EPPING BOYS HIGH SCHOOL

YEAR 10 STAGE 5.3 MATHEMATICS
 2012 YEARLY EXAMINATION

Student's Name: \qquad
(Please put a cross in the box, next to your teacher's name)

	Class Teacher	Class
	Mr Garvey	$102 \mathrm{M} 53-1$
	Mr Lachmaiya	$102 \mathrm{M} 53-2$
	Mrs Liyanage	$102 \mathrm{M} 53-3$
	Ms Tang	$102 \mathrm{M} 53-4$

Time Allowed: 65 mins

General Instructions

- Write your name and your teacher's name on each section
- Write using only BLACK or BLUE pen (pencils can only be used for diagrams)
- ALL necessary working should be shown in every question
- Marks may be deducted for careless and untidy work
- Only Board of Studies approved calculators may be used in section B onwards
- Attempt all sections

Section	A	B	C	D	E	Total	\%
	Non- calculator	Similarity	Further Trigonometry	Further Algebra	Circle Geometry	Tor	17
	10	7	17	17	68	100	
Mark							

PART A - NON-CALCULATOR

Time allowed: 10 mins	Mark	Student's Name	
NO calculators are to be used Write your answers in the space provided		Teacher	

	Question	Answer	Marks
1.	Find the value of $\frac{48 \div(-2)}{6-4 \times 3}$		1
2.	It has been calculated that the probability of a male birth is 0.48 . Over a period of time, there were 2700 babies born in Australia. How many babies were female?		1
3.	The area of the triangle drawn on the number plane is 27 units 2. Find the coordinates of the point A.		1
4.	Laura works as a telephone operator selling home security systems. She is paid $\$ 440$ per week plus 4.5% of her sales of any systems. Last week her sales totalled $\$ 1400$. Find her total pay for the week?		1
5.	The surface area of a cube is $54 \mathrm{~cm}^{2}$. Find the volume in cm^{3}		1

6.	The average of 6 scores is 41 . If another score is included, the average increases by 3.5 . What is the new score?	1
7.	Brian is hiring the local hall for a party for his 18th. He requires 120 chairs for the party and has been told that the ratio of tables to chairs at the hall is 2 : 9 . If there are 10 tables in the hall, how many extra chairs will he need to hire?	1
8.	Yesterday, a train left Westlakes at 5.47 pm and arrived at Edgeworth at 7.12 pm . If the train had left Westlakes on schedule but had arrived at its destination fifteen minutes late, how long should the journey normally take, in minutes?	1
9.	What is the perimeter of the following shape?	1
10.	Simplify the following expression $\frac{3}{x^{2}-4}-\frac{5}{x^{2}+x-6}$	1

PART B - SIMILARITY

PART C - FURTHER TRIGONOMETRY

Calculators are to be used Write your answers in the space provided		Student's Name		
		Teacher		
	Question	Answer		Marks
1.	Find the value of a correct to 1 decimal place			2
2.	Three towns, A, B and C, are connected by straight roads. The distance from town A to town B is 25 km and the distance from town A to town C is 18 km . If the angle between the two roads $A B$ and $A C$ is 65°, what is the distance $B C$ to the nearest kilometre?			2
3.	Find the value of x $\sin 23=\cos (x+30)$			2
4.	Prove that $\frac{\sin \theta \times \sin \left(90^{\circ}-\theta\right)}{\cos \left(90^{\circ}-\theta\right)}=\cos \theta$			2

5.	If $\tan \theta<0$ and $\cos \theta<0$. State whether the angle θ is acute or obtuse where $0^{\circ}<\theta<180^{\circ}$	1
6.	Find the exact value of $\tan 150^{\circ}$	1
7.	Given θ is obtuse, find the value of θ correct to the nearest minute	2
8.	Find the total area of both triangles correct to the nearest square centimetre	2
9.	An aircraft leaves Darwin and flies on a bearing of 123° for 200 km . The aircraft then changes direction and flies on a bearing of 213°, until it is due south of Darwin. How far south of Darwin is the aircraft, correct to the nearest kilometre? HINT: Drawing a diagram is required	3

PART D - FURTHER ALGEBRA

	Mark	Student's Name	
Calculators are to be used Write your answers in the space provided		Teacher	

	Question	Answer	Marks
1.	Solve the following equations simultaneously		3

$y=x^{2}+6 x+11$ and $y=4-2 x$

Solve the following equations simultaneously
2.
$y=x^{2}-7 x+10$ and $y=-4 x+6$
3.

