1. Evaluate $3.1-0.1 \times 10$
(A) 0.21
(B) 2.1
(C) 21
(D) 30
2. When $2+\frac{3}{\sqrt{5}}$ is simplified to a single fraction, then the numerator becomes
(A) $2+3 \sqrt{5}$
(B) $2 \sqrt{5}+3$
(C) 6
(D) $5 \sqrt{5}$
3. $2 x-(x-3)$ can be simplified to
(A) $x-3$
(B) $x+3$
(C) $2 x+3$
(D) $2 x-3$
4. Decreasing 250 by 30% gives
(A) 75
(B) 175
(C) 249.70
(D) 325
5. If 5 men take 3 hours to paint a brick fence of $A \mathrm{~m}^{2}$, how many hours will it take 3 men to complete the same task?
(A) 1.5 hours
(B) 1.2 hours
(C) 1.8 hours
(D) 5 hours
6. If $\frac{m}{m+2 n}=-3$ then the value of $\frac{m}{n}$ is
(A) $-\frac{3}{2}$
(B) $\frac{3}{2}$
(C) $\frac{2}{3}$
(D) $-\frac{2}{3}$
7. In the diagram below, $P Q R S$ is a parallelogram and $\triangle P Q S \equiv \triangle Q R S$.

Which of the following are true?
(A) $\angle P S Q=\angle S Q R$
(B) $\angle P S Q=\angle P Q S$
(C) $S Q=P Q$
(D) $\angle P Q S=\angle S Q R$
8. For the quadratic equation $2 y-1=3 x^{2}-5 x$, the axis of symmetry has equation
(A) $x=-\frac{5}{6}$
(B) $x=\frac{5}{3}$
(C) $x=\frac{5}{6}$
(D) $x=\frac{5}{12}$
9. The mean of the set of scores from 0 to 20 inclusive is
(A) 1
(B) 10
(C) $\frac{200}{21}$
(D) 10.5
10. If $\sqrt{x+1}=3$, then $(x+1)^{2}$ equals
(A) 3
(B) 9
(C) 27
(D) 81
11. Given $\sin \theta=-\frac{1}{\sqrt{2}}$, where $0 \leq \theta \leq 180^{\circ}$, then the value of θ is
(A) 30^{0}
(B) 45^{0}
(C) 60^{0}
(D) 135^{0}
12. The equation of the straight line with a y - intercept of 4 and parallel to the straight line $3 x-2 y=8$ is
(A) $3 x-2 y=-8$
(B) $3 x+2 y=-8$
(C) $3 x+2 y=8$
(D) $2 x+3 y=12$
13. Which of the following gives the gradient of the line joining the point $A(-3,-2)$ to point $B(5,-7)$?
(A) $-\frac{8}{5}$
(B) $\frac{8}{5}$
(C) $-\frac{5}{8}$
(D) $\frac{5}{8}$
14. The sum of the interior angles, S, of a polygon, where n is the number of sides, is given by the equation
(A) $S=180 n^{0}$
(B) $\quad S=180(n-2)^{0}$
(C) $S=90(2 n+4)^{0}$
(D) $S=\frac{90(2 n-4)^{0}}{n}$
15. Sam holds 40 cards of which 10 are red, 10 are blue, 10 are green and 10 are yellow. Find the probability that Sam picks two cards of the same colour, if 2 cards are drawn at random.
(A) $\frac{1}{20}$
(B) $\frac{1}{4}$
(C) $\frac{9}{156}$
(D) $\frac{9}{39}$
16. The interior angle of a regular dodecagon is
(A) 144^{0}
(B) 150^{0}
(C) 180°
(D) 1800°
17. For $3 x-x^{2}<0$, the solutions of x are
(A) $0<x<3$
(B) $\quad x<0$ or $x>3$
(C) $0<x \leq 3$
(D) $x<0$ or $x \geq 3$
18. Given $P(x)=8+4 x-2 x^{2}-x^{3}$, what values of x will $P(x)=0$?
(A) -2 only
(B) 2 only
(C) -2 and 2
(D) $-2,0,2$
19. A circle with centre O, is drawn below. Which of the following properties gives the correct relationship between x and y ?

