SECTION A (30 MARKS) QUESTIONS 1 – 30

1. Evaluate
$$3.1 - 0.1 \times 10$$

(A) 0.21 (B) 2.1 (C) 21 (D) 30
2. When $2 + \frac{3}{\sqrt{5}}$ is simplified to a single fraction, then the numerator becomes
(A) $2 + 3\sqrt{5}$ (B) $2\sqrt{5} + 3$ (C) 6 (D) $5\sqrt{5}$
3. $2x - (x - 3)$ can be simplified to
(A) $x - 3$ (B) $x + 3$ (C) $2x + 3$ (D) $2x - 3$
4. Decreasing 250 by 30% gives
(A) 75 (B) 175 (C) 249.70 (D) 325
5. If 5 men take 3 hours to paint a brick fence of A m², how many hours will it
take 3 men to complete the same task?
(A) 1.5 hours (B) 1.2 hours (C) 1.8 hours (D) 5 hours
6. If $\frac{m}{m+2n} = -3$ then the value of $\frac{m}{n}$ is
(A) $-\frac{3}{2}$ (B) $\frac{3}{2}$ (C) $\frac{2}{3}$ (D) $-\frac{2}{3}$
7. In the diagram below, *PQRS* is a parallelogram and $\Delta PQS = \Delta QRS$.

Which of the following are true?

S

- (A) $\angle PSQ = \angle SQR$ (B) $\angle PSQ = \angle PQS$
- (C) SQ = PQ (D) $\angle PQS = \angle SQR$

8. For the quadratic equation $2y - 1 = 3x^2 - 5x$, the axis of symmetry has equation

(A)
$$x = -\frac{5}{6}$$
 (B) $x = \frac{5}{3}$ (C) $x = \frac{5}{6}$ (D) $x = \frac{5}{12}$

R

9. The mean of the set of scores from 0 to 20 inclusive is

(A) 1 (B) 10 (C)
$$\frac{200}{21}$$
 (D) 10.5

- - -

10. If
$$\sqrt{x+1} = 3$$
, then $(x+1)^2$ equals
(A) 3 (B) 9 (C) 27 (D) 81
11. Circumsia $0 = \frac{1}{2}$ and $0 \le 0 \le 180^9$ then the angles of 0 is

11. Given
$$\sin \theta = -\frac{1}{\sqrt{2}}$$
, where $0 \le \theta \le 180^\circ$, then the value of θ is
(A) 30° (B) 45° (C) 60° (D) 135°

12. The equation of the straight line with a y – intercept of 4 and parallel to the straight line 3x - 2y = 8 is

(A)
$$3x - 2y = -8$$
 (B) $3x + 2y = -8$

(C)
$$3x + 2y = 8$$
 (D) $2x + 3y = 12$

13. Which of the following gives the gradient of the line joining the point A(-3, -2) to point B(5, -7)?

(A)
$$-\frac{8}{5}$$
 (B) $\frac{8}{5}$ (C) $-\frac{5}{8}$ (D) $\frac{5}{8}$

14. The sum of the interior angles, S, of a polygon, where n is the number of sides, is given by the equation

(A)
$$S = 180n^0$$
 (B) $S = 180(n-2)^0$

(C)
$$S = 90(2n+4)^0$$
 (D) $S = \frac{90(2n-4)^0}{n}$

15. Sam holds 40 cards of which 10 are red, 10 are blue, 10 are green and 10 are yellow. Find the probability that Sam picks two cards of the same colour, if 2 cards are drawn at random.

(A)
$$\frac{1}{20}$$
 (B) $\frac{1}{4}$ (C) $\frac{9}{156}$ (D) $\frac{9}{39}$

16. The interior angle of a regular dodecagon is

(A) 144° (B) 150° (C) 180° (D) 1800°

- 17. For $3x x^2 < 0$, the solutions of x are
 - (A) 0 < x < 3 (B) x < 0 or x > 3
 - (C) $0 < x \le 3$ (D) $x < 0 \text{ or } x \ge 3$

18. Given $P(x) = 8 + 4x - 2x^2 - x^3$, what values of x will P(x) = 0?

(A)
$$-2 \text{ only}$$
 (B) 2 only (C) $-2 \text{ and } 2$ (D) $-2, 0, 2$

19. A circle with centre O, is drawn below. Which of the following properties gives the correct relationship between x and y?

