SECTION B

QUESTION 31 (20 Marks) START A NEW PAGE
(a) Calculate the value of $\frac{(2.3+2.8)^{2}}{\sqrt{2.3 \times 7.4}}$ to 2 decimal places.

Marks
2
(b) What is the exact value of $\cos 150^{\circ}$?
(c) Write as a single simplified fraction: $1-\frac{\left(1-\frac{1}{a}\right)}{\left(a-\frac{1}{a}\right)}$
(d) Simplify: $\frac{1}{1+\tan ^{2} x}+\sin ^{2} x$
(e) Solve for $x: \sqrt{6 x+1}=x$

Give your answer in simplified surd form.
(f) $\quad A B C D$ is a quadrilateral with midpoints W, X, Y, Z as shown in the diagram below.

Copy the diagram and prove that the lines joining the midpoints of the opposite sides bisect each other, giving reasons.
(g) Twenty tickets are sold in a raffle. There are 3 prizes.

First prize is $\$ 30$, second prize is $\$ 20$ and third prize is $\$ 10$.
John has bought 2 tickets.
What is the probability that John wins:
(i) The $\$ 10$ prize only?
(ii) Exactly $\$ 30$ in prizes?
(a) $A B C D$ is a rhombus with diagonals $A C=12 \mathrm{~cm}$ and $B D=9 \mathrm{~cm}$.

Construct $A B C D$ accurately using a ruler and compasses only.
Show all construction lines.
(b) Find the exact value of $\sin ^{2} 75^{\circ}$, given that $\sin 15^{\circ}=\frac{\sqrt{3}-1}{2 \sqrt{2}}$.

Write your answer as a single simplified fraction.
(c) $\quad A B C$ is a triangle. The circle through A and B cuts $A C$ at P and $B C$ at Q so that $\angle B Q P=2 \times \angle C P Q$.

Copy the diagram and prove that $A B=A C$.
(d) The weight of an object varies inversely as the square of its distance from the centre of the Earth.
(i) Write an equation relating the weight (W) of an object to its distance (d) from the centre of the Earth.

(ii) A body which weighs 72.0 units on the ground weighs 67.7 units at a height of 200 km above the Earth's surface. Calculate the radius (r) of the earth in km to 3 significant figures.
(e) Sketch the graph of $y=1-2 \sin x$ for $0^{\circ} \leq x \leq 360^{\circ}$.

Show all intercepts with the x and y axes.
(f) In a particular town 60% of the population are women.
4% of the men and 1% of the women are taller than 180 cm .
(i) What percentage of the town's population is taller than 180 cm ?
(ii) If a person is chosen at random and is taller than 180 cm , what is the probability that the person is a woman?

QUESTION 33 (20 Marks) START A NEW PAGE

(a) A rocket is fired vertically upwards from point C.

A monitoring station measures the distance $B D$ to be 3000 m . Two seconds later the distance $A D$ is measured to be 3200 m and $\angle A D B=4^{\circ}$.

(i) Find the distance that the rocket moves from B to A (to the nearest m).
(ii) Calculate the speed of the rocket in km per hour.
(b) The following diagrams show the graphs of $y=f(x)$ and $y=g(x)$.

(i) Estimate the value(s) of:
($\alpha) \quad f(1)-g(1)$.
(β) $\quad f(-2)-g(-2)$.
$(\gamma)=1$
$(\gamma) \quad x$ where $f(x)=g(x)$.
(ii) Sketch the graph of $y=f(x)-g(x)$. 3

Label the x-intercepts and significant points.
(c) The diagram below shows a quadrilateral $A B C D$.

The equations of sides $A D$ and $C D$ are $13 x-9 y+54=0$ and $x-3 y-12=0$ respectively.
(i) Use the equation $13 x-9 y+54+k(x-3 y-12)=0$ to find the equation of the diagonal $B D$ in general form.
(ii) Show that $B D$ passes through the midpoint of $A C$.
(iii) Show that $A C$ is perpendicular to $B D$.
(iv) Hence explain with reasons why $A B C D$ is a kite.

QUESTION 34 (20 Marks) START A NEW PAGE

(a) Find all real solutions for the equation $x^{4}-x^{2}-12=0$
(b) Sketch the graph of $y=\frac{x^{2}+x-2}{x-3}$.

Clearly label the intercepts with the coordinate axes and all asymptotes.
(c) Solve: $2 \sin \theta=\tan \theta$ for $0^{\circ} \leq \theta \leq 360^{\circ}$.
(d) (i) Calculate the shortest distance from the point $(1,-5)$ to the line

$$
2 x-y+3=0
$$

(ii) Find the equation of the circle with centre $(1,-5)$ that has the line $2 x-y+3=0$ as a tangent.
(e) If $\frac{a}{x+y}=\frac{b}{y-z}=\frac{c}{z+x}$ prove that $a=b+c$

YEAR 10

YEARLY 2007 EXAMINATION ANSWER SHEET
SECTION A: 30 QUESTIONS [1 MARK EACH]
NAME: ANSWERS
CLASS: \qquad

Question	Mark
Section A $1-30$	$/ 30$
Section B 31	$/ 20$
32	$/ 20$
33	$/ 20$
34	$/ 110$
Total	

HAND IN SEPARATELY AT THE END OF EXAM

34(b) Oblique Assymptoke $y=x+4$

$$
x - 3 \longdiv { \frac { x ^ { 2 } + x + 4 } { 2 } }
$$

$$
\frac{x^{2}-3 x}{4 x-2}
$$

(c)

$$
\begin{aligned}
& 2 \sin \theta=\tan \theta \\
& 2 \sin \theta=\frac{\sin \theta}{\cos \theta} \\
& 2 \sin \theta \cos \theta=\sin \theta \quad(\cos \theta \neq 0) \\
& \sin \theta(2 \cos \theta-1)=0 \\
& \sin \theta=0 \text { or } \cos \theta=\frac{1}{2} \\
& \theta=0^{\circ}, 180^{\circ}, 360^{\circ}, 60^{\circ}, 300^{\circ}
\end{aligned}
$$

(d)

$$
\begin{aligned}
(i) & =\left|a x_{1}+b y_{1}+c\right|=\frac{2(1)-1(-5)+3}{\sqrt{a^{2}+1^{2}}} \\
& =\frac{10}{\sqrt{5}}=2 \sqrt{5} .
\end{aligned}
$$

(ii) curcle

$$
(x-1)^{2}+(y+5)^{2}=20
$$

(e)
(1) vert as't
(1) obliquast
(2) x intercepts
(1) yinkercepts
(1) shapp/axes/ scale and position of
(2) Solutions
(1) correct formula +subshition
(2) (1) distance
(2) (1) centre
(1) (radios) ${ }^{2}$

$$
\left.\begin{array}{l}
\frac{a}{x+y}=\frac{b}{y-z}=\frac{c}{z+x} \\
b=\frac{a(y-z)}{x+y} \quad c=\frac{a(z+x)}{x+y} \\
b+c
\end{array}=\frac{a(y-z)}{x+y}+a \frac{(z+x)}{x+y}\right)=\frac{a(y-z+z+x)}{(x+y)}=a(y+x) .
$$

(2) (1) for complete proof.