(A) $2 x=y \quad$ [The angle at the circumference is twice the angle at the centre standing on the same arc.]
(B) $2 x=y \quad$ [The angle at the centre is twice the angle at the circumference standing on the same arc.]
(C) $\quad x=y \quad$ The angle at the circumference is equal to the angle at the centre standing on the same arc.]
(D) $\quad x=2 y \quad$ [The exterior angle of a triangle is equal to the sum of the opposite two interior angles]
20. The acute angle between the line $2 x+3 y-4=0$ and the positive x-axis is closest to
(A) $\quad-33^{0}$
(B) -34^{0}
(C) 33^{0}
(D) 34^{0}
21. If $4^{x+y}=8$, then $x+y$ equals
(A) $\frac{3}{2}$
(B) 2
(C) 3
(D) 4
22. The area of a triangle $A B C$, where $A B=5 \mathrm{~cm}, B C=4 \mathrm{~cm}$ and $\angle A B C=30^{\circ}$ is
(A) $5 \mathrm{~cm}^{2}$
(B) $10 \mathrm{~cm}^{2}$
(C) $10 \sqrt{3} \mathrm{~cm}^{2}$
(D) $\frac{10}{\sqrt{3}} \mathrm{~cm}^{2}$
23. The inter-quartile range of a set of scores is calculated as
(A) The upper quartile $\left(Q_{3}\right)$ - the median $\left(Q_{2}\right)$.
(B) The lower quartile $\left(Q_{1}\right)$ - the median $\left(Q_{2}\right)$.
(C) The upper quartile $\left(Q_{3}\right)$ - the lower quartile $\left(Q_{1}\right)$.
(D) The highest score - the lowest score.
24. The function $y=\frac{x+1}{2 x}$ has which of the following characteristics?
(A) Horizontal asymptote $y=1 / 2$, vertical asymptote $x=0$.
(B) Horizontal asymptote $y=1$, vertical asymptote $x=0$.
(C) Horizontal asymptote $x=1 / 2$, vertical asymptote $y=0$.
(D) Horizontal asymptote $x=1$, vertical asymptote $y=0$
25. The 2005 tax table is given below.

Taxable income	Tax on this income
$\$ 1-\$ 6000$	Nil
$\$ 6001-\$ 21600$	17 cents for each $\$ 1$ over $\$ 6000$
$\$ 21601-\$ 58000$	$\$ 2652+30$ cents for each $\$ 1$ over $\$ 21600$
$\$ 58001-\$ 70000$	$\$ 13572+42$ cents for each $\$ 1$ over $\$ 58000$
$\$ 70001$ and over	$\$ 18612+47$ cents for each $\$ 1$ over $\$ 70000$

How much tax is payable on a taxable income of $\$ 25682$?
(A) $\$ 2652$
(B) $\$ 3876.60$
(C) $\$ 12347.40$
(D) $\$ 13572$
26. The quadratic formula is given by $x=\frac{-b \pm \sqrt{\Delta}}{2 a}$, where $\Delta=b^{2}-4 a c$. What type of roots occur when $\Delta=0$.
(A) Equal and rational roots
(B) Unequal and rational roots
(C) Equal and irrational roots
(D) Unequal and irrational roots
27. The diagram shows a polynomial $P(x)$ of degree 4 , with roots as indicated. Which of the following gives a possible equation for $P(x)$?

(A) $\quad P(x)=x^{2}(x-2)(x+3)$
(B) $\quad P(x)=x^{2}(x+2)(x-3)$
(C) $\quad P(x)=x(x-2)^{2}(x+3)$
(D) $\quad P(x)=x(x+2)^{2}(x-3)$
28. Given that $\cos 2 A=\cos ^{2} A-\sin ^{2} A$, find the value of $\cos 4 A$, given that $\cos A=0.6$.
(A) $\quad-0.8432$
(B) $\quad-0.995$
(C) 0.8432
(D) 0.995
29. An equivalent form of $\alpha^{2}+\beta^{2}+\gamma^{2}$ is given by
(A) $\quad(\alpha+\beta+\gamma)^{2}-2(\alpha \beta+\alpha \gamma+\beta \gamma)$
(B) $\quad(\alpha+\beta+\gamma)^{2}+2(\alpha \beta+\alpha \gamma+\beta \gamma)$
(C) $\quad(\alpha+\beta+\gamma)^{2}-2(\alpha \beta-\alpha \gamma-\beta \gamma)$
(D) $\quad(\alpha+\beta+\gamma)^{2}+2(\alpha \beta-\alpha \gamma-\beta \gamma)$
30. The length of the side of the smallest square which will enclose three non-overlapping discs, each of radius 1 unit is
(A) 4
(B) $2+\sqrt{3}$
(C) $\frac{4+\sqrt{2}+\sqrt{6}}{2}$
(D) $3+\sqrt{2}$

SECTION B (Total 80 Marks)

Use your own writing paper. Clearly mark the Question Number on each page.