Rewrite the expression $x^{6}-4 x^{3}+5$ in terms of a if $a=x^{3}$

PART E - CIRCLE GEOMETRY

	Mark	Student's Name	
Calculators are to be used Write your answers in the space provided		Teacher	

		Answer	Marks

EPPING BOYS HIGH SCHOOL

YEAR 10 STAGE 5.3 MATHEMATICS

2012 YEARLY EXAMINATION SOLUTIONS

Student's Name: \qquad
(Please put a cross in the box, next to your teacher's name)

	Class Teacher	Class
	Mr Garvey	$102 \mathrm{M} 53-1$
	Mr Lachmaiya	$102 \mathrm{M} 53-2$
	Mrs Liyanage	$102 \mathrm{M} 53-3$
	Ms Tang	$102 \mathrm{M} 53-4$

Time Allowed: 65 mins

General Instructions

- Write your name and your teacher's name on each section
- Write using only BLACK or BLUE pen (pencils can only be used for diagrams)
- ALL necessary working should be shown in every question
- Marks may be deducted for careless and untidy work
- Only Board of Studies approved calculators may be used in section B onwards
- Attempt all sections

Section	A	B	C	D	E	Total	\%
	Noncalculator	Similarity	Further Trigonometry	Further Algebra	Circle Geometry		
Out of	10	7	17	17	17	68	100
Mark							

PART A - NON-CALCULATOR

Time allowed: 10 mins	Mark	Student's Name	
NO calculators are to be used Write your answers in the space provided		Teacher	

	Question	Answer	Marks
1.	Find the value of $\frac{48 \div(-2)}{6-4 \times 3}$	$=\frac{-24}{-6}=4$	1
2.	It has been calculated that the probability of a male birth is 0.48 . Over a period of time, there were 2700 babies born in Australia. How many babies were female?	$\begin{aligned} & \text { Number of females } \\ & =0.52 \times 2700 \\ & =1404 \end{aligned}$	1
3.	The area of the triangle drawn on the number plane is 27 units 2. Find the coordinates of the point A.	Let $h=$ height of triangle $\begin{aligned} & 27=\frac{1}{2} \times 9 \times h \\ & h=54 \div 9 \\ & h=6 \\ & \therefore A=(-3,6) \end{aligned}$	1
4.	Laura works as a telephone operator selling home security systems. She is paid $\$ 440$ per week plus 4.5% of her sales of any systems. Last week her sales totalled $\$ 1400$. Find her total pay for the week?	$\begin{aligned} & 1 \%=\$ 14 \\ & 4.5 \%=\$ 63 \end{aligned}$ Total pay $\begin{aligned} & =440+63 \\ & =\$ 503 \end{aligned}$	1
5.	The surface area of a cube is $54 \mathrm{~cm}^{2}$. Find the volume in cm^{3}	$\begin{aligned} & S A=6 \times s^{2} \\ & 54=6 \times s^{2} \\ & s^{2}=9 \rightarrow s=3 \\ & \therefore V=3 \times 3 \times 3=27 \mathrm{~cm}^{3} \end{aligned}$	1

6.	The average of 6 scores is 41 . If another score is included, the average increases by 3.5 . What is the new score?	New score $\begin{aligned} & =44.5 \times 7-41 \times 6 \\ & =311.5-246 \\ & =65.5 \end{aligned}$	1
7.	Brian is hiring the local hall for a party for his 18th. He requires 120 chairs for the party and has been told that the ratio of tables to chairs at the hall is 2 : 9 . If there are 10 tables in the hall, how many extra chairs will he need to hire?	$\begin{aligned} & 2 \text { parts }=10 \text { tables } \\ & 1 \text { part }=5 \\ & \therefore \text { Chairs }=9 \times 5=45 \end{aligned}$ Number of extra chairs $\begin{aligned} & =120-45 \\ & =75 \end{aligned}$	1
8.	Yesterday, a train left Westlakes at 5.47 pm and arrived at Edgeworth at 7.12 pm . If the train had left Westlakes on schedule but had arrived at its destination fifteen minutes late, how long should the journey normally take, in minutes?	5.47 pm to $6.47 \mathrm{pm}=1$ hour 6.47 pm to $7.12 \mathrm{pm}=25 \mathrm{mins}$ Journey took 1 hour 10 mins	1
9.	What is the perimeter of the following shape?	Let hypotenuse $=x$ $x=\sqrt{12^{2}+5^{2}}=13 \mathrm{~cm}$ Perimeter $\begin{aligned} & =13+12+11.5+6.5 \\ & =43 \mathrm{~cm} \end{aligned}$	1
10.	Simplify the following expression $\frac{3}{x^{2}-4}-\frac{5}{x^{2}+x-6}$	$\begin{aligned} & \frac{3}{x^{2}-4}-\frac{5}{x^{2}+x-6} \\ & =\frac{3}{(x-2)(x+2)}-\frac{5}{(x-2)(x+3)} \\ & =\frac{3(x+3)-5(x+2)}{(x-2)(x+2)(x+3)} \\ & =\frac{-2 x-1}{(x-2)(x+2)(x+3)} \end{aligned}$	1

