Answer the questions on the separate sheet provided.
Mark the appropriate box with a cross, \mathbf{X}.

1. $25^{3} \times 5^{2}=$
A. 125^{5}
B. 125^{6}
C. 5^{12}
D. 5^{8}
2. The equation $2 x+y+2+k(x-y-1)=0$, where k is an constant, describes the set of lines through the point of intersection of the lines:
A. $y=x+1$ and $y=2 x+2$
B. $y=x-1$ and $y=2 x+2$
C. $y=x+1$ and $y=-2 x-2$
D. $y=x-1$ and $y=-2 x-2$
3. The equation of horizontal asymptote for the function $y=1+\frac{3}{x-2}$ is:
A. $x=1$
B. $x=2$
C. $y=1$
D. $y=4$
4. The intensity, I, of the light beam from a search lamp varies inversely as the square of the distance, D, away from the search lamp. If the intensity is 100 units when seen from 5 metres away, then the intensity at 8 metres away will be closest to:
A. 4 units
B. 32 units
C. 39 units
D. 63 units
5.

In the above diagram, $x=$
A. 5
B. $2 \sqrt{5}$
C. $3 \sqrt{5}$
D. 9
6. An area of $5.7 \mathrm{~cm}^{2}$ is the same as:
A. $0 \cdot 0057 \mathrm{~m}^{2}$
B. $0 \cdot 057 \mathrm{~m}^{2}$
C. $57 \mathrm{~mm}^{2}$
D. $570 \mathrm{~mm}^{2}$
7. If $a=-2+\sqrt{3}$ and $b=-2-\sqrt{3}$, then $a^{2}-b^{2}=$
A. $8 \sqrt{3}$
B. $-8 \sqrt{3}$
C. 0
D. -14
8. If $x+y=63$ and $\frac{x}{y}=8$, then $x=$
A. 7
B. 56
C. 71
D. 119
9. If $8^{2 x}=16^{1-2 x}$, then $x=$
A. $\frac{2}{7}$
B. $\frac{1}{3}$
C. $\frac{1}{4}$
D. $\frac{7}{12}$
10. $A B C D$ is a quadrilateral with $A B=C D$ and $A D \| B C$. Quadrilateral $A B C D$ must be a:
A. Trapezium but it might not be a parallelogram.
B. Parallelogram but it might not be a rhombus.
C. Rhombus but it might not be a square.
D. Square.
11. Which of the following is equivalent to $(25 x)^{\frac{3}{2}}$?
A. $\frac{1}{5 \sqrt{x^{3}}}$
B. $25 \sqrt[3]{x^{2}}$
C. $\sqrt{125 x^{3}}$
D. $125 x \sqrt{x}$
12. The marks for a test of 10 students were recorded as:

