation of each graph.
(a)

(b)

09 Find the surface area of the following closed hemisphere, correct to 2 decimal places.

10 Find the value of the pronumeral a in the pair of similar triangles.

11 Find the value of the pronumerals b and c in the figure below.

\begin{tabular}{|c|c|c|}
\hline 12 \& The ratio of the volume of two similar prisms, A and B , is \(27: 8\). If the surface area of prism A is 45 \(\mathrm{cm}^{2}\), find the surface area of prism \(B\). \& \\
\hline 13 \& Two 6-sided dice are tossed simultaneously. What is the probability of the total being equal to 9 ? \& \\
\hline 14 \& \begin{tabular}{l}
The following is the menu at the new restaurant Le Café Japone. \\
(a) How many different combinations of meals are possible if you select one item from each section of the menu? \\
(b) How many different combinations of meals can you order if Peach Melba is included? \\
(c) Find the probability that if a random order of a combination was made it would include Peach Melba.
\end{tabular} \& (a)
(b)

(c)

\hline 15 \& | If θ is an angle between 0° and 180°, find θ to the nearest degree if : |
| :--- |
| (a) $\sin \theta=0.5$ |
| (b) $\cos \theta=-0.5$ | \& (a)

(b)

\hline 16 \& Find x in the following triangle, correct to one decimal place. \&

\hline
\end{tabular}

SECTION 3 - Short Answer Questions
Write your answers in the Answers column.

	Questions (two marks each, if not				
01	The following data shows the weigh group of students				
	55	56	57	54	53
	54	59	58	56	54
	56	52	55	58	54

(a) Display the results in a frequency table.

Use the frequency table to find:
(b) the mean weight of the students. (1 mark)
(c) the mode weight of the students. (1 mark)
(d) the median weight of the students. (1 mark)

Answers			
(a) Score Freq $f \times x$ cf 52 53 54 55 56 57 58 59 $\Sigma(f \times x)=$ $\quad \Sigma f=$			
(b)			
(c)			
(d)			

02 Two solid spherical balls are inscribed in a cylinder
(a) which has a radius of $r \mathrm{~cm}$ and a height of $4 r \mathrm{~cm}$, as shown in the following diagram.

(a) Find the volume of the cylinder in terms of π and r
(b) Show that the volume of the unused space in the cylinder is equal to the volume of the ball.

Solve the simultaneous equations.
$y=x^{2}$
$y=-4 x-3$
04 For the following triangles

YEAR 10 YEARLY EXAMINATION 2007

Solutions

SECTION 1 - Multiple choice Questions
01 B
02 B
03 B
04 A
05 B
06 B
07 C
08 C
09 D
10 C
11 D
12 B
13 C
14 C
15 C

SECTION 2 - Short Answer Questions

01

$x=-2+\sqrt{10}$ and $x=-2-\sqrt{10}$
$02 I=P R T$

$$
=\$ 12500 \times 0.085 \times 5
$$

$$
=\$ 5312.50
$$

$03 \quad \mathrm{P}=7000 \times(1-0.2)^{3}=3584$
$04-1=\frac{w+4}{2}, w=-6,-5=\frac{v+7}{2}, v=3$
$w=-6$ and $v=3$
05(a) ($0,-3$)
(b) $\left(-\frac{1}{2}, 0\right),\left(1 \frac{1}{2}, 0\right)$
(c) $x=\frac{1}{2}$
(d) $\left(\frac{1}{2},-4\right)$

06(a)

$$
\begin{array}{r}
s^{2}=8^{2}+6^{2} \\
s=10 \mathrm{~cm}
\end{array}
$$

(b)
$\mathrm{SA}=\pi r^{2}+\pi r s=\pi \times 6^{2}+\pi \times 6 \times 10=$ $301.59 \mathrm{~cm}^{2}$
(c)

$$
V=\frac{1}{3} \pi r^{2} h=\frac{1}{3} \times \pi \times 6^{2} \times 8=\underline{301.59 \mathrm{~cm}^{3}}
$$