PART B - SIMILARITY

PART C - FURTHER TRIGONOMETRY

Calculators are to be used Write your answers in the space provided		Student's Name	
		Teacher	
	Question	Answer	Marks
1.	Find the value of a correct to 1 decimal place	$\begin{aligned} & \tan 54=\frac{60}{D C} \\ & D C=\frac{60}{\tan 54} \\ & \tan 28=\frac{60}{B C} \\ & B C=\frac{60}{\tan 28} \\ & a=B C-D C \\ & a=\frac{60}{\tan 28}-\frac{60}{\tan 54} \\ & a=69.3 \mathrm{~m} \end{aligned}$	2
2.	Three towns, A, B and C, are connected by straight roads. The distance from town A to town B is 25 km and the distance from town A to town C is 18 km . If the angle between the two roads $A B$ and $A C$ is 65°, what is the distance $B C$ to the nearest kilometre?	$\begin{aligned} & B C^{2}=18^{2}+25^{2}-2 \times 18 \times 25 \times \cos 65 \\ & B C^{2}=568.6434644 \\ & B C=24 \mathrm{~km} \end{aligned}$	2
3.	Find the value of x $\sin 23=\cos (x+30)$	$\begin{aligned} & \sin 23=\cos (90-23) \\ & \sin 23=\cos 67 \\ & \therefore x+30=67 \\ & \therefore x=37 \end{aligned}$	2
4.	Prove that $\frac{\sin \theta \times \sin \left(90^{\circ}-\theta\right)}{\cos \left(90^{\circ}-\theta\right)}=\cos \theta$	$\begin{aligned} \text { LHS } & =\frac{\sin \theta \times \sin \left(90^{\circ}-\theta\right)}{\cos \left(90^{\circ}-\theta\right)} \\ & =\frac{\sin \theta \times \cos \theta}{\sin \theta} \\ & =\cos \theta \\ \text { LHS } & =\text { RHS } \end{aligned}$	2

5.	If $\tan \theta<0$ and $\cos \theta<0$. State whether the angle θ is acute or obtuse where $0^{\circ}<\theta<180^{\circ}$	angle θ is obtuse	1
6.	Find the exact value of $\tan 150^{\circ}$	$\begin{aligned} \tan 150^{\circ} & =-\tan 30^{\circ} \\ & =-\frac{1}{\sqrt{3}} \end{aligned}$	1
7.	Given θ is obtuse, find the value of θ correct to the nearest minute	$\begin{aligned} & \frac{\sin \theta}{12.8}=\frac{\sin 21^{\circ} 23^{\prime}}{5.9} \\ & \sin \theta=\frac{12.8 \times \sin 21^{\circ} 23^{\prime}}{5.9} \\ & \theta=\sin ^{-1}\left(\frac{12.8 \times \sin 21^{\circ} 23^{\prime}}{5.9}\right) \\ & \theta=52^{\circ} 17^{\prime} \end{aligned}$	2
8.	Find the total area of both triangles correct to the nearest square centimetre	$\begin{aligned} & A=\frac{1}{2} \times 4 \times 10 \times \sin 37+\frac{1}{2} \times 12 \times 21 \\ & \quad \times \sin 37 \\ & A=20 \sin 37+126 \sin 37 \\ & A=88 \mathrm{~cm}^{2} \end{aligned}$	2
9.	An aircraft leaves Darwin and flies on a bearing of 123° for 200 km . The aircraft then changes direction and flies on a bearing of 213°, until it is due south of Darwin. How far south of Darwin is the aircraft, correct to the nearest kilometre? HINT: Drawing a diagram is required		3

PART D - FURTHER ALGEBRA

	Mark	Student's Name	
Calculators are to be used Write your answers in the space provided		Teacher	