- (A) 2x = y [The angle at the circumference is twice the angle at the centre standing on the same arc.]
- (B) 2x = y [The angle at the centre is twice the angle at the circumference standing on the same arc.]
- (C) x = y [The angle at the circumference is equal to the angle at the centre standing on the same arc.]
- (D) x = 2y [The exterior angle of a triangle is equal to the sum of the opposite two interior angles]
- 20. The acute angle between the line 2x + 3y 4 = 0 and the positive *x* axis is closest to

(A)
$$-33^{0}$$
 (B) -34^{0} (C) 33^{0} (D) 34^{0}

- 21. If $4^{x+y} = 8$, then x + y equals
 - (A) $\frac{3}{2}$ (B) 2 (C) 3 (D) 4

22. The area of a triangle ABC, where AB = 5 cm, BC = 4 cm and $\angle ABC = 30^{\circ}$ is

(A)
$$5 \text{ cm}^2$$
 (B) 10 cm^2 (C) $10\sqrt{3} \text{ cm}^2$ (D) $\frac{10}{\sqrt{3}} \text{ cm}^2$

- (A) The upper quartile (Q_3) the median (Q_2) .
- (B) The lower quartile (Q_1) the median (Q_2) .
- (C) The upper quartile (Q_3) the lower quartile (Q_1) .
- (D) The highest score the lowest score.

24. The function
$$y = \frac{x+1}{2x}$$
 has which of the following characteristics?

- (A) Horizontal asymptote $y = \frac{1}{2}$, vertical asymptote x = 0.
- (B) Horizontal asymptote y = 1, vertical asymptote x = 0.
- (C) Horizontal asymptote $x = \frac{1}{2}$, vertical asymptote y = 0.
- (D) Horizontal asymptote x = 1, vertical asymptote y = 0

25. The 2005 tax table is given below.

Taxable income	Tax on this income
\$1 - \$6000	Nil
\$6001 - \$21600	17cents for each \$1 over \$6000
\$21601 - \$58000	\$2652 + 30 cents for each \$1 over \$21600
\$58001 - \$70000	\$13572 + 42 cents for each \$1 over \$58000
\$70001 and over	\$18612 + 47cents for each \$1 over \$70000

How much tax is payable on a taxable income of \$25 682?

26. The quadratic formula is given by $x = \frac{-b \pm \sqrt{\Delta}}{2a}$, where $\Delta = b^2 - 4ac$. What type of roots occur when $\Delta = 0$.

- (A) Equal and rational roots (B) Unequal and rational roots
- (C) Equal and irrational roots (D) Unequal and irrational roots
- 27. The diagram shows a polynomial P(x) of degree 4, with roots as indicated. Which of the following gives a possible equation for P(x)?

28. Given that $\cos 2A = \cos^2 A - \sin^2 A$, find the value of $\cos 4A$, given that $\cos A = 0.6$.

- (A) -0.8432 (B) -0.995 (C) 0.8432 (D) 0.995
- 29. An equivalent form of $\alpha^2 + \beta^2 + \gamma^2$ is given by

(A)
$$(\alpha + \beta + \gamma)^2 - 2(\alpha\beta + \alpha\gamma + \beta\gamma)$$
 (B) $(\alpha + \beta + \gamma)^2 + 2(\alpha\beta + \alpha\gamma + \beta\gamma)$
(C) $(\alpha + \beta + \gamma)^2 - 2(\alpha\beta - \alpha\gamma - \beta\gamma)$ (D) $(\alpha + \beta + \gamma)^2 + 2(\alpha\beta - \alpha\gamma - \beta\gamma)$

30. The length of the side of the smallest square which will enclose three non-overlapping discs, each of radius 1 unit is

(A) 4 (B) $2 + \sqrt{3}$ (C) $\frac{4 + \sqrt{2} + \sqrt{6}}{2}$ (D) $3 + \sqrt{2}$

SECTION B (Total 80 Marks)

Use your own writing paper. Clearly mark the Question Number on each page.