Question 31 (20 Marks)

MARKS
(a) Factorise completely $2 x^{3}-54$.
(b) Simplify $\frac{\tan x-1}{\sec x}$.
(c) Find the domain and range for the function $f(x)=\frac{1}{\sqrt{4-x^{2}}}$.
(d) The scores of two tests, each out of 20 marks, are as follows:

TEST A	9	11	12	12	13	13	14	15	15	16
TEST B	5	7	9	10	12	13	13	15	17	19

For a score of 15 in Test A, what is the equivalent score in Test B?
Answer to the nearest whole number \& justify your answer.
(e) Solve $3 \tan ^{2} \theta-1=0$ for $0^{\circ} \leq \theta \leq 360^{\circ}$.
(f) (i) Express $4 y=x^{2}-2 x+5$ in the form of $(x-h)^{2}=4(y-k)$.
(ii) Hence, sketch the curve $4 y=x^{2}-2 x+5$.
(g) The speed of a worm varies as the square root of its length. If a worm which is 25 cm long can sprint at $40 \mathrm{~cm} /$ minute,
(i) How fast can a 50 cm worm go? (Leave your answer in exact form).
(ii) If a worm wants to go at 1 metre/minute, how long would it have to grow? (Answer correct to the nearest cm).

Question 32 (20 Marks) START A NEW PAGE

(a) \quad (i) Solve for $x: 16^{x}=\frac{1}{128}$
(ii) Simplify $\frac{\left(3^{-2}\right)^{3} \times 12^{\frac{1}{4}}}{9 \sqrt{2}}$
(b) In the diagram, $A B$ is the interval joining the points $A(-1,2)$ and $B(4,-1)$. P is the foot of the perpendicular drawn from the point $C(-2,-4)$ to $A B$.

Copy this diagram onto your answer sheet.
(i) Show that the distance from A to B is $\sqrt{34}$ units.
(ii) Show that the equation of the line $A B$ is $3 x+5 y-7=0$.
(iii) Find the length of $C P$.
(iv) Find the coordinates of the point D such that $A B C D$ is a parallelogram.
(v) Find the area of the parallelogram $A B C D$.
(c) The equation of a circle is $x^{2}+y^{2}+4 x-2 y-20=0$. From an external point $T(5,2)$, a tangent is drawn to meet this circle at A. Find
(i) the length of the interval $A T$.
(ii) the length of the intercept on the y-axis cut by this circle.
(d) In the diagram $P M R Q$ is a quadrilateral where $P M \| Q R, P M=M R$ and $P Q=P R$.

Diagram not to scale
(i) Prove that $\triangle P Q R||\mid \triangle M P R$.
(ii) If $P Q=3 \mathrm{~cm}, P M=2 \mathrm{~cm}$, find the length of $Q R$.
(a) (i) State the period of $y=1+\cos 2 x$.
(ii) Sketch the graph of $y=1+\cos 2 x$ for $0^{0} \leq x \leq 360^{\circ}$.
(b) Two identical cubes each have its faces numbered from 0 to 5 . The cubes are rolled and the score is determined as the product of the two digits on the uppermost aces.
(i) If the cubes are rolled once, what is the probability that the score is (α) 0 ?
(β) at least 16 ?
2
(ii) If the cubes are rolled twice and the scores for each roll are added, 2 what is the probability of getting a score of 41 or more?
(c) When the polynomial $P(x)$ is divided by $(x+1)(x-4)$ the quotient is $Q(x)$ and the remainder is $R(x)$.
(i) Explain why the most general form of $R(x)$ is given by $R(x)=a x+b$?
(ii) Given that $P(4)=-5$, show that $R(4)=-5$.
(iii) Further, when $P(x)$ is divided by $(x+1)$ the remainder is 5 . Find $R(x)$.
(d) A lighthouse is 10 km North- West of a ship travelling due West at $16 \mathrm{~km} / \mathrm{hour}$.
(i) How far is the ship from the lighthouse 45 minutes later?

Answer correct to 2 decimal places.
(ii) What is the bearing of the lighthouse from the ship then?

Question 34 (20 Marks) START A NEW PAGE

MARKS
(a) The point $P(x, y)$ divides the interval joining the points $A(-1,3)$ and $B(2,8)$ internally in the ratio $k: 1$.
(i) Find the coordinates of P in terms of k.
(ii) Find the ratio in which the line $5 x+2 y-10=0$ divides the interval $A B$.
(b) Sketch neatly showing all important features the curve $y=\frac{(x+1)^{2}}{x^{2}-4}$.