$$
1,1,1,2,3,4,4,5,7,8
$$

However, the student whose mark was recorded as 5 , actually scored 6 in the test. When the correct mark is recorded, which of the following will increase?
A. Median
B. Mode
C. Range
D. Interquartile Range
13. If $\sqrt{x+1}+2=0$, then $x=$
A. -5
B. -3
C. 3
D. no real solution
14. If $2 x^{2}-12 x-10 \equiv 2(x+b)^{2}+c$, then $c=$
A. -28
B. -14
C. 8
D. 19
15. If $a=\frac{b+3}{2 b-1}$, then $b=$
A. $\frac{a+3}{2 a+1}$
B. $\frac{a-3}{2 a+1}$
C. $\frac{a-3}{2 a-1}$
D. $\frac{a+3}{2 a-1}$
16. The graph of $3 x+2 y-1=0$ intersects the graph of $y=x^{2}$ at two points A and B. The x-coordinates of the points A and B are the solutions of the equation:
A. $2 x^{2}-3 x+1=0$
B. $2 x^{2}+3 x-1=0$
C. $3 x^{2}-2 x+1=0$
D. $3 x^{2}+2 x-1=0$
17. A farm produces m oranges which are packed into n cartons. Each carton contains p boxes. The average number of oranges which must be packed into each box is:
A. $\frac{m}{n p}$
B. $\frac{m p}{n}$
C. $\frac{n p}{m}$
D. $\frac{n}{p m}$
18. The number of points of intersection of the graphs $y=x^{3}+1$ and $y=\frac{4}{x-2}$ is:
A. 1
B. 2
C. 3
D. 4
19. A solution to the equation $\sin \theta=-\frac{\sqrt{3}}{2}$, is $\theta=$
A. 60°
B. 150°
C. 210°
D. 300°
20. The range for the function $f(x)=1-2 \sin x$, is:
A. $-1 \leq y \leq 3$
B. $-2 \leq y \leq 2$
C. $-1 \leq x \leq 3$
D. $-3 \leq y \leq 1$
21. Which of the following statements, about the diagonals of a rectangle, are True:
I. The diagonals bisect each other
II. The diagonals bisect the vertex angles
III. The diagonals intersect at right angles
IV. The diagonals are equal
A. I and II
B. I and IV
C. II and III
D. I, II and IV
22. Which of the following is equivalent to $\frac{1}{1-\cos x}$?
A. $\frac{1+\cos x}{\sin ^{2} x}$
B. $\frac{\sin ^{2} x}{1+\cos x}$
C. $\frac{\cos x}{1-\cos ^{2} x}$
D. $\frac{1+\sin x}{1-\cos ^{2} x}$
23. The domain for the function $f(x)=\sqrt{25-(x-1)^{2}}$, is:
A. $0 \leq x \leq 5$
B. $-4 \leq x \leq 6$
C. $x \leq-4$ or $x \geq 6$
D. $-6 \leq x \leq 4$
24. In a survey, 45 students agreed that sport should be on Wednesdays. If the probability of a person agreeing was $\frac{9}{10}$, then the number of students in the survey was:
A. 45
B. 50
C. 95
D. 450
25. The following statistics were obtained from the Year 10 examinations.

Subject	Mean	Standard Deviation
Mathematics	55	12
English	66	8

The mark in Mathematics that is equivalent to 78 in English, is:
A. 67
B. 71
C. 73
D. 75
26. The exact value of $\sqrt{\sin 30^{\circ}}+\cos 45^{\circ}$ is:
A. $2 \sqrt{2}$
B. $\frac{1+2 \sqrt{2}}{\sqrt{2}}$
C. $\sqrt{2}$
D. $\frac{\sqrt{3}+1}{\sqrt{2}}$
27. The period for the function $y=\tan 2 x$, is:
A. 90°
B. 180°
C. 360°
D. 720°
28. The probability that Ben will hit the target with his arrow in archery is $0 \cdot 8$. If he hits the target with his first arrow, then the probability that he will hit it with his next arrow is:
A. $0 \cdot 16$
B. 0.64
C. 0.8
D. 1.0
29. Given $A B C D$ is a parallelogram with vertices $A(-1,-4), B(1,2)$ and $C(3,3)$. The equation of $B D$ is:
A. $x=1$
B. $y=2$
C. $y=x+1$
D. $x-2 y+3=0$
30. A circle is circumscribed about a regular octagon, as shown.

If the area of the octagon is $400 \mathrm{~cm}^{2}$, then the area of the circle, in cm^{2}, is:
A. $100 \pi \sqrt{2}$
B. $\frac{100 \pi}{\sqrt{2}}$
C. $\frac{200 \pi}{\sqrt{3}}$
D. $200 \pi \sqrt{3}$

SECTION B (TOTAL 80 MARKS)

Questions 31-34

Use your own writing paper to answer each question.
Clearly write the question number at the top of each page.