$07 \quad \mathrm{SA}=2(l b+l h+b h)$
$=2 \times(15 \times 12+15 \times 4+12 \times 4)$
$=2 \times(180+60+48)$
$=2 \times 288$
$=576 \mathrm{~cm}^{2}$
08 (a) $y=-x^{2}+4$
(b) $x^{2}+y^{2}=9$
$09 \mathrm{SA}=\frac{1}{2}$ sphere + circle
$=\frac{1}{2} \times 4 \pi r^{2}+\pi r^{2}$
$=\frac{1}{2} \times 4 \times \pi \times 8^{2}+\pi \times 8^{2}$
$=603.19 \mathrm{~cm}^{2}$
10
$\frac{a}{8}=\frac{18}{11}$
$a=\frac{18}{11} \times 8$
$a=13 \frac{1}{11}$
11

$$
\begin{aligned}
\frac{b+15}{15} & =\frac{15}{9} \\
b & =10 \\
\frac{c+10}{15} & =\frac{c}{9} \\
c & =15
\end{aligned}
$$

12 Ratio of volume, $\mathrm{A}: \mathrm{B}=27: 8$
\therefore ratio side length, $\mathrm{A}: \mathrm{B}=3: 2$
\therefore ratio surface area, $\mathrm{A}: \mathrm{B}=9: 4$
\therefore Surface area B $=45 \div 9 \times 4=20 \mathrm{~cm}^{2}$
13 There are 36 possible outcomes
$\{(1,1),(1,2), \ldots(6,6)\}$.
Those whose total is 9 :
$(3,6),(4,5),(5,4),(6,3)$.
$P($ total equals 9$)=\frac{4}{36}=\frac{1}{9}$
14 (a) $3 \times 3 \times 2=18$
(b) $3 \times 3 \times 1=9$
(c) $\frac{9}{18}=\frac{1}{2}$

15 (a) 30° or 150°
(b) 120°
$16 x^{2}=12^{2}+9^{2}-2 \times 12 \times 9 \times \cos 37$
$\mathrm{x}=7.2 \mathrm{~cm}$

SECTION 3 - Short Answer Questions

01
(a)

Score	Freq	$f \times x$	cf
52	1	52	1
53	1	53	2
54	4	216	6
55	2	110	8
56	3	168	11
57	1	57	12
58	2	116	14
59	1	59	15
$\Sigma f=15 \quad \Sigma(f \times x)=831$			

(b) $\bar{x}=\frac{\Sigma f \times x}{\Sigma f}=\frac{831}{15}=55.4$
(c) Mode $=54$
(d) Median $=8$ th score $=\underline{55}$

02(a)

$$
V_{\text {cylinder }}=\pi r^{2} h=\pi r^{2} \times 4 r=4 \pi r^{3} \mathrm{~cm}^{3}
$$

(b)

$$
V_{\text {sphere }}=\frac{4}{3} \pi r^{3} \mathrm{~cm}^{3}
$$

Unused space $=V_{\text {cylinder }}-2 x V_{\text {sphere }}$
$=4 \pi r^{3}-2 \times \frac{4}{3} \pi r^{3}=\frac{4}{3} \pi r^{3} \mathrm{~cm}^{3}$
Therefore, the volume of the unused space in the cylinder is equal to the volume of the ball.
03 Equating the equatins

$$
\begin{aligned}
& x^{2}=-4 x-3 \\
& (x+1)(x+3)=0 \\
& \\
& \begin{array}{lll}
\mathrm{x}=-1 & \text { or } & \mathrm{x}=-3 \\
\mathrm{y}=1 \quad & \mathrm{y}=9
\end{array}
\end{aligned}
$$

04 (a)
$A=\frac{1}{2} \times 15 \times 30 \times \sin 70$
$=\underline{211.43 \mathrm{~cm}^{2}}$
(b)
$\left(\frac{1}{2} \times 15 x \times \sin 40\right)+\left(\frac{1}{2} \times 30 x \times \sin 30\right)=\frac{1}{2} \times 15 \times 30 \times \sin 70$
$x=\frac{450 \sin 70}{15 \sin 40+30 \sin 30}$

$$
\mathrm{x}=\underline{17.16 \mathrm{~cm}}
$$

05(a)
$\angle \mathrm{QAP}=25^{\circ}-10^{\circ}=\underline{15^{\circ}}$
(b)
$\frac{Q A}{\sin 10^{\circ}}=\frac{200}{\sin 15^{\circ}}$
$\mathrm{QA}=134 \mathrm{~m}$
(c)
$\frac{A B}{Q A}=\sin 25^{\circ}$
$\mathrm{AB}=134 \sin 25^{\circ}$
$A B=57 \mathrm{~m}$

END OF PAPER

(Check your answers)