Question 34 continued over the page

(c) In the diagram below, points A, B and C lie on a circle. The length of the chord $A B$ is a constant, k.

Diagram not to scale

Let $\angle A C B=\alpha^{\circ}$ and $\angle A B C=\theta^{\circ}$ respectively.
(i) Explain why α^{o} is a constant?
(ii) If S is the sum of the lengths of the chords $A C$ and $B C$, show that S is

$$
\text { given by } S=\frac{k}{\sin \alpha}\left(\sin \theta^{o}+\sin (\theta+\alpha)^{o}\right) .
$$

(iii) Find the expression for S, in simplified form when $\theta=\left(90-\frac{\alpha}{2}\right)$.
(d) In the diagram below, $A C$ is the diameter of the circle $A E C F G$ with centre O and $B D$ is a tangent to the circle at C.

(i) State why $\angle F E C=\angle F C D$.
(ii) Hence, prove that $D F E B$ is a cyclic quadrilateral.
(iii) If $\angle B H C=45^{\circ}$, prove that $\angle H B G=\angle H B C$.

SECTION A - MULTIPLE CHOICE

(1)	B	(2)	B	(3)	B	(4)	B	(5)	D	(6)	A
(7)	A	(8)	C	(9)	B	(10)	D	(11)	D	(12)	A
(13)	C	(14)	B	(15)	D	(16)	B	(17)	B	(18)	C
(19)	B	(20)	D	(21)	A	(22)	A	(23)	C	(24)	A
(25)	B	(26)	A, C	(27)	D	(28)	A	(29)	A	(30)	C

Full worked SOLUTIONS for Multiple Choice.

9. $0+1+2+\ldots+20=210$
10. $3.1-1=2.1$
\rightarrow answer is B
11. $2+\frac{3}{\sqrt{5}}=\frac{2 \sqrt{5}+3}{\sqrt{5}}$
\therefore numerator is $2 \sqrt{5}+3$
\rightarrow answer is B
12. $2 x-(x-3)=x+3$
\rightarrow answer is B
13. $250 \times 0.7=175$
\rightarrow answer is B
14. 5 men : 3 hours $=$

1 men: 3×5 hours
$\therefore 3$ men $: 5$ hours
\rightarrow answer is D
6. $\frac{m}{m+2 n}=-3$
$\therefore m=-3 m-6 n$
$\therefore 4 m=-6 n$
$\therefore \frac{m}{n}=-\frac{3}{2}$
\rightarrow answer is A
7. Since $\triangle P Q S \equiv \triangle Q R S$

Only A is true.
8. $2 y-1=3 x^{2}-5 x$
$\therefore a=\frac{3}{2}, b=-\frac{5}{2}, c=1 / 2$
$\therefore x=-\frac{-\frac{5}{2}}{2\left(\frac{3}{2}\right)}=\frac{5}{6}$
answer is C
$\therefore 210 \div 21=10 \rightarrow$ answer is B
10. $\sqrt{x+1}=3$
$x+1=9 \rightarrow \therefore(x+1)^{2}=81$
\therefore answer is D
11. Question needs to read as $\cos \theta=-\frac{1}{\sqrt{2}}$

In the given domain $0 \leq \theta \leq 180, \theta$ is in the $2^{\text {nd }}$ quadrant. $\therefore \theta=135^{\circ}$.
\rightarrow answer is D
12. gradient is $\frac{3}{2}, y$ intercept is 4
$\therefore y=\frac{3 x}{2}+4$ or $3 x-2 y=-8$
\rightarrow answer is A
13. gradient $\mathrm{AB}=\frac{-2--7}{-3-5}=\frac{-5}{8}$
\rightarrow answer is C
14. $S=(n-2) \times 180^{0} \rightarrow$ answer is B
15. Since there are 4 colours, and each has equal chance of being drawn,
$\mathrm{P}($ same colour $)=4 \times \frac{10}{40} \times \frac{9}{39}=\frac{9}{39}$
\rightarrow answer is D
16. A dodecagon has 12 sides.
\therefore sum of interior sides $=1800^{\circ}$
\therefore each interior angle $=1800 \div 12$

$$
=150^{\circ}
$$

\rightarrow answer is B
17. $3 x-x^{2}<0$
$x(3-x)<0 \quad \therefore x<0$ or $x>3$
\rightarrow answer is B
18. $\mathrm{P}(x)=8+4 x-2 x^{2}-x^{3}$

$$
\begin{aligned}
& =4(2+x)-x^{2}(2+x) \\
& =(2+x)\left(4-x^{2}\right) \\
& =(2+x)^{2}(2-x)
\end{aligned}
$$

$\therefore \mathrm{P}(x)=0$ when $x=2$ or $x=-2$
\rightarrow answer is C
19. answer is B. See circle geometry theorems
20.