Question 31 (20 marks)
 Marks

1.		Solve for x : $x(3 x+5)=2(3 x+5)$.	2
2.		Factorise: $x-27 x^{4}$.	2
3.		Find the exact value of x : Diagram not to scale	2
4.		State the domain and range for the function $y=\sqrt{x^{2}-4}$.	2
	a) b)	Diagram not to scale Find the exact value for x. Find θ, giving your answer correct to the nearest degree.	2 2
6.		Find the exact value for y.	2

7.		Solve simultaneously: $\begin{aligned} & 3 x+4 y=1 \\ & x^{2}-2 y^{2}=1\end{aligned}$ where x and y are real numbers.	3
8.		A ladder leans against a 10 metre long building which has a semi-circular cross-section, as shown below. The foot of the ladder, R, is 1 metre from the wall of the building and the ladder touches the building at the point P. Find θ, the angle that the ladder makes with the ground, correct to the nearest degree. Find the height that the point P is above ground level, giving answer correct to the nearest tenth of a metre.	1 2

\begin{tabular}{|c|c|c|c|}
\hline 1. \& a) \({ }_{\text {b) }}\) b) \({ }^{\text {c) }}\) \& \begin{tabular}{l}
A circle has equation \(x^{2}+y^{2}-18 x+2 y+66=0\). \\
By expressing the circle in the form \((x-h)^{2}+(y-k)^{2}=r^{2}\), where \(h, k\) and \(r\) are constants, state: \\
(i) the co-ordinates of the centre, and \\
(ii) the radius of the circle. \\
Show that the distance from the centre of the circle to the point \(Q(1,5)\) is 10 units. \\
A tangent is drawn to the circle from \(Q\), touching the circle at the point \(R\), as indicated on the diagram below. Find the length of the interval \(Q R\), giving reasons. \\
Another interval is drawn to the circle from \(Q\), intersecting the circle at \(S\) and \(T\) as shown above. If \(Q T\) is 6 units, find the length of \(S T\), giving reasons.
\end{tabular} \& 3
1
2
2

3

\hline 2. \& a) \& | Given $\cos \theta=-\frac{5}{12}$ and $180^{\circ}<\theta<270^{\circ}$, find the exact value of: $\sec \theta$. |
| :--- |
| $\tan \theta$. | \&

\hline 3. \& \& Solve for $\theta, 2 \sin \theta+\sqrt{3} \cos \theta=0$ in the domain $0^{\circ} \leq \theta \leq 360^{\circ}$, giving your answer correct to the nearest minute. \& 3

\hline 4. \& \& | Two identical cubes each have faces numbered $0,1,2,3,4$ and 5 . |
| :--- |
| The cubes are rolled once and a score is determined by the product of the two numbers on the uppermost faces. |
| Draw a table that clearly shows all the possible outcomes. |
| What is the probability that the score is: |
| (i) 0 ? |
| (ii) at least 16 ? |
| (iii) even, if it is known that at least one of the dice shows an odd number. | \& 1

1
1
2

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline 1. \& a)
b)
c)
d)
e) \& \begin{tabular}{l}
 \\
The points \(A(-2,1)\) and \(B(6,7)\) lie on the line \(l\) whose equation is \(3 x-4 y+10=0\). The line \(n\) is parallel to the \(x\)-axis. \(C(3,-2)\) and \(D(x, y)\) are two points on line \(n\) such that \(A D\) is parallel to \(B C\). \\
Find the distance \(A B\). \\
Find the perpendicular distance from \(C\) to the line \(l\). \\
Find the coordinates of the point \(D\). \\
Find the area of \(\triangle A B C\). \\
Find the area of quadrilateral \(A B C D\).
\end{tabular} \& 1
2
2
1
2 \\
\hline 2. \& a) \& \begin{tabular}{l}
Given \(P(x)=x^{2}-2 x+1\). Divide \(P(x)\) by \(x+1\) and express the result in the form \(P(x)=(x+1) Q(x)+R(x)\), where \(Q(x)\) is the quotient and \(R(x)\) is the remainder. \\
Draw a neat sketch for \(y=\frac{(x-1)^{2}}{x+1}\), clearly showing \(x\) and \(y\) intercepts and any asymptotes. \\
Hence, solve for \(x\) when \(\frac{(x-1)^{2}}{x+1} \leq 0\).
\end{tabular} \& 2
3