Question	31 (20 Mark	s)									MA	RKS
(a)	Factorise co	mplete	x^3	$^{3}-54.$								2
(b)	Simplify $\frac{\tan s}{s}$	$\frac{n x - 1}{\sec x}$										2
(c)	Find the dor	nain ar	nd ran	ge for	the func	ction f(x	$)=\frac{1}{\sqrt{4}}$	$\frac{1}{-x^2}.$				3
(d)	The scores of	of two	tests, o	each oi	ut of 20	marks,	are as f	ollows:				
	TEST A	9	11	12	12	13	13	14	15	15	16	
	TEST B	5	7	9	10	12	13	13	15	17	19	
	For a score of Answer to the formation of the formation o	of 15 in he near	n Test æst wl	A, wh	at is the umber &	e equiva z justify	lent sco your ai	ore in Te nswer.	est B?			3
(e)	Solve $3\tan^2 \theta$	9 – 1 =	0 for	$0^0 \leq \theta$	\leq 360 ⁰ .							3
(f)	(i) Expres	ss $4y =$	$x^2 - 2$	2x + 5 i	n the fo	orm of ($(x-h)^2 =$	= 4(y –	k).			1
	(ii) Hence	, sketc	h the c	curve 4	$y = x^2 -$	-2x+5						2
(g)	The speed o 25 cm long	f a woi can spi	rm vai rint at	ries as 40 cm/	the squa /minute	are root ,	of its le	ength. If	a worn	n which	is	
	(i) How f	ast can	a 50 (cm wo	rm go?	(Leave	your an	swer in	exact f	orm).		2
	(ii) If a wo (Answ	orm wa er corr	nts to ect to	go at 1 the ne	l metre/ arest cm	/minute n).	how lo	ong wou	ld it ha	ve to gr	ow?	2

Question 32 (20 Marks) START A NEW PAGE

(a) (i) Solve for *x*:
$$16^x = \frac{1}{128}$$
 1

(ii) Simplify
$$\frac{(3^{-2})^3 \times 12^{\frac{1}{4}}}{9\sqrt{2}}$$
 3

Question 32 continued over the page

Question 32 Continued

(b) In the diagram, *AB* is the interval joining the points A(-1, 2) and B(4, -1). *P* is the foot of the perpendicular drawn from the point C(-2, -4) to *AB*.

(i)	Show that the distance from A to B is $\sqrt{34}$ units.	1
(ii)	Show that the equation of the line <i>AB</i> is $3x + 5y - 7 = 0$.	2
(iii)	Find the length of <i>CP</i> .	2

- (iv) Find the coordinates of the point *D* such that *ABCD* is a parallelogram.
- (v) Find the area of the parallelogram *ABCD*.
- (c) The equation of a circle is $x^2 + y^2 + 4x 2y 20 = 0$. From an external point *T*(5, 2), a tangent is drawn to meet this circle at *A*. Find
 - (i) the length of the interval AT.
 - (ii) the length of the intercept on the y axis cut by this circle. 2
- (d) In the diagram PMRQ is a quadrilateral where $PM \parallel QR$, PM = MR and PQ = PR.

Diagram not to scale

1

1

3

2

2

- (i) Prove that $\Delta PQR /// \Delta MPR$.
- (ii) If PQ = 3 cm, PM = 2 cm, find the length of QR.