Since we want the acute angle we don't worry about the negative gradient.
$\therefore \tan \theta=\frac{\frac{4}{3}}{2}=\frac{2}{3}$
$\therefore \theta=33.69 \ldots$ which is closest to 34^{0}
\rightarrow answer is D
21. $4^{x+y}=8$
$2^{2(x+y)}=2^{3}$
$\therefore 2(x+y)=3$
$\therefore x+y=\frac{3}{2} \rightarrow$ answer is A
22. \quad Area $=\frac{1}{2}(5)(4) \sin 30^{\circ}=5 \mathrm{~cm}^{2}$
\rightarrow answer is A
23. $\mathrm{IQR}=\mathrm{Q}_{3}-\mathrm{Q}_{1}$
$=$ upper quartile - lower quartile.
\rightarrow answer is C
24. $y=\frac{x+1}{2 x}=\frac{1}{2}+\frac{1}{2 x}$
\therefore as $x \rightarrow \infty, \frac{1}{2 x} \rightarrow 0 \therefore y \rightarrow 1 / 2$
This is the horizontal asymptote
Vertical asymptote is when $x=0$
\rightarrow answer is A
25. Tax payable on $\$ 21600$ is $\$ 2652$.

Tax payable on remaining $\$ 4082=$ $0.3 \times 4082=\$ 1224.60$
\therefore total tax payable is $\$ 3876.60$
\rightarrow answer is B
26. If $\Delta=0$ then we have $x=-\frac{b}{2 a}$.

Then we only have one solution. Or equal roots.
If a, b, c are rational then roots are rational \rightarrow answer is A.
[note: also accepted C, due to ambiguous case]
27. Double root at $x=-2$,
single roots at $x=0$ and $x=3$
\rightarrow answer is D
28. $\quad \cos 2 A=\cos ^{2} A-\sin ^{2} A$

$$
\begin{aligned}
& =2 \cos ^{2} A-1 \\
& =2(0.6)^{2}-1=-0.28
\end{aligned}
$$

Following the pattern,

$$
\begin{aligned}
& \cos 4 A=\cos ^{2} 2 A-\sin ^{2} 2 A \\
&=2 \cos ^{2} 2 A-1 \\
&=2(-0.28)^{2}-1=-0.8432 \\
& \rightarrow \text { answer is A }
\end{aligned}
$$

29. Now $(\alpha+\beta+\gamma)^{2}$
$=(\alpha+\beta)^{2}+\gamma^{2}+2(\alpha+\beta) \gamma$
$=\alpha^{2}+\beta^{2}+2 \alpha \beta+\gamma^{2}+2 \alpha \gamma+2 \beta \gamma$
$\therefore \alpha^{2}+\beta^{2}+\gamma^{2}$
$=(\alpha+\beta+\gamma)^{2}-(2 \alpha \beta+2 \alpha \gamma+2 \beta \gamma)$
\rightarrow answer is A
30. For the smallest square to contain all 3 discs, a pair of parallel sides must be tangent to a disc, as shown.

The line joining the centres P, Q, R form an equilateral triangle.
$\Delta S K P$ is a right isosceles triangle $K P=S K=1 \quad \therefore S P=\sqrt{2}$ units.
In $\triangle \mathrm{PQR}, \mathrm{PW}=\sqrt{3}$ (altitude of equilateral triangle with sides 2 units)
In Δ QJM, QJ $=\frac{1}{\sqrt{2}}$ (pythag. Theorem with hypotenuse 1 unit)
Also $\mathrm{MJ}=\frac{1}{\sqrt{2}}=\mathrm{WG}$. And JG $=1$ unit.
In $\Delta \mathrm{MGV}, \mathrm{GM}=\mathrm{GV}=1+\frac{1}{\sqrt{2}}=1+\frac{\sqrt{2}}{2}$ (Right isos. Triangle)
$\therefore \mathrm{SV}=\mathrm{SP}+\mathrm{PW}+\mathrm{WG}+\mathrm{GV}$

$$
\begin{aligned}
& =\sqrt{3}+\frac{\sqrt{2}}{2}+\sqrt{2}+1+\frac{\sqrt{2}}{2} \\
& =1+\sqrt{3}+2 \sqrt{2}
\end{aligned}
$$

Now by Pythagoras Theorem, $2 \times \mathrm{ST}^{2}=\mathrm{SV}^{2}$
$\therefore \mathrm{ST}=\frac{1}{\sqrt{2}} S V=\frac{\sqrt{2}}{2}(1+\sqrt{3}+2 \sqrt{2})=\frac{4+\sqrt{2}+\sqrt{3}}{2} \rightarrow$ answer is C.