2

\hline
\end{tabular}

| 3. | | |
| :--- | :--- | :--- | :--- |
| a) | In quadrilateral $A B C D$ above, $\angle A B C=40^{\circ}, \angle B C D=100^{\circ}$ and
 $\angle C D A=60^{\circ} . E$ is a point on $B C$ such that $A E$ bisects $\angle B A D$.
 Copy the diagram onto your answer sheet and label the diagram with the above
 information.
 Prove $A E C D$ is a cyclic quadrilateral, giving reasons.
 If $\angle B C A=44^{\circ}$, find the value of $\angle A E D$, giving reasons. | 1 |
| b) | | |

1.		If $a=\tan \theta+\cot \theta$ and $b=\sin \theta+\cos \theta$, prove that $a\left(b^{2}-1\right)=2$.	3
2.		A polynomial $P(x)$ is defined by $P(x)=a x\left(x^{2}+b\right)$, where a, b are constants and $a \neq 0$. $P(x)$ has $(x+2)$ as a factor and when $P(x)$ is divided by $(x-3)$ the remainder is 21. Find the values for a and b. Hence, sketch $y=P(x)$.	4 2
3.	a) b) c) d) e)	Given that $A D=D B=x \mathrm{~cm}, B C=3 x \mathrm{~cm}, A B=6 \sqrt{3} \mathrm{~cm}, C D=6 \sqrt{7} \mathrm{~cm}$ and $\angle D B C=\theta^{\circ}$, where $\theta>70$. By using the cosine rule in $\triangle D B C$, show that: $\cos \theta=\frac{5 x^{2}-126}{3 x^{2}}$. By considering $\triangle A D B$, show that: $\sin \theta=\frac{\sqrt{27}}{x}$. Hence, using parts a) and b) and the identity $\sin ^{2} \theta+\cos ^{2} \theta=1$, show that $16 x^{4}-1017 x^{2}+15876=0$. Find all possible values of x. Find the value of θ, to the nearest degree.	2 2 2 2 3 2

End Of Exam Paper

Multiple Chore Answers. - YEAR 10 YEARLY 2006
Section $A\left(\frac{30 \text { marks - } 1 \text { mark each })}{3}\right.$

1. $D \quad 25^{3} \times 5^{2}=5^{6} \times 5^{2}=5^{8}$.
$2 x+y+2+k(x-y-1)$ is a line through the intersection of $2 x+y+2=0$ and $x-y-1=0$
$\therefore y=-2 x-2$ and $y=x-1$ $y=1+\frac{3}{x-2} \quad$ as $x \rightarrow \infty$
\therefore horizontal asymptote $y \rightarrow 1$
$I=1$
$I \quad 100=1$

$$
\begin{aligned}
& I=\frac{k}{D^{2}} \quad 100=\frac{k}{5^{2}} \quad \therefore \frac{1}{r}=2500 \\
& I=\frac{2500}{64}=39.0625
\end{aligned}
$$

5. A By similar triangles $\frac{4+x}{6}=\frac{6}{4} \therefore 16+4 x=36$

$$
4 x=20 \quad x=5
$$

6. D
7. B
8. B
9.
10. A
11. $D(25 x)^{3 / 2}=(5 \sqrt{x})^{3}=125 x \sqrt{x}$
12. D
13. D
14. A
15. D

Inter quartile range changes from $5-1=4$ to

$$
\sqrt{x+1}+2=0 \quad \therefore \sqrt{x+1}=-2 \quad \text { but } \sqrt{x+1}>0
$$