Question 33 (20 Marks) START A NEW PAGE

(a)	(i)	State the period of $y = 1 + \cos 2x$.	1
	(ii)	Sketch the graph of $y = 1 + \cos 2x$ for $0^0 \le x \le 360^0$.	3
(b)	Two and	identical cubes each have its faces numbered from 0 to 5. The cubes are not the score is determined as the <i>product</i> of the two digits on the uppermost a	olled
	(i)	If the cubes are rolled once, what is the probability that the score is $(\alpha) 0$?	1
		(β) at least 16?	2
	(ii)	If the cubes are rolled twice and the scores for each roll are added, what is the probability of getting a score of 41 or more?	2
(c)	Whe and	en the polynomial $P(x)$ is divided by $(x + 1)(x - 4)$ the quotient is $Q(x)$ the remainder is $R(x)$.	
	(i)	Explain why the most general form of $R(x)$ is given by $R(x) = ax + b$?	1
	(ii)	Given that $P(4) = -5$, show that $R(4) = -5$.	2
	(iii)	Further, when $P(x)$ is divided by $(x + 1)$ the remainder is 5. Find $R(x)$.	2
(d)	A lig	ghthouse is 10 km North- West of a ship travelling due West at 16 km/hou	r.
	(i)	How far is the ship from the lighthouse 45 minutes later? Answer correct to 2 decimal places.	2
	(ii)	What is the bearing of the lighthouse from the ship then?	4
Question	a 34 (2	0 Marks) <u>START A NEW PAGE</u>	MARKS
(a)	The in th	point $P(x, y)$ divides the interval joining the points $A(-1, 3)$ and $B(2, 8)$ in le ratio $k : 1$.	ternally
	(i)	Find the coordinates of P in terms of k .	2
	(ii)	Find the ratio in which the line $5x + 2y - 10 = 0$ divides the interval <i>AB</i> .	3
(b)	Sket	ich neatly showing all important features the curve $y = \frac{(x+1)^2}{x^2 - 4}$.	4

Question 34 continued over the page

Question 34 Continued

Let $\angle ACB = \alpha^{\circ}$ and $\angle ABC = \theta^{\circ}$ respectively. (i) Explain why α° is a constant?

1

2

1

3

2

(ii) If *S* is the sum of the lengths of the chords *AC* and *BC*, show that *S* is 2 given by $S = \frac{k}{\sin \alpha} (\sin \theta^o + \sin(\theta + \alpha)^o)$.

(iii) Find the expression for *S*, in simplified form when $\theta = \left(90 - \frac{\alpha}{2}\right)$.

(d) In the diagram below, AC is the diameter of the circle AECFG with centre O and BD is a tangent to the circle at C.

SOLUTIONS YEAR 10 YEARLY PAPER

SECTION A – MULTIPLE CHOICE

(1)	В	(2) B	(3)	В	(4)	В	(5)	D	(6)	A
(7)	Α	(8) C	(9)	В	(10)	D	(11)	D	(12)	A
(13)	С	(14) B	(15)	D	(16)	В	(17)	В	(18)	C
(19)	В	(20) D	(21)	А	(22)	А	(23)	С	(24)	A
(25)	В	(26) A,C	(27)	D	(28)	А	(29)	А	(30)	С

Full worked SOLUTIONS for Multiple Choice.

- 1. 3.1 1 = 2.1 \Rightarrow answer is B
- 2. $2 + \frac{3}{\sqrt{5}} = \frac{2\sqrt{5} + 3}{\sqrt{5}}$ ∴ numerator is $2\sqrt{5} + 3$ → answer is B
- 3. 2x (x 3) = x + 3 \Rightarrow answer is B
- 4. $250 \times 0.7 = 175$ → answer is B
- 5. 5 men : 3 hours =
 1 men : 3×5 hours
 ∴ 3 men : 5 hours
 → answer is D

6.
$$\frac{m}{m+2n} = -3$$
$$\therefore m = -3m - 6n$$
$$\therefore 4m = -6n$$
$$\therefore \frac{m}{n} = -\frac{3}{2}$$
$$\Rightarrow \text{ answer is A}$$

7. Since $\triangle PQS \equiv \triangle QRS$ Only A is true.

8.
$$2y - 1 = 3x^2 - 5x$$
$$\therefore a = \frac{3}{2}, b = -\frac{5}{2}, c = \frac{1}{2}$$
$$\therefore x = -\frac{-\frac{5}{2}}{2\left(\frac{3}{2}\right)} = \frac{5}{6}$$
$$\Rightarrow \text{ answer is C}$$

9. 0 + 1+ 2+ ...+ 20 = 210 ∴ 210 ÷ 21 = 10 → answer is B

- 10. $\sqrt{x+1} = 3$ $x+1=9 \rightarrow \therefore (x+1)^2 = 81$ ∴ answer is D
- 11. Question needs to read as $\cos\theta = -\frac{1}{\sqrt{2}}$ In the given domain $0 \le \theta \le 180$, θ is in the 2nd quadrant. $\therefore \theta = 135^{0}$.