* Alternative ways are possible using $\cos 15^{0}$. Ref: 1994 AMC*

YEAR 10 YEARLY 2005 PART B
$\frac{\text { Q31 }}{\text { a) }} 2\left(x^{3}-27\right)=2(x-3)\left(x^{2}+3 x+9\right)$ \#
b) $\frac{\frac{\sin x}{\cos x}-1}{\frac{1}{\cos x}}=\stackrel{\sin x-\cos x}{=}$
c)

$$
\begin{aligned}
& D: \quad-2<x<2 \\
& R=\frac{1}{2} \leqslant y
\end{aligned}
$$

d.)

$$
\begin{array}{lll}
\bar{x}_{A}=18 & S D_{A}=2 & 15=13+2\left(\bar{x}_{A}+1 S D_{A}\right) \\
\bar{x}_{B}=12 & S D_{B}=4.15 & x=12+4.15=16.15=16 \text { (reanest umbar) }
\end{array}
$$

饣)

$$
\begin{aligned}
\tan ^{2} \theta & =\frac{1}{3} \quad \therefore \quad \tan \theta= \pm \frac{1}{\sqrt{3}} \\
\theta & =30^{\circ}, 150^{\circ}, 210^{\circ}, 330^{\circ}
\end{aligned}
$$

F) i)

$$
\begin{aligned}
& 4 y=\left(x^{2}-2 x+1\right)+4 \\
& 4(y-1)=(x-1)^{2}
\end{aligned}
$$

ii)

vertox yrintercept shape
g) $s \propto \sqrt{\ell} \therefore \frac{s}{\sqrt{l}}=k$
(i) $\frac{40}{\sqrt{25}}=\frac{s}{\sqrt{50}} \quad \therefore \quad S=40 \sqrt{\frac{50}{25}}=40 \sqrt{2} \mathrm{~cm} / \mathrm{sin}$
(ii) $\frac{100}{\sqrt{l}}=\frac{40}{\sqrt{25}} \quad l=\left(\frac{100 \times \sqrt{20}}{40}\right)^{2}=15625 \mathrm{~cm}=\frac{156 \mathrm{~cm} \text { (Marest cm) }}{7}$
$a(i) \quad 2^{4 x}=2^{-1}$

$$
x=-7 / 4
$$

(ii) $\frac{3^{-1} \times\left(2^{2} \times 3\right)^{\frac{1}{4}}}{3^{2} \times 2^{\frac{1}{2}}}=\frac{3^{-6} \cdot 2^{\frac{1}{4}} \cdot 3^{\frac{1}{4}}}{3^{2} 2^{\frac{1}{4}}}=3^{-6+\frac{1}{4}-2}=3^{-7 \frac{3}{4}}$
bi) $A B=\sqrt{(4+1)^{2}+(-1-2)^{2}}=\sqrt{25+9}=\sqrt{34}$ \#
ii)

$$
\begin{gathered}
y-2=\left(\frac{2--1}{-1-4}\right)(x+1) \\
y-2=\frac{3}{-5}(x+1) \\
3 x+3=-5 y+10 \\
3 x+5 y-7=0
\end{gathered}
$$

iii) $C_{p}=\frac{|3(-2)+5(-4)-7|}{\sqrt{3^{2}+5^{2}}}=\frac{+33}{\sqrt{34}}$
(i vj) $\quad!=(-7,-1)$
v) Area of $A B C D=+\frac{33}{\sqrt{34}} \times \sqrt{34}=33$ units 2
c)

$$
\begin{aligned}
& x^{2}+4 x+y^{2}-2 y=20 \\
& \left(x^{2}+4 x+4\right)+\left(y^{2}-2 y+1\right)=25 \\
& \quad(x+2)^{2}+(y-1)^{2}=5^{2} \\
& A T^{2}=(5+2)^{2}+(2-1)^{2}-5^{2} \\
& =49+1-25 \\
& =25 \\
& \therefore A T=\sqrt{25}=5
\end{aligned}
$$

cate $(-2,1) \quad$ radios $=5$

Q32 ct At $x=0,2^{2}+y^{2}-2 y+1=25$
$c i i$)

$$
\begin{aligned}
& y^{2}-2 y-2=0 \\
& y=\frac{2 \pm \sqrt{4-4(1)(-20)}}{2}=\frac{2 \pm \sqrt{84}}{2}=1 \pm \sqrt{21}
\end{aligned}
$$

