EPPING BOYS HIGH SCHOOL

YEAR 10 STAGE 5.3 MATHEMATICS

2012 YEARLY EXAMINATION

Student's Name:

(Please put a cross in the box, next to your teacher's name)

Class Teacher	Class
Mr Garvey	102M53-1
Mr Lachmaiya	102M53-2
Mrs Liyanage	102M53-3
Ms Tang	102M53-4

Time Allowed: 65 mins

General Instructions

- Write your name and your teacher's name on each section
- Write using only **BLACK** or **BLUE** pen (pencils can only be used for diagrams)
- ALL necessary working should be shown in every question
- Marks may be deducted for careless and untidy work
- Only Board of Studies approved calculators may be used in section B onwards
- Attempt all sections

Section	А	В	С	D	E	Total	0/
	Non- calculator	Similarity	Further Trigonometry	Further Algebra	Circle Geometry	Total	%
Out of	10	7	17	17	17	68	100
Mark							

PART A – NON-CALCULATOR						
Time allowed: 10 mins	Mark	Student's Name				
NO calculators are to be used Write your answers in the space provided		Teacher				

	Question	Answer	Marks
1.	Find the value of $\frac{48 \div (-2)}{6 - 4 \times 3}$		1
2.	It has been calculated that the probability of a male birth is 0.48. Over a period of time, there were 2700 babies born in Australia. How many babies were female?		1
3.	The area of the triangle drawn on the number plane is 27 $units^2$.		1
4.	Laura works as a telephone operator selling home security systems. She is paid \$440 per week plus 4.5% of her sales of any systems. Last week her sales totalled \$1400. Find her total pay for the week?		1
5.	The surface area of a cube is $54 \ cm^2$. Find the volume in cm^3		1

6.	The average of 6 scores is 41. If another score is included, the average increases by 3.5. What is the new score?	1
7.	Brian is hiring the local hall for a party for his 18th. He requires 120 chairs for the party and has been told that the ratio of tables to chairs at the hall is 2: 9. If there are 10 tables in the hall, how many extra chairs will he need to hire?	1
8.	Yesterday, a train left Westlakes at 5.47 pm and arrived at Edgeworth at 7.12 pm. If the train had left Westlakes on schedule but had arrived at its destination fifteen minutes late, how long should the journey normally take, in minutes?	1
9.	What is the perimeter of the following shape? 11.5 cm 12 cm 6.5 cm	1
10.	Simplify the following expression $\frac{3}{x^2 - 4} - \frac{5}{x^2 + x - 6}$	1

1

PART B – SIMILARITY

Calculators are to be used	Mark	Student's Name	
Write your answers in the space provided		Teacher	

PART	PART C – FURTHER TRIGONOMETRY				
	Calculators are to be used Mark		Student's Name		
prov	e your answers in the space ided		Teacher		
	Question		A	nswer	Marks
	Find the value of <i>a</i> correct to 1 of	decimal place			
1.	$B \xrightarrow{28^{\circ}} A \xrightarrow{54^{\circ}} D$	60 m			2
	Three towns, A , B and C , are co straight roads. The distance from town B is 25 km and the distan A to town C is 18 km . If the ang the two roads AB and AC is 65° distance BC to the nearest kilon	n town A to ce from town le between , what is the			
2.	A = 18 km $25 km$ $B = B$	> <i>c</i>			2
3.	Find the value of x $\sin 23 = \cos(x + 3)$	0)			2
4.	Prove that $\frac{\sin\theta \times \sin(90^\circ - \theta)}{\cos(90^\circ - \theta)} =$	$\cos \theta$			2

5.	If $\tan \theta < 0$ and $\cos \theta < 0$. State whether the angle θ is acute or obtuse where $0^{\circ} < \theta < 180^{\circ}$	1
6.	Find the exact value of tan 150°	1
7.	Given θ is obtuse, find the value of θ correct to the nearest minute $21^{\circ}23'$ 12.8 cm θ 5.9 cm	2
8.	Find the total area of both triangles correct to the nearest square centimetre 4 cm 12 cm 37° 21 cm	2
9.	An aircraft leaves Darwin and flies on a bearing of 123° for 200 km. The aircraft then changes direction and flies on a bearing of 213°, until it is due south of Darwin. How far south of Darwin is the aircraft, correct to the nearest kilometre? HINT: Drawing a diagram is required	3

PART D – FURTHER ALGEBRA							
Calculators are to be used	Mark	Student's Name					
Write your answers in the space provided		Teacher					