$$\rightarrow$$
 answer is D

12. gradient is $\frac{3}{2}$, y intercept is 4 $\therefore y = \frac{3x}{2} + 4$ or 3x - 2y = -8 \Rightarrow answer is A 13. gradient AB = $\frac{-2 - -7}{-3 - 5} = \frac{-5}{8}$ \Rightarrow answer is C

14.
$$S = (n - 2) \times 180^{\circ} \rightarrow \text{answer is B}$$

- 15. Since there are 4 colours, and each has equal chance of being drawn, P(same colour) = 4 × $\frac{10}{40} \times \frac{9}{39} = \frac{9}{39}$ → answer is D
- 16. A dodecagon has 12 sides. ∴ sum of interior sides = 1800° ∴ each interior angle = $1800 \div 12$ = 150° → answer is B

17.
$$3x - x^2 < 0$$

$$x(3 - x) < 0 \quad \therefore x < 0 \text{ or } x > 3$$

$$\Rightarrow \text{ answer is B}$$

18.
$$P(x) = 8 + 4x - 2x^{2} - x^{3}$$

= 4(2 + x) - x²(2 + x)
= (2 + x)(4 - x²)
= (2 + x)²(2 - x)
∴ P(x) = 0 when x = 2 or x = -2
→ answer is C

19. answer is B. See circle geometry theorems

20.

Since we want the acute angle we don't worry about the negative gradient.

$$\therefore \tan \theta = \frac{\frac{4}{3}}{\frac{2}{2}} = \frac{2}{3}$$

$$\therefore \theta = 33.69.... \text{ which is closest to } 34^{0}$$

$$\Rightarrow \text{ answer is D}$$

21.
$$4^{x+y} = 8$$

$$2^{2(x+y)} = 2^{3}$$

$$\therefore 2(x+y) = 3$$

$$\therefore x + y = \frac{3}{2} \implies \text{answer is A}$$

22. Area =
$$\frac{1}{2}(5)(4)\sin 30^\circ = 5 \text{ cm}^2$$

 \Rightarrow answer is A

23. $IQR = Q_3 - Q_1$ = upper quartile – lower quartile. \Rightarrow answer is C

24.
$$y = \frac{x+1}{2x} = \frac{1}{2} + \frac{1}{2x}$$
$$\therefore \text{ as } x \to \infty, \frac{1}{2x} \to 0 \therefore y \to \frac{1}{2}$$

This is the horizontal asymptote Vertical asymptote is when x = 0 \Rightarrow answer is A

- 25. Tax payable on \$21600 is \$2652. Tax payable on remaining\$4082 = 0.3 × 4082 = \$1224.60
 ∴ total tax payable is \$3876.60
 → answer is B
- 26. If $\Delta = 0$ then we have $x = -\frac{b}{2a}$. Then we only have one solution. Or equal roots. If *a*, *b*, *c* are rational then roots are rational \rightarrow answer is A. [note: also accepted C, due to ambiguous case]
- 27. Double root at x = -2, single roots at x = 0 and x = 3 \rightarrow answer is D
- 28. $\cos 2A = \cos^2 A \sin^2 A$ = $2\cos^2 A - 1$ = $2(0.6)^2 - 1 = -0.28$ Following the pattern, $\cos 4A = \cos^2 2A - \sin^2 2A$ = $2\cos^2 2A - 1$ = $2(-0.28)^2 - 1 = -0.8432$ → answer is A

29. Now
$$(\alpha + \beta + \gamma)^2$$

 $= (\alpha + \beta)^2 + \gamma^2 + 2(\alpha + \beta)\gamma$
 $= \alpha^2 + \beta^2 + 2\alpha\beta + \gamma^2 + 2\alpha\gamma + 2\beta\gamma$
 $\therefore \alpha^2 + \beta^2 + \gamma^2$
 $= (\alpha + \beta + \gamma)^2 - (2\alpha\beta + 2\alpha\gamma + 2\beta\gamma)$
 \Rightarrow answer is A