\therefore no solution

$$
\begin{aligned}
& 2 x^{2}-12 x-10= 2(x+b)^{2}+c \\
& 2\left(x^{2}-6 x-5\right)= 2(x-3)^{2}-28 \\
& a=\frac{b+3}{2 b-1} \quad \begin{array}{ll}
a=b-a=b+3 \\
& b(2 a-1)=a+3 \quad \therefore b=\frac{a+3}{2 a-1}
\end{array}
\end{aligned}
$$

16. $B \quad 3 x+2 y-1=0 \quad y=x^{2}$.

$$
\therefore 3 x+2\left(x^{2}\right)-1=0 \quad \therefore 2 x^{2}+3 x-1=0
$$

17. C
18. B

In oranges $=\frac{m}{n p} \times p \times x \quad(x=n o i n b o x)$

$$
\therefore>\rightarrow=\frac{m}{n P}
$$

19. D
$20 . C$
20. B
21. A
22. B
$24 . B$
$25 \cdot C$
23. C
24. A
25. C
26. A
27. A

$$
\begin{array}{ll}
\operatorname{sen} \theta=-\frac{\sqrt{3}}{2} \quad \sin 30^{\circ}=-\sqrt{3} / 2 \\
f(x)=1-2 \sin x \quad \text { maxvalue } y=3 \quad \text { minvalua } y=-1
\end{array}
$$

\therefore range: $-1 \leqslant y \leqslant 3$

$$
\frac{1+\cos x}{\sin ^{2} x}=\frac{1+\cos x}{1-\cos ^{2} x}=\frac{1-\cos x}{(1-\cos x)(1+\cos x)}=\frac{1}{1-\cos x}
$$

$$
\begin{aligned}
& f(x)=\sqrt{25-(x-1)^{2}} \quad \therefore \quad-5 \leqslant(x-1 \leqslant 5 \\
& \therefore \quad-4 \leqslant x \leqslant 6 \\
& \frac{9}{10}=\frac{45}{x} \quad \therefore x=50 \\
& \frac{78-66}{8}=1.5 \quad \therefore 1.5 \times 12+55=73 \\
& \sqrt{\sin 30}+\cos 45=\sqrt{\frac{1}{2}}+\frac{1}{\sqrt{2}}=\frac{2}{\sqrt{2}}=\sqrt{2}
\end{aligned}
$$

$$
y=\tan 2 x \quad \text { period }=\frac{180^{\circ}}{2}=90^{\circ}
$$

and arrow is independent of flirst arrow Diagonals of parathelogram bisect each other. Mid Point of $A C=\left(1,-\frac{1}{2}\right), B(1,2) \therefore$
$B D$ equation is $x=1$
Area of octagon $=8 \times \frac{r \times r}{2} \times \sin 45^{\circ}$

$$
\begin{aligned}
\therefore 400 & =4 \times \frac{1}{\sqrt{2}} r^{2} \\
\therefore r^{2} & =100 \sqrt{2} \\
\therefore \text { Area of curcle } & =\pi r^{2} \\
& =\pi \times 100 \sqrt{2}
\end{aligned}
$$

Section B
Question 31 (20 Marks)
(1).

$$
\begin{aligned}
& x(3 x+5)=2(3 x+5) \\
& x=2 \text { or }-\frac{5}{3}
\end{aligned}
$$

leach
(2)

$$
\begin{aligned}
& x-27 x^{4} \\
= & x\left(1-27 x^{3}\right) \\
= & x(1-3 x)\left(1+3 x+9 x^{2}\right)
\end{aligned}
$$

(3)

$$
\begin{aligned}
(2 x)^{2}+(4 x)^{2} & =20^{2} \\
4 x^{2}+16 x^{2} & =400 \\
20 x^{2} & =400 \\
x^{2} & =20 \\
x & =\sqrt{20} \text { or } 2 \sqrt{5}
\end{aligned}
$$

