YEAR 10 YEARLY 2007

SECTION B

QUESTION 31 (20 Marks) START A NEW PAGE		Marks
(a)	Calculate the value of $\frac{(2.3+2.8)^2}{\sqrt{2.3\times7.4}}$ to 2 decimal places.	2
(b)	What is the exact value of cos150°?	2
(c)	Write as a single simplified fraction: $1 - \frac{\left(1 - \frac{1}{a}\right)}{\left(a - \frac{1}{a}\right)}$	3
(d)	Simplify: $\frac{1}{1+\tan^2 x} + \sin^2 x$	3

(e) Solve for x:
$$\sqrt{6x+1} = x$$

Give your answer in simplified surd form.

(f) *ABCD* is a quadrilateral with midpoints *W*, *X*, *Y*, *Z* as shown in the diagram below.

Copy the diagram and prove that the lines joining the midpoints of the opposite sides bisect each other, giving reasons.

4

3

(g) Twenty tickets are sold in a raffle. There are 3 prizes.First prize is \$30, second prize is \$20 and third prize is \$10.John has bought 2 tickets.

What is the probability that John wins:

- (i) The \$10 prize only?
- (ii) Exactly \$30 in prizes?

2

1

QUESTION 32 (20 Marks) START A NEW PAGE

- (a) ABCD is a rhombus with diagonals AC = 12 cm and BD = 9 cm. Construct ABCD accurately using a ruler and compasses only. Show all construction lines.
- (b) Find the exact value of $\sin^2 75^\circ$, given that $\sin 15^\circ = \frac{\sqrt{3}-1}{2\sqrt{2}}$.

Write your answer as a single simplified fraction.

(c) ABC is a triangle. The circle through A and B cuts AC at P and BC at Q so that $\angle BQP = 2 \times \angle CPQ$.

Copy the diagram and prove that AB=AC.

- (d) The weight of an object varies inversely as the square of its distance from the centre of the Earth.
 - (i) Write an equation relating the weight (*W*) of an object to its distance (*d*) **1** from the centre of the Earth.

(ii) A body which weighs 72.0 units on the ground weighs 67.7 units at a height of 200 km above the Earth's surface.Calculate the radius (*r*) of the earth in km to 3 significant figures.

Marks

3

3

3

Question 32 continued

1

- (e) Sketch the graph of $y = 1 2\sin x$ for $0^\circ \le x \le 360^\circ$. 4 Show all intercepts with the *x* and *y* axes.
- (f) In a particular town 60% of the population are women.4% of the men and 1% of the women are taller than 180 cm.
 - (i) What percentage of the town's population is taller than 180 cm?
 - (ii) If a person is chosen at random and is taller than 180 cm, what is the probability that the person is a woman?

QUESTION 33 (20 Marks) START A NEW PAGE

(a) A rocket is fired vertically upwards from point *C*. A monitoring station measures the distance *BD* to be 3000 m. Two seconds later the distance *AD* is measured to be 3200 m and $\angle ADB = 4^{\circ}$.

(i) Find the distance that the rocket moves from B to A (to the nearest m). 3

(ii) Calculate the speed of the rocket in km per hour.

2

Question 33 continued

(b) The following diagrams show the graphs of y = f(x) and y = g(x).

(i) Estimate the value(s) of:

(ii)

(α)	f(1) - g(1).	1
(β)	f(-2) - g(-2).	1
(a)	x where $f(x) = g(x)$	1
(i)	x where $f(x) - g(x)$.	2
Ske	etch the graph of $y = f(x) - g(x)$.	3

Label the *x*-intercepts and significant points.

Question 33 continued

(c) The diagram below shows a quadrilateral *ABCD*.

The equations of sides AD and CD are 13x - 9y + 54 = 0 and x - 3y - 12 = 0 respectively.