30. For the smallest square to contain all 3 discs, a pair of parallel sides must be tangent to a disc, as shown.

The line joining the centres *P*, *Q*, *R* form an equilateral triangle. Δ SKP is a right isosceles triangle KP = SK = 1 \therefore SP = $\sqrt{2}$ units. In Δ PQR, $\underline{PW} = \sqrt{3}$ (altitude of equilateral triangle with sides 2 units) In Δ QJM, QJ = $\frac{1}{\sqrt{2}}$ (pythag. Theorem with hypotenuse 1 unit) Also MJ = $\frac{1}{\sqrt{2}}$ = WG. And JG = 1 unit. In Δ MGV, GM = $\frac{GV = 1 + \frac{1}{\sqrt{2}} = 1 + \frac{\sqrt{2}}{2}}{\sqrt{2}}$ (Right isos. Triangle) \therefore SV = SP + PW + WG + GV $= \sqrt{3} + \frac{\sqrt{2}}{2} + \sqrt{2} + 1 + \frac{\sqrt{2}}{2}$ $= 1 + \sqrt{3} + 2\sqrt{2}$ Now by Pythagoras Theorem, $2 \times ST^2 = SV^2$ \therefore ST = $\frac{1}{\sqrt{2}}$ SV = $\frac{\sqrt{2}}{2}(1 + \sqrt{3} + 2\sqrt{2}) = \frac{4 + \sqrt{2} + \sqrt{3}}{2}$ answer is C.

* Alternative ways are possible using $\cos 15^{\circ}$. Ref: 1994 AMC*

$$\frac{(231)}{(a)} = 2(\pi - 3)(\pi^{2} + 8\pi + 9) = 2(\pi - 3)(\pi^{2} + 8\pi + 9) = 2(\pi - 3)(\pi^{2} + 8\pi + 9) = \frac{(\pi - 3)(\pi^{2} + 8\pi + 9)}{(\pi - 1)} = \frac{(\pi - 3)$$

9) $S \propto \sqrt{J_{L}} = \frac{S}{\sqrt{L}} = -K$ (i) $\frac{40}{\sqrt{25}} = \frac{S}{\sqrt{50}} = \frac{5}{\sqrt{50}} = \frac{40\sqrt{L}}{\sqrt{25}} = \frac{40\sqrt{L}}{\sqrt{L}} \frac{cm/L}{L}$ (ii) $\frac{100}{\sqrt{L}} = \frac{40}{\sqrt{25}} \qquad l = (\frac{100 \times \sqrt{Ls}}{40})^{2} = 156.75 \ cm = \frac{1156.75}{L} \ (measeof cm)$

ł

$$A(t) = 2^{4 \times t} = z^{-1}$$

$$(t_{1}^{2}) = \frac{2^{4 \times t}}{3^{4} \cdot 2^{4}} = z^{-1}$$

$$(t_{1}^{2}) = \frac{3^{-1} \cdot 2^{4} \cdot 3^{4}}{3^{4} \cdot 2^{4}} = \frac{3^{-1} \cdot 2^{4} \cdot 3^{4}}{3^{4} \cdot 2^{4}} = 3^{-1} =$$

P.

$$\frac{PR}{PM} = \frac{RR}{PR} \quad (corresponding sides of Amilar triag to)$$

$$\frac{3}{2} = \frac{RR}{3}$$

G 33 a(i) Panied = $\frac{366}{2} = \frac{180^{\circ}}{2}$ i) $\frac{1}{2}$ $\frac{1}{2} = 1 + coo 2x$ Amplitude x intercept shape your LIM

	and the second sec					
YX	0	1	1~]]	4	5
0	0	6	U	C	0	0
1	0	t	2	3	4	5
2	0	2	4	6	8	10
3	0	3	6	9	12	15
4	0	+	8	12	16	20
5	0	5	10	US	20	25

$$b(i) \stackrel{II}{36} \\ (ii) (4,4) (4,5) (5.4) (5.5) \\ \frac{4}{36} = \frac{4}{9} \\ (iii) (4,4) + (5,5) (4.5) + (5,5) (5,4) + (5,5) \\ (55) + (4,4) + (5,5) (5,5) (5,4) + (5,5) \\ (55) + (4,4) + (5,5) (5,5) (5,5) + (5,5) \\ (55) + (5,5) + (5,5) + (5,5) (5,5) \\ (5,5) + (5,5) + (5,5) + (5,5) \\ (5,5) + (5,5) + (5,5) \\ (5,5) + (5,5) + (5,5) + (5,5) \\ (5$$