(4)

$$
\begin{aligned}
& x^{2}-4 \geqslant 0 \\
& (x-2)(x+2) \geqslant 0 \\
& x \leqslant-2 \text { or } x \geqslant 2 \text { (domain) } \\
& y \geqslant 0 \text { (Range) }
\end{aligned}
$$

(5)

$$
\begin{aligned}
& \text { a) } \begin{array}{l}
13^{2}=x^{2}+7^{2}=14 x \\
x^{2}-7 x-120=0 \\
(x-15)(x+8)=0 \\
x=15 \text { only }(x>0)
\end{array} \text { } \quad \text { (x) }
\end{aligned}
$$

b)

$$
\cos \theta=\frac{13^{2}+7^{2}-15^{2}}{2.13 .7}
$$

$\theta=92^{\circ}$ (nearest degree)
(6)

$$
\begin{aligned}
\tan 60^{\circ} & =\frac{4}{\sqrt{6}} \\
\sqrt{3} & =\frac{y}{\sqrt{6}}
\end{aligned}
$$

$\sqrt{18}$ or $3 \sqrt{2}=y$

$$
\left.\left.\left.\begin{array}{l}
3 x+4 y=1 \\
x^{2}-2 y^{2}=1
\end{array}\right] \quad x=\frac{1-4 y}{3}\right] \text { (1-4y} 3\right)^{2}-2 y^{2}=1 .
$$

$$
\begin{gathered}
y^{2}+4 y+4=0 \\
(y+2)^{2}=0 \\
y=-2 \\
\therefore x=\frac{1-4(-2)}{3} \\
x=3
\end{gathered}
$$

(8)

$\sin \theta=\frac{5}{6}$
$\theta=56^{\circ}$ (nearest degree)
b)

$$
\begin{aligned}
P R^{2}+5^{2} & =6^{2} \\
P R & =\sqrt{11} \\
\therefore \quad \sin 56^{\circ} & =\frac{h}{\sqrt{11}} \\
h & =\sqrt{11} \sin 56^{\circ} \\
h & \doteqdot 2.7496 \mathrm{~m} \\
\therefore h & =2.7 \mathrm{~m} \text { (hearesttenth) } 1
\end{aligned}
$$

NB: alternative solution are possible which may produce an answer for $h=2.8 \mathrm{~m}$.

Question 32 (20 Marks)
(1.) a)

$$
\begin{aligned}
& x^{2}+y^{2}-18 x+2 y+66=0 \\
& x^{2}-18 x+81+y^{2}+2 y+1=-66+81+1 \\
& (x-9)^{2}+(y+1)^{2}=16
\end{aligned}
$$

(i) centre $(9,-1)$
(ii) radius is 4
b) Centre $(9,-1)$ Q $(1,5)$
\therefore distance $=\sqrt{(9-1)^{2}+(-1-r)^{2}}$

$$
=\sqrt{64+36}
$$

$$
=10
$$

$\angle Q R O=90^{\circ}\left(\begin{array}{c}\text { a line touches a circle } \\ \text { at } 90^{\circ} \\ \text { point }\end{array}\right)$.
d)
θ

$$
\begin{aligned}
& R=\text { S } \\
& Q R^{2}=S Q \cdot Q T \quad \begin{array}{l}
\text { The square of the } \\
\text { intercept on tangent } \\
\text { equal product of }
\end{array}
\end{aligned}
$$

$$
84=5 \theta \cdot 6
$$ the intercept of the cont)

$$
S Q=14
$$

$$
\therefore S T=S Q-Q T=14-6=8 \text { units }
$$

2. a) $\sec \theta=-\frac{12}{5}$
b) $\tan \theta=\frac{\sqrt{119}}{5}$,

By By that:

$$
\begin{array}{r}
y^{2}+25=144 \\
y^{2}=119 \\
y=-\sqrt{119}
\end{array}
$$

(3)

$$
\begin{aligned}
& 2 \sin \theta+\sqrt{3} \cos \theta=0 \\
& 2 \sin \theta=-\sqrt{3} \cos \theta \\
& \tan \theta=-\frac{\sqrt{3}}{2}, \quad 0 \leqslant \theta \leqslant 360^{\circ}
\end{aligned}
$$