\therefore leyte of intercats a y-axis $=\underline{2} \sqrt{2}$
di) To pore $\triangle P Q R \| I \triangle M P R$

Proof: $P_{M} \| E R$ (giver)
$\angle M P R=\angle Q R P$ (alternate syce equal, $P M \| Q R$).

$$
P_{M}=M R \cdot \text { (given) }
$$

$\angle M P R=\angle M R P$ (angles opposite equal sides are equal)

$$
\text { Similarly } \angle P Q R=\angle P R Q \text { as } P R=R Q \text { (grin) }
$$

$\therefore \triangle P Q R$ III $\triangle M P R$ (equiangeler)
ii) $\frac{P Q}{P M}=\frac{Q R}{P R}$ (corresponding sides of similar trial h, $\triangle P G R I I I \Delta M P R)$

$$
\begin{aligned}
& \frac{3}{2}=\frac{Q R}{3} \\
& Q_{R}=\frac{3 \times 3}{2}=45 \mathrm{~cm}
\end{aligned}
$$

633
ali) Parian $=\frac{360^{\circ}}{2}=180^{\circ}$
ii)

Amplitude x interest shape
woven

4	0	1	2	1	4	5
0	0	6	0	0	0	0
1	0	1	2	3	4	5
2	0	2	4	6	8	10
3	0	3	6	9	12	15
4	0	4	8	12	16	20
5	0	5	10	15	20	25

b (i) $\frac{11}{36}$

$$
\begin{gathered}
\left(i_{i}\right)(4,4),(4,5),(5.4),(5.5) \\
\frac{4}{36} \approx \frac{1}{9}
\end{gathered}
$$

(iii)

$$
\begin{aligned}
& (4,4)+(5,5)(4.5)+(5,5) \quad(5,4)+(5,5) \\
& (5,5)+(4,4),(5,5)+(4,6),(5,5)+4,4 \\
& (5,5)+(5,5) \\
& =\frac{7}{36^{2}}=\frac{7}{1246}
\end{aligned}
$$

ci) The remainder always has a lower degree than the divisor which is quadratic is $R(x)=a x+b$.

$$
\begin{aligned}
\therefore(x) & =(x+1)(x-4) Q(x)+R(x) \\
& =(x+1)(x-4) Q(x)+a x+b \\
P(4) & =4 a+b=-5 \\
\therefore R(4) & =4 a+b=-5
\end{aligned}
$$

ia)

$$
\begin{aligned}
P(-1)=a(-1)+b & =5 \\
-a+b & =5 \\
\text { Sot } \quad 4 a+b & =-5 \\
5 a & =-10 \quad \therefore \quad a=-2 \\
b=5+a & =3 \quad \therefore \quad R(x)=-2 x+3
\end{aligned}
$$

di) $16 \mathrm{kn} \times \frac{45}{60}=12 \mathrm{~km}$

$$
\begin{aligned}
x^{2} & =10^{2}+12^{2}-2(10)(12) \times \cos 45^{\circ} \\
x^{2} & =74.29 \\
x & =8.62 \mathrm{~km}
\end{aligned}
$$

ia)

$$
\begin{aligned}
& \frac{x^{862}}{\sin k 5^{\circ}}=\frac{12}{\sin \theta} \quad \therefore \sin \theta=\frac{12 \sin 45^{\circ}}{8.62}=0.9844 \\
& \theta=79.86^{\circ} \quad \therefore \quad \alpha=79.86^{\circ}-45^{\circ}=34.86^{\circ}
\end{aligned}
$$

\therefore loplthenens is $N 34^{\circ} 51^{\prime} E$ of the slip

Q34 ult
$\left.a_{i}\right)$

$$
f(x, y)=? \quad x=\frac{2 k-1}{k+1}, \quad y=\frac{8 k+3}{k+1}
$$

ii) Eq of line $A B$: $\quad y-8=\left(\frac{8-3}{2-1}\right)(x-2)$

$$
\begin{array}{r}
y-8=\frac{5}{3}(x-2) \\
y=\frac{5 x}{3}+\frac{14}{3}
\end{array}
$$

It of intersection of the 2 lines: $5 x+2 y-10=0$

$$
\begin{aligned}
5 x & +2\left(\frac{5 x}{3}+\frac{14}{3}\right)-10=0 \\
& \frac{25 x}{3}-\frac{2}{3}=0 \quad \therefore x=\frac{2}{25} \\
\frac{2 k-1}{k+1} \div \frac{2}{28} \quad \therefore 50 k-25 & =2 k+2 \\
48 k & =29 \\
k & =\frac{9}{16}
\end{aligned}
$$