(i)	Use the equation $13x - 9y + 54 + k(x - 3y - 12) = 0$ to find the equation of the diagonal <i>BD</i> in general form.	3
(ii)	Show that <i>BD</i> passes through the midpoint of <i>AC</i> .	2
(iii)	Show that AC is perpendicular to BD.	2
(iv)	Hence explain with reasons why ABCD is a kite.	1

QUESTION 34 (20 Marks) START A NEW PAGE

(c)	Solve: $2\sin\theta = \tan\theta$ for $0^\circ \le \theta \le 360^\circ$	4
(C)	Solve: $2\sin\theta = \tan\theta$ for $0 \ge \theta \ge 300^\circ$.	4
(d)	(i) Calculate the shortest distance from the point (1, -5) to the line $2x - y + 3 = 0$	2
	(ii) Find the equation of the circle with centre $(1, -5)$ that has the line $2x - y + 3 = 0$ as a tangent.	2
(e)	If $\frac{a}{x+y} = \frac{b}{y-z} = \frac{c}{z+x}$ prove that $a = b + c$	2
	$x + y - y - \zeta - z + x$	

Mark

/30

/20

/20

/20

/20

/110

	Year 10 Yearly Solution	23	2007
Q31 (a)	(2.3+2.8)2 = 6.304644	ľ	1 correctanswer
	J2:3+7.4 = 6:30 (2dP)	(2)	10 correct d.P
(6)	LOS 150° = - V3	D	@ Ro- 53/2
(0)	$1 - \frac{(1 - \frac{1}{a})}{1 - \frac{1}{a}} = 1 - \frac{(a - 1)}{a}$	-	() for neg sign
e	$(a - h_a)$ $(a - h_a)$		O for fractions on
	$= 1 - (a - 1) \frac{a}{a}$	-	common denominata
	0- (<u>R</u> -1)(44)	1	() simplifying
1.1	$= 1 - \overline{a} + 1$		Fractions
,	$= \frac{a+1-1}{a+1} = \frac{a+1}{a+1}$	3	O connect answer.
(d)	1 + SINX 1 + SINX	_	
	1+tamix		@ getting to cos2 xc
	$= \cos x + \sin x$		(various methods)
	= /	3	O omswer.
(e)	$x = \sqrt{6xt/2}$		
	x2= 6x+1		•
	$)c^{2}-(x-1=0)$		O quad equation
	$\chi = 6 \pm \sqrt{36 + 4}$		O solution
	$x = \frac{6 + 140}{2} \text{RS } x > 0$		
	7= 3+50	(3)	10 single corrections
(F)	2 Construct WX AC and	-	
	L ZY. IN A ABC		
	WX I/AC and WX = 2 AC		\mathcal{O}
	2 " (Interval foring mudpoints	-	D
	of two sides of a triangle is half the		· · · · · · · · · · · · · · · · · · ·
	length and parallel to the third side		
	Sumularly in A ADC ZY 1/AC, ZY= AC		
	: WXIIZY and WX=ZY		
	: WXZY is a parallelogram (2rides		Ø
	equal and paramet		
	parellel ogram busect each other)	(4)	0

$$\begin{array}{c} \begin{array}{c} \left(g\right) & \left(f\right) & f\left(f\right) & g\right) & f\left(f\right) & f\left(f\right) & g\right) & g\left(f\right) & f\left(f\right) & f\left(f\right)$$

· · ·

(e) $\frac{a}{\pi + y} = \frac{b}{y - z} = \frac{c}{z + x}$ $b = \frac{a(y - z)}{x + y}$ $c = \frac{a(z + x)}{x + y}$ 34(6) Oblique Assymptote - y=x+4 x+4 2-3) 12+21-2 0 x2-3x b+c = a(y-z) + a(z+x) $\frac{y+y}{x+y} = x+y$ 4×-2. 4-26-12 = a(y-z+z+x) = a(y+x) - (x+y) - (x+y) = (x+y) = (x+y) - (x+y) = (x+y8-3 4=>+++ :. a=b+c 1 D for complete 0 vert ast proof. 0 obliguast 14 5,14) 3 12 × intercepts yintercepts shape/aves/ 0 18 0 scale and Position of top branch. 0 12345678 1-43.2.0 2 sin @ = tan 0 (C)_ 251n = 5170 (coso = 0) 2SINDCOSO = SIND D sind (20050-1)=0 SING= O or COS Q= 2 O Q=0°, 180°, 360°, 60°, 300° 3 solutions 6 $\begin{pmatrix} d \end{pmatrix} \begin{pmatrix} u \\ d \end{pmatrix} = \begin{vmatrix} a x_1 + b y_1 + c \\ \sqrt{a^2 + b^2} \end{vmatrix} = \frac{2(1) - 1(-s) + 3}{\sqrt{a^2 + b^2}}$ O correct formula + substitution = 10 = 255. 2 O distance (ii) circle (2-1) + (y+5) = 20 2 O centre (radios)