θ lies in 2 and \& $44^{\text {th }}$ grad. acute $\theta: \tan \theta=\frac{\sqrt{3}}{2}$

$$
\therefore \theta=\frac{139^{\circ} 6^{\prime}, \frac{319^{\circ} 6^{\prime}}{1}}{1}
$$

(4)
a)

	0	1	2	3	4	5
0	0	0	0	0	0	0
1	0	1	2	3	4	5
2	0	2	4	6	8	10
3	0	3	6	9	12	15
4	0	4	8	12	16	20
5	0	5	10	15	20	25

b)
(i) $\frac{11}{36}$
(ii) $\frac{4}{36}=\frac{1}{9}$
(iii) $\frac{12}{36-9}=\frac{12}{27}$ (i)

Question 33 (20 Marks)
(1)
a)

$$
\begin{aligned}
A B & =\sqrt{6--2)^{2}+(7-1)^{2}} \\
& =\sqrt{64+36} \\
& =10 \text { units }
\end{aligned}
$$

b)

$$
\begin{aligned}
d & =\frac{|3.3-2(-4)+10|}{\sqrt{3^{2}+4^{2}}} \\
& =\frac{27}{5} \text { or } 5 \frac{2}{5}
\end{aligned}
$$

c) $D\left(\begin{array}{cc}11 & 10 \\ -3, & -2\end{array}\right)$
d) $\frac{1}{2} \times 10 \times \frac{27}{5}$

$$
=27 u^{2}
$$

e) Area quad $A B C D$

$$
\begin{aligned}
& =A \\
& =27+A \\
& =27+\frac{1}{2} \times 6 \times 3 \\
& =36 u^{2}
\end{aligned}
$$

(2) a) $x + 1 \longdiv { x ^ { 2 } - 2 x + 1 }$

$$
\begin{aligned}
& \frac{x^{2}+x}{} \\
& \frac{-3 x+1}{3} \\
& \frac{3 x-3}{4} \\
& x+1=(x+1)(x-3)+4
\end{aligned}
$$

$\therefore x^{2}-2 x+1=$
b) $y=\frac{(x-1)^{2}}{x+1}$
VA: $x=-1$
QA: $y=x-3$ (Se above)
x int. $(1,0)$
y int $(0,1)$
Shape
scale

c) Solving $\frac{(x-1)^{2}}{x+1} \leqslant 0$

Sol ${ }^{n}:\{x: x<-1, x=1\}$

b) $\angle B A D=160\binom{$ angle sun of quadrilateral }{ is $360^{\circ}}$

$$
\begin{aligned}
\frac{1}{2} & \angle E A D
\end{aligned}=\frac{1}{2} \times 160(A E \text { bisects } \angle B A D)
$$

$\frac{1}{\frac{1}{2}} \begin{aligned} & \frac{1}{2} \\ & \therefore \text { AECD is cyclic opposite angles }\end{aligned}$
$\frac{1}{2}$ $\frac{1}{2}$

$\frac{1}{2}$
$\frac{1}{2}$
3

\therefore AECD is cyclic $E-C D$ \& $E A D$ are
supplementary)
c) $\angle A C D=56^{\circ}$ (b ysubtraction)
$\angle A E D=56^{\circ}$ ($\begin{aligned} & A E C D \text { are concycite } \\ & \text { points; angles to the }\end{aligned}$ points; angles to the 1 circumference of a circle standing on same are are equal)