- $(271) (4,4)_{4}(5,5) (4,3)_{4}(5,5) (5,4)_{4}(5,5) (5,4)_{4}(5,5) (5,5)_{4}(4,4)_{7}(5,5)_{$
 - $=\frac{7}{36}=\frac{7}{1296}$

ci) The remainder always has a lower degree than the drivisor
which is quadratic in
$$R(x) = ax + b$$
.

$$\begin{array}{l} f(x) = (n+1)(n-4)(k(n) + k(n)) \\ = (n+1)(n-4) (k(n) + a n + b) \\ f(4) = 4a + b = -5 \\ \vdots \quad k(4) = 4a + b = -5 \\ = \\ f(4) = 4a + b = -5 \\ f(4) = 4a + b = -5 \\ = \\ f(4) = 4a + b = -5 \\ f(4)$$

(di)
$$16 \text{ km} \times \frac{417}{60} = 12 \text{ km}$$

 $\chi^{2} = 10^{\circ} \frac{1}{2^{\circ}} - 2(10)(12) \times c_{0} \frac{45^{\circ}}{50}$
 $\chi^{2} = 74.29$
 $\chi = 8.62 \text{ km}$
 $\chi = 79.86^{\circ} - 45^{\circ} = 34.86^{\circ}$
 $\chi = 12 \text{ km}$
 $\chi = 79.86^{\circ} - 45^{\circ} = 34.86^{\circ}$
 $\chi = 12 \text{ km}$
 $\chi = 79.86^{\circ} - 45^{\circ} = 34.86^{\circ}$
 $\chi = 12 \text{ km}$
 $\chi = 12 \text{ km}$

Q34
$$\frac{(x,y)^{2}}{p(x,y)} = ?$$
 $x = \frac{2k-1}{k+1}$ $y = \frac{8k+3}{k+1}$
i) Eq of line A6 : $y-8 = \left(\frac{p-3}{2-q}\right)(x-2)$
 $y-8 = \frac{p}{3}(x-2)$
 $y=\frac{p}{3} + \frac{(4)}{3}$
If of interaction of the d lines: $5x + 2y - 10 = 0$
 $5x + 2\left(\frac{5x}{3} + \frac{14}{3}\right) - 10 = 0$
 $5x + 2\left(\frac{5x}{3} + \frac{14}{3}\right) - 10 = 0$
 $\frac{2K-1}{5x} = \frac{2}{3k}$... $rok - 25 = 2k+2$
 $u + k = 27$
 $k = \frac{2}{16}$
... Ration is $q: 16$
 $k = \frac{1}{16}$
 $k = \frac{1}{2}$
 $k = \frac{1}{16}$
 $y = \frac{(x+1)^{2}}{x^{2}+4}$
Asymptotic $x = \pm 2$
 $y = 1$
 $k = \frac{1}{2}$
 $y = \frac{(x+1)^{2}}{x^{2}+4}$
 $(y$

Site is the length of chard AB is a constant.
$$k$$
 (given)
Angles subtended at the circumference on the same
side of the circle by equal chard are equal: disa constant.

i) $\frac{CA}{SinE} = \frac{k}{Sind}$... $CA = \frac{k \sin E}{\sin a}$
 $\frac{CB}{SinE} = \frac{CB}{SinE} = \frac{k}{Sina}$
But $Sin [190 - (0+x)] = \frac{k}{SinA}$
 $\frac{CB}{Sin(E+x)} = \frac{k}{SinA}$... $CB = \frac{k \sin E}{SinA}$
 $Sin (E+x) = \frac{k}{SinA}$... $CB = \frac{k}{SinA}$
 $Sin (E+x)$