	Question	Answer	Marks
1.	Solve the following equations simultaneously $y=x^{2}+6 x+11 \text { and } y=4-2 x$	$\begin{aligned} & y=x^{2}+6 x+11 \ldots \\ & y=4-2 x \ldots \end{aligned}$ Sub (1) into (2) $\begin{aligned} & x^{2}+6 x+11=4-2 x \\ & x^{2}+8 x+7=0 \\ & (x+1)(x+7)=0 \\ & x=-1,-7 \ldots(3) \end{aligned}$ Sub (3) into (2) $\begin{aligned} & y=4-2(-1)=6 \\ & y=4-2(-7)=18 \end{aligned}$ \therefore When $x=-1, y=6 \text { and } x=-7, y=18$	3
2.	Solve the following equations simultaneously $y=x^{2}-7 x+10 \text { and } y=-4 x+6$	$\begin{align*} & y=x^{2}-7 x+10 \ldots \tag{1}\\ & y=-4 x+6 \ldots(2) \end{align*}$ $\begin{aligned} & \text { Sub (1) into (2) } \\ & x^{2}-7 x+10=-4 x+6 \\ & x^{2}-3 x+4=0 \\ & x=\frac{3 \pm \sqrt{9-4(1)(4)}}{2(1)} \\ & x=\frac{3 \pm \sqrt{-7}}{2} \\ & x=\text { no solutions } \end{aligned}$	2
3.	Rewrite the expression $x^{6}-4 x^{3}+5$ in terms of a if $a=x^{3}$	$\begin{aligned} & x^{6}-4 x^{3}+5 \\ & =\left(x^{3}\right)^{2}-4 x^{3}+5 \\ & =a^{2}-4 a+5 \end{aligned}$	1

4.	Make y the subject of the following $T=\frac{3(y+k)}{4 c}$	$\begin{aligned} & T=\frac{3(y+k)}{4 c} \\ & 4 c T=3(y+k) \\ & y+k=\frac{4 c T}{3} \\ & y=\frac{4 c T}{3}-k \end{aligned}$	2
5.	Given $A=\sqrt{\frac{p+q}{p-q}}$ a. Make p the subject of the formula b. Considering the original equation, explain why $p \neq q$	a. $\begin{aligned} & A=\sqrt{\frac{p+q}{p-q}} \\ & A^{2}=\frac{p+q}{p-q} \\ & A^{2}(p-q)=p+q \\ & A^{2} p-A^{2} q=p+q \\ & A^{2} p-p=A^{2} q+q \\ & p\left(A^{2}-1\right)=A^{2} q+q \\ & p=\frac{A^{2} q+q}{A^{2}-1} \end{aligned}$	2
		b. $\begin{aligned} & \sqrt{\frac{p+q}{p-q}}=\frac{\sqrt{p+q}}{\sqrt{p-q}} \\ & p-q \neq 0 \text { (denominator can't be } 0 \text {) } \\ & \therefore p \neq q \end{aligned}$	1
6.	Solve the following equation $4 y^{4}-37 y^{2}+9=0$	$\begin{aligned} & 4 y^{4}-37 y^{2}+9=0 \\ & \text { Let } a=y^{2} \\ & 4 a^{2}-37 a+9=0 \\ & (4 a-1)(a-9)=0 \\ & a=\frac{1}{4}, 9 \\ & \therefore y^{2}=\frac{1}{4}, 9 \\ & \therefore y=\frac{1}{2},-\frac{1}{2}, 3,-3 \end{aligned}$	3
7.	Use the substitution $a=1-2 k$ to solve the following equation $3(1-2 k)^{2}-5(1-2 k)=22$	$\begin{aligned} & 3 a^{2}-5 a=22 \\ & 3 a^{2}-5 a-22=0 \\ & (3 a-11)(a+2)=0 \\ & a=\frac{11}{3},-2 \\ & \therefore 1-2 k=\frac{11}{3}, \\ & \therefore 3-6 k=11 \rightarrow-6 k=8 \rightarrow k=-\frac{4}{3} \\ & \therefore 1-2 k=-2 \\ & \therefore-2 k=-3 \rightarrow k=\frac{3}{2} \\ & \therefore \text { When } \\ & a=\frac{11}{3}, k=-\frac{4}{3} \text { and } a=-2, k=\frac{3}{2} \end{aligned}$	3

PART E - CIRCLE GEOMETRY

| Calculators are to be used
 Write your answers in the space
 provided | Mark | Student's Name | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