Question 34 (20 Marles)
(1)

$$
\begin{aligned}
\text { LHS } & =(\tan \theta+\cot \theta)\left((\sin \theta+\cos \theta)^{2}-1\right) \\
& =(\tan \theta+\cot \theta)\left(\sin ^{2} \theta+\cos ^{2} \theta+2 \sin \theta \cos \theta-1\right) \\
& =(\tan \theta+\cot \theta)(2 \sin \theta \cos \theta) \\
& =\left(\frac{\sin \theta}{\cos \theta}+\frac{\cos \theta}{\sin \theta}\right)(2 \sin \theta \cos \theta) \\
& =2 \sin ^{2} \theta+2 \cos ^{2} \theta \\
& =2\left(\sin ^{2} \theta+\cos ^{2} \theta\right) \\
& =2 \times 1 \\
& =2 \\
& =\text { RHS }
\end{aligned}
$$

(2) $P(x)=a x\left(x^{2}+b\right)$
a) Now $P(-2)=0 \Rightarrow-2 a(4+b)=0$

$$
4 a+a b=0 \ldots-(1)
$$

$$
P(3)=21 \Rightarrow 3 a(a+b)=21
$$

$$
\begin{equation*}
9 a+a b=7 \tag{2}
\end{equation*}
$$

Solving (1) 4(2):

$$
\begin{aligned}
& 5 a=\frac{7}{a} \\
&=\frac{7}{5}
\end{aligned}
$$

sub. $a=\frac{7}{5}$ into any abuve: $\quad b=-4$
b) $y=\frac{7}{5} x\left(x^{2}-4\right)=\frac{7}{5} x(x-2)(x+2)$

x.int. 1
Shape.
(No other point)
(3)

$$
\text { a) } \begin{aligned}
\cos \theta & =\frac{x^{2}+(3 x)^{2}-(6 \sqrt{7})^{2}}{2 \cdot x \cdot 3 x} \\
& =\frac{x^{2}+9 x^{2}-252}{6 x^{2}} \\
& =\frac{10 x^{2}-252}{6 x^{2}} \\
\therefore \cos \theta & =\frac{5 x^{2}-126}{3 x^{2}}
\end{aligned}
$$

b) $\triangle A B D$ is isoscele so altitude
bisects side $A B, E B=3 \sqrt{3}$

$$
\angle E D B=\theta \text { (alternate angles equal, } E D \| B C \text {)' }
$$

$$
\sin \theta=\frac{3 \sqrt{3}}{x}=\frac{\sqrt{27}}{x}
$$

NB: Alternative sol's possible including sine or cosine rule in $\triangle A B D$.
c)

$$
\begin{aligned}
& \sin ^{2} \theta+\cos ^{2} \theta=1 \\
& \left(\frac{5 x^{2}-126}{3 x^{2}}\right)^{2}+\left(\frac{\sqrt{27}}{x}\right)^{2}=1 \\
& \frac{25 x^{4}-1260 x^{2}+15876}{9 x^{4}}+\frac{27}{x^{2}}=1 \\
& 25 x^{4}-1260 x^{2}+15876+243 x^{2}=9 x^{4} \\
& 16 x^{4}-1017 x^{2}+15876=0
\end{aligned}
$$

$$
\text { d) } \begin{aligned}
x^{2} & =\frac{1017 \pm \sqrt{(1017)^{2}-4 \cdot 16 \cdot 15876}}{32} \\
& =\frac{1017 \pm 135}{32} \\
\therefore x^{2} & =36 \text { or } 27 \frac{9}{16} \\
\therefore x & =6 \text { or } 5.25 \text { only }(x>0) .
\end{aligned}
$$

e) Using $\sin \theta=\frac{\sqrt{27}}{x}$

If $x=6, \sin \theta=\frac{\sqrt{27}}{6} \Longrightarrow \theta=60^{\circ} \Rightarrow$ not possible as $\theta>70^{\circ}$ If $x=5.25, \sin \theta=\frac{\sqrt{27}}{5.25} \Rightarrow \theta=82^{\circ} \Rightarrow$ only answer possible 1