	Question	Answer	Marks
1.	Solve the following equations simultaneously $y = x^2 + 6x + 11$ and $y = 4 - 2x$		3
2.	Solve the following equations simultaneously $y = x^2 - 7x + 10$ and $y = -4x + 6$		2
3.	Rewrite the expression $x^6 - 4x^3 + 5$ in terms of <i>a</i> if $a = x^3$		1

4.	Make y the subject of the following $T = \frac{3(y+k)}{4c}$		2
5.	Given $A = \sqrt{\frac{p+q}{p-q}}$ a. Make p the subject of the formula b. Considering the original equation, explain why $p \neq q$	a. b.	2
6.	Solve the following equation $4y^4 - 37y^2 + 9 = 0$		3
7.	Use the substitution $a = 1 - 2k$ to solve the following equation $3(1 - 2k)^2 - 5(1 - 2k) = 22$		3

PART E – CIRCLE GEOMETRY

Calculators are to be used	Mark	Student's Name	
Write your answers in the space provided		Teacher	

	Question	Answer	Marks
1.	Name the parts of the circle, shown in the diagrams below a.	a.	1
	b.	b.	1
	c.	C.	1
2.	Given $AB = 24 \ cm$ and $OM = 5 \ cm$ Find OB		2
3.	Given $AB = CD$ $\angle AOC = 32^{\circ} \text{ and } \angle COD = 124^{\circ}$ Find $\angle COB$, giving reasons A C D D		2

EPPING BOYS HIGH SCHOOL

YEAR 10 STAGE 5.3 MATHEMATICS

2012 YEARLY EXAMINATION SOLUTIONS

Student's Name:

(Please put a cross in the box, next to your teacher's name)

Class Teacher	Class
Mr Garvey	102M53-1
Mr Lachmaiya	102M53-2
Mrs Liyanage	102M53-3
Ms Tang	102M53-4

Time Allowed: 65 mins

General Instructions

- Write your name and your teacher's name on each section
- Write using only **BLACK** or **BLUE** pen (pencils can only be used for diagrams)
- ALL necessary working should be shown in every question
- Marks may be deducted for careless and untidy work
- Only Board of Studies approved calculators may be used in section B onwards
- Attempt all sections

Castion	А	В	С	D	E	Total	0/
Section	Non- calculator	Similarity	Further Trigonometry	Further Algebra	Circle Geometry	Total	%
Out of	10	7	17	17	17	68	100
Mark							

PART A – NON-CALCULATOR

Time allowed: 10 mins	Mark	Student's Name	
NO calculators are to be used Write your answers in the space provided		Teacher	

	Question	Answer	Marks
1.	Find the value of $\frac{48 \div (-2)}{6 - 4 \times 3}$	$=\frac{-24}{-6}=4$	1
2.	It has been calculated that the probability of a male birth is 0.48. Over a period of time, there were 2700 babies born in Australia. How many babies were female?	Number of females = 0.52×2700 = 1404	1
3.	The area of the triangle drawn on the number plane is 27 $units^2$.	Let h = height of triangle $27 = \frac{1}{2} \times 9 \times h$ $h = 54 \div 9$ h = 6 $\therefore A = (-3, 6)$	1
4.	Laura works as a telephone operator selling home security systems. She is paid \$440 per week plus 4.5% of her sales of any systems. Last week her sales totalled \$1400. Find her total pay for the week?	1% = \$14 4.5% = \$63 Total pay = 440 + 63 = \$503	1
5.	The surface area of a cube is $54 \ cm^2$. Find the volume in cm^3	$SA = 6 \times s^{2}$ $54 = 6 \times s^{2}$ $s^{2} = 9 \rightarrow s = 3$ $\therefore V = 3 \times 3 \times 3 = 27cm^{3}$	1