\therefore Ratio is $9: 16$
b) $y=\frac{(x+1)^{2}}{x^{2}-4}$

Asymptotes $\quad x= \pm 2$

$$
y=1
$$

Pt of intersection with $y=1$

$$
\begin{aligned}
\frac{(x+1)^{2}}{x^{2}-4} & =1 \\
x^{2}+2 x+1 & =x^{2}-4 \\
x & =-5 / 2
\end{aligned}
$$

$$
y=\frac{(x+1)^{2}}{x^{2}-4}
$$

upper 2 branches
lower part
concave parabola with correct irtareepts) $(-1,0),\left(0,-\frac{1}{4}\right)$

234
:-) The lagth q chard $A B$ is a constant, k (given)
Angles subtended at the circumference i_{2} the same side of the circh b equal chard are equal $\therefore x$ in a constant.
ii) $\frac{c A}{\sin \theta}=\frac{k}{\sin \alpha} \quad \therefore C A=\frac{k \sin \theta}{\sin \alpha}$

$$
\frac{C B}{\sin \angle C A B}=\frac{C B}{\sin \left[180^{\circ}-(\theta+\alpha)\right]}=\frac{k}{\sin \alpha}
$$

But $\sin \left[180^{\circ}-(\theta+\alpha)\right]=\sin (\theta+\alpha)$

$$
\begin{aligned}
\therefore & \frac{c B}{\sin (\theta+\alpha)}=\frac{k}{\sin \alpha} \quad \therefore c B=\frac{k \sin (\theta+\alpha)}{\sin \alpha} \\
& \quad S=C A+c B=\frac{k}{\sin \alpha}[\sin \theta+\sin (\theta+\alpha)]
\end{aligned}
$$

iii) when $\theta=90-\frac{\alpha}{2}$

$$
\begin{aligned}
\theta & =90-\frac{\alpha}{2} \\
S & =\frac{k}{\sin \alpha}\left[\sin \left(90-\frac{\alpha}{2}\right)+\sin \left(90-\frac{\alpha}{2}+\alpha\right)\right] \\
& =\frac{k}{\sin \alpha}\left[\sin \left(90-\frac{\alpha}{2}\right)+\sin \left(180-\left(90-\frac{\alpha}{2}+\alpha\right)\right]\right. \\
& =\frac{2 k}{\sin \alpha} \sin \left(90^{-} \frac{\alpha}{2}\right)=\frac{2 k}{\sin \alpha} \operatorname{cis} \frac{\alpha}{2}
\end{aligned}
$$

di) Angle between chard and tangent at point of contact equal angle in alternate segment.
ii) Join FE, FC, FC
$A C$ is the disrate of circle AECFG (given) $\angle A F C=90^{\circ}$ (aught is semis -circe) similarly $\angle A E C=90^{\circ}$

$$
\left.\begin{array}{rl}
\text { Similarly } \angle A E C=90^{\circ} \\
\angle F D C & =180^{\circ}-90^{\circ}-\angle F C D \quad(A y b \text { dan } \eta ~
\end{array} F C D\right)
$$

$$
\angle A E F=90^{\circ}-\angle F E C
$$

Rot $L F C D=(F E C$ (proved in pant)

$$
\therefore \quad \angle F D C=\angle A E F
$$

\therefore DFEB is a cycle quadrilateral
(Exterior angle equals to interior opposite ag le

Q3H iii) $\angle B H C=45^{\circ}$ (fiven)
$\angle B G C+\angle H B G=45^{\circ}$ (exterim augle equal to sum of interio eppusit, agh la in $\triangle H B G$)
$\angle A \subset B=90^{\circ}$ (line fron centre is perpendicater to taygent at poins of catad)

$$
\therefore \angle H B C+\angle A C G=180^{\circ}-90^{\circ}-45=45^{\circ} \text { (argle sun of } \triangle H B C=180^{\circ} \text {) }
$$

$G^{\circ}=c^{c}$ (radii of sam cirde)
$\angle A C G=\angle B G C$ (aygles opposite equee sides aro eprad)

$$
\begin{aligned}
\therefore \angle H B C+\angle B G C & =45 \\
\angle B C C+\angle H B G & =\angle H B C+\angle B C C C=45^{\circ} \\
\therefore \angle H B G & =\angle H B C
\end{aligned}
$$