$$\begin{array}{l} \overrightarrow{S}ii) \quad \text{when } \theta = 90 - \frac{d}{2} \\ S = \frac{k}{sin d} \left[Sin \left(90 - \frac{d}{2} \right) + Sin \left(90 - \frac{d}{2} + d \right) \right] \\ = \frac{k}{sin d} \left[Sin \left(90 - \frac{d}{2} \right) + Sin \left(180 - \left(90 - \frac{d}{2} + d \right) \right] \\ = \frac{k}{sin d} \left[Sin \left(90 - \frac{d}{2} \right) + Sin \left(180 - \left(90 - \frac{d}{2} + d \right) \right] \\ = \frac{k}{sin d} \left[Sin \left(90 - \frac{d}{2} \right) = \frac{2k}{sin d} \operatorname{cm}^{d} \right] \\ = \frac{2k}{sin d} \left[Sin \left(90 - \frac{d}{2} \right) = \frac{2k}{sin d} \right] \\ = \frac{k}{sin d} \left[Sin \left(90 - \frac{d}{2} \right) = \frac{2k}{sin d} \right] \\ = \frac{k}{sin d} \left[Sin \left(90 - \frac{d}{2} \right) = \frac{2k}{sin d} \right] \\ = \frac{k}{sin d} \left[Sin \left(90 - \frac{d}{2} \right) = \frac{2k}{sin d} \right] \\ = \frac{k}{sin d} \left[Sin \left(90 - \frac{d}{2} \right) = \frac{k}{sin d} \right] \\ = \frac{k}{sin d} \left[Sin \left(90 - \frac{d}{2} \right) \right] \\ = \frac{k}{sin d} \left[Sin \left(90 - \frac{d}{2} \right) \right] \\ = \frac{k}{sin d} \left[Sin \left(90 - \frac{d}{2} \right) \right] \\ = \frac{k}{sin d} \left[Sin \left(90 - \frac{d}{2} \right) \right] \\ = \frac{k}{sin d} \left[Sin \left(90 - \frac{d}{2} \right) \right] \\ = \frac{k}{sin d} \left[Sin \left(90 - \frac{d}{2} \right) \right] \\ = \frac{k}{sin d} \left[Sin \left(90 - \frac{d}{2} \right) \right] \\ = \frac{k}{sin d} \left[Sin \left(90 - \frac{d}{2} \right) \right] \\ = \frac{k}{sin d} \left[Sin \left(90 - \frac{d}{2} \right) \right] \\ = \frac{k}{sin d} \left[Sin \left(90 - \frac{d}{2} \right) \right] \\ = \frac{k}{sin d} \left[Sin \left(90 - \frac{d}{2} \right) \right] \\ = \frac{k}{sin d} \left[Sin \left(90 - \frac{d}{2} \right) \right] \\ = \frac{k}{sin d} \left[Sin \left(90 - \frac{d}{2} \right) \right] \\ = \frac{k}{sin d} \left[Sin \left(90 - \frac{d}{2} \right) \right] \\ = \frac{k}{sin d} \left[Sin \left(90 - \frac{d}{2} \right) \right] \\ = \frac{k}{sin d} \left[Sin \left(90 - \frac{d}{2} \right) \right] \\ = \frac{k}{sin d} \left[Sin \left(90 - \frac{d}{2} \right) \right] \\ = \frac{k}{sin d} \left[Sin \left(90 - \frac{d}{2} \right) \right] \\ = \frac{k}{sin d} \left[Sin \left(90 - \frac{d}{2} \right) \right] \\ = \frac{k}{sin d} \left[Sin \left(90 - \frac{d}{2} \right) \right] \\ = \frac{k}{sin d} \left[Sin \left(90 - \frac{d}{2} \right) \right] \\ = \frac{k}{sin d} \left[Sin \left(90 - \frac{d}{2} \right) \right] \\ = \frac{k}{sin d} \left[Sin \left(90 - \frac{d}{2} \right) \right] \\ = \frac{k}{sin d} \left[Sin \left(90 - \frac{d}{2} \right) \right] \\ = \frac{k}{sin d} \left[Sin \left(90 - \frac{d}{2} \right) \right] \\ = \frac{k}{sin d} \left[Sin \left(90 - \frac{d}{2} \right) \right] \\ = \frac{k}{sin d} \left[Sin \left(90 - \frac{d}{2} \right) \right] \\ = \frac{k}{sin d} \left[Sin \left(90 - \frac{d}{2} \right) \right] \\ = \frac{k}{sin d} \left[Sin \left(90 - \frac{d}{2} \right) \right] \\ = \frac{k}{sin d} \left[Sin \left(90 - \frac{d}{2} \right) \right] \\ = \frac{k}{sin d} \left[Sin \left[Sin \left(90 - \frac{d$$

.

~