6.	The average of 6 scores is 41. If another score is included, the average increases by 3.5. What is the new score?	New score = $44.5 \times 7 - 41 \times 6$ = $311.5 - 246$ = 65.5	1
7.	Brian is hiring the local hall for a party for his 18th. He requires 120 chairs for the party and has been told that the ratio of tables to chairs at the hall is 2: 9. If there are 10 tables in the hall, how many extra chairs will he need to hire?	2 parts = 10 tables 1 part = 5 $\therefore Chairs = 9 \times 5 = 45$ Number of extra chairs = 120 - 45 = 75	1
8.	Yesterday, a train left Westlakes at 5.47 pm and arrived at Edgeworth at 7.12 pm. If the train had left Westlakes on schedule but had arrived at its destination fifteen minutes late, how long should the journey normally take, in minutes?	5.47pm to 6.47pm = 1 hour 6.47pm to 7.12pm = 25 mins Journey took 1 hour 10 mins	1
9.	What is the perimeter of the following shape? 11.5 cm 6.5 cm 12 cm	Let hypotenuse= x $x = \sqrt{12^2 + 5^2} = 13 cm$ Perimeter = 13 + 12 + 11.5 + 6.5 = 43 cm	1
10.	Simplify the following expression $\frac{3}{x^2 - 4} - \frac{5}{x^2 + x - 6}$	$\frac{\frac{3}{x^2 - 4} - \frac{5}{x^2 + x - 6}}{= \frac{3}{(x - 2)(x + 2)} - \frac{5}{(x - 2)(x + 3)}}$ $= \frac{3(x + 3) - 5(x + 2)}{(x - 2)(x + 2)(x + 3)}$ $= \frac{-2x - 1}{(x - 2)(x + 2)(x + 3)}$	1

PART B - SIMILARITY

Calculators are to be used Write your answers in the space provided	Mark	Student's Name	
		Teacher	

	Question	Answer	Marks
1.	State the test that proves $\Delta GHF \parallel \Delta DHE$	Equiangular OR AAA	1
	For the following diagram, given $PQ//ST$ $P \xrightarrow{12} Q$ R	a. In ΔPQR and ΔTSR $\angle PQR = \angle RST$ (alternate angles, $PQ//ST$) $\angle PRQ = \angle SRT$ (vertically opposite angles are equal) $\therefore \Delta PQR \parallel \Delta TSR$ (equiangular)	2
2.	a. Prove that $\Delta PQR \parallel \Delta TSR$ b. Find the value of x , giving reason	b. $\frac{RT}{ST} = \frac{RP}{PQ}$ (corresponding sides on similar triangles are in proportion) $\frac{x}{36} = \frac{8}{12}$ $x = \frac{8 \times 36}{12}$ $x = 24$	2
3.	The wall of a building is being supported by a piece of timber 15 m long which is positioned 8 m from the wall.	$\frac{d}{8} = \frac{4}{3}$ $d = \frac{4 \times 8}{3}$ $d = \frac{32}{3} = 10\frac{2}{3}m$ OR $d^{2} = 15^{2} - 8^{2}$ $d = \sqrt{161} = 12.69 \text{ (to two decimal places)}$	2

PART C – FURTHER TRIGONOMETRY

Calculators are to be used Write your answers in the space provided	Mark	Student's Name	
		Teacher	

	Question	Answer	Marks
1.	Find the value of <i>a</i> correct to 1 decimal place <i>A</i> 60 m <i>B</i> <i>D</i> <i>C</i>	$\tan 54 = \frac{60}{DC}$ $DC = \frac{60}{\tan 54}$ $\tan 28 = \frac{60}{BC}$ $BC = \frac{60}{\tan 28}$ $a = BC - DC$ $a = \frac{60}{\tan 28} - \frac{60}{\tan 54}$ $a = 69.3 m$	2
2.	Three towns, <i>A</i> , <i>B</i> and <i>C</i> , are connected by straight roads. The distance from town <i>A</i> to town <i>B</i> is 25 <i>km</i> and the distance from town <i>A</i> to town <i>C</i> is 18 <i>km</i> . If the angle between the two roads <i>AB</i> and <i>AC</i> is 65°, what is the distance <i>BC</i> to the nearest kilometre?	$BC^{2} = 18^{2} + 25^{2} - 2 \times 18 \times 25 \times \cos 65$ BC^{2} = 568.6434644 BC = 24 km	2
3.	Find the value of x $\sin 23 = \cos(x + 30)$	sin 23 = cos(90 - 23) sin 23 = cos 67 $\therefore x + 30 = 67$ $\therefore x = 37$	2
4.	Prove that $\frac{\sin\theta \times \sin(90^\circ - \theta)}{\cos(90^\circ - \theta)} = \cos\theta$	$LHS = \frac{\sin\theta \times \sin(90^\circ - \theta)}{\cos(90^\circ - \theta)}$ $= \frac{\sin\theta \times \cos\theta}{\sin\theta}$ $= \cos\theta$ $LHS = RHS$	2

PART D – FURTHER ALGEBRA						
Calculators are to be used	Mark	Student's Name				
Write your answers in the space provided		Teacher				

	Question	Answer	Marks
1.	Solve the following equations simultaneously $y = x^2 + 6x + 11$ and $y = 4 - 2x$	$y = x^{2} + 6x + 11 \dots (1)$ $y = 4 - 2x \dots (2)$ Sub (1) into (2) $x^{2} + 6x + 11 = 4 - 2x$ $x^{2} + 8x + 7 = 0$ (x + 1)(x + 7) = 0 $x = -1, -7 \dots (3)$ Sub (3) into (2) y = 4 - 2(-1) = 6 y = 4 - 2(-7) = 18 \therefore When x = -1, y = 6 and x = -7, y = 18	3
2.	Solve the following equations simultaneously $y = x^2 - 7x + 10$ and $y = -4x + 6$	$y = x^{2} - 7x + 10 \dots (1)$ $y = -4x + 6 \dots (2)$ Sub (1) into (2) $x^{2} - 7x + 10 = -4x + 6$ $x^{2} - 3x + 4 = 0$ $x = \frac{3 \pm \sqrt{9 - 4(1)(4)}}{2(1)}$ $x = \frac{3 \pm \sqrt{-7}}{2}$ x = no solutions	2
3.	Rewrite the expression $x^6 - 4x^3 + 5$ in terms of a if $a = x^3$	$x^{6} - 4x^{3} + 5$ = $(x^{3})^{2} - 4x^{3} + 5$ = $a^{2} - 4a + 5$	1

4.	Make y the subject of the following $T = \frac{3(y+k)}{4c}$	$T = \frac{3(y+k)}{4c}$ $4cT = 3(y+k)$ $y+k = \frac{4cT}{3}$ $y = \frac{4cT}{3} - k$	2
5.	Given $A = \sqrt{\frac{p+q}{p-q}}$ a. Make p the subject of the formula b. Considering the original equation, explain why $p \neq q$	a. $A = \sqrt{\frac{p+q}{p-q}}$ $A^{2} = \frac{p+q}{p-q}$ $A^{2}(p-q) = p+q$ $A^{2}p - A^{2}q = p+q$ $A^{2}p - p = A^{2}q + q$ $p(A^{2} - 1) = A^{2}q + q$ $p = \frac{A^{2}q + q}{A^{2} - 1}$ b. $\sqrt{\frac{p+q}{p-q}} = \frac{\sqrt{p+q}}{\sqrt{p-q}}$	2
		$p - q \neq 0$ (denominator can't be 0) $\therefore p \neq q$	1
6.	Solve the following equation $4y^4 - 37y^2 + 9 = 0$	$4y^{4} - 37y^{2} + 9 = 0$ Let $a = y^{2}$ $4a^{2} - 37a + 9 = 0$ (4a - 1)(a - 9) = 0 $a = \frac{1}{4}, 9$ $\therefore y^{2} = \frac{1}{4}, 9$ $\therefore y = \frac{1}{2}, -\frac{1}{2}, 3, -3$	3
7.	Use the substitution $a = 1 - 2k$ to solve the following equation $3(1 - 2k)^2 - 5(1 - 2k) = 22$	$3a^{2} - 5a = 22$ $3a^{2} - 5a - 22 = 0$ (3a - 11)(a + 2) = 0 $a = \frac{11}{3}, -2$ $\therefore 1 - 2k = \frac{11}{3},$ $\therefore 3 - 6k = 11 \rightarrow -6k = 8 \rightarrow k = -\frac{4}{3}$ $\therefore 1 - 2k = -2$ $\therefore -2k = -3 \rightarrow k = \frac{3}{2}$ $\therefore When$ $a = \frac{11}{3}, k = -\frac{4}{3} \text{ and } a = -2, k = \frac{3}{2}$	3

PART E – CIRCLE GEOMETRY

Calculators are to be used Write your answers in the space	Mark	Student's Name	
provided		Teacher	

	Question	Answer	Marks
1.	Name the parts of the circle, shown in the diagrams below a. b.	a. Major segment	1
		b. Secant	1
	c.	c. Tangent	1
2.	Given $AB = 24 \ cm$ and $OM = 5 \ cm$ Find OB	AM = BM = 12 cm $OB^2 = 12^2 + 5^2$ $OB^2 = 169$ OB = 13 cm	2
3.	Given $AB = CD$ $\angle AOC = 32^{\circ} \text{ and } \angle COD = 124^{\circ}$ Find $\angle COB$, giving reasons A = A = A = B O = B = D	$\angle COD = \angle AOB = 124^{\circ}$ (equal chords subtend equal angles at the centre of the circle) $\angle COB = \angle AOB - \angle AOC$ $\angle COB = 124 - 32$ $\therefore \angle COB = 92$	2

– THE END OF THE EXAMINATION 😊 –