James Ruse 2008 Year 10 Final Examination

SECTION A 30 Marks (1 mark each)

1. The expression $(a-b)^{2}-\left(a^{2}-b^{2}\right)$ can be simplified to
A $-2 b^{2}$
B $2 b^{2}$
C $2 b(b-a)$
D $2 b(a-b)$
2. The value of $\sqrt{\frac{2.8+1.4}{6.2 \times 0.02}}$ rounded to 2 decimal places is
A 5.82
B 1.67
C 0.12
D 3.75
3. The solution to the equation $\left(x^{2}+8 x+16\right)\left(x^{3}-9 x\right)=0$ is $x=$
A $-4,-3,0$ or 3
B $-4,-3,0,3$ or 4
C $-4,-3,1,3$ or 4
D $-4,0,4$ or 9
4. If $\cos x^{\circ}=2 \cos 60^{\circ}$, then a solution for x is
A 0°
B 60°
C 90°
D 120°
5. Which of the following graphs has an equation of the form

$$
y=a x^{2}+b x, \text { where } a<0 \text { and } b>0 ?
$$

6. The statement "Twelve more than half a number n is five less than the square of the number" may be represented by
A $\frac{n}{2}+12=n^{2}-5$
B $\frac{n}{2}+12=(n-5)^{2}$
C $\frac{n+12}{2}=n^{2}-5$
D $\frac{n+12}{2}=(n-5)^{2}$
7. The set of unequal positive scores a, b, c, d, e, f is listed in order of size, with a being the smallest. If a is decreased by 10% and f is increased by 10% then the
A Mean and the median both increase.
B Mean and the median remain unchanged.

C Mean increases but the median is unchanged.
D Mean is unchanged but the median increases.
8. If $x^{\circ}+y^{\circ}=90^{\circ}(0<x<90,0<y<90, x \neq y)$ then
A $\sin x^{\circ}+\sin y^{\circ}=1$
B $\sin ^{2} x^{\circ}+\cos ^{2} y^{\circ}=1$
C $\cos \left(x^{\circ}+y^{\circ}\right)=1$
D $\sin x^{\circ}=\cos y^{\circ}$
9. The solution set for $2-x \leq \frac{1}{2}(5-2 x)$ is
A $\{x: x \geq 0, x \in R\}$
B $\left\{x: x \geq-\frac{1}{4}, x \in R\right\}$
C $\}$
D $\{x \in R\}$
10. In the diagram below the value of x is

A 100
B 130
C 140
D 150
11. The relative frequency of the letter \mathbf{S} in the statement MATHS IS FUN is
A 2
B 0.2
C $\frac{2}{9}$
D 5 and 7
12. For the relation $S=\{(1,2),(2,3),(3,4),(4,5)\}$, the domain of S is
A \{positive integers $\}$
B $\{1,2,3,4\}$
C $\{1,2,3,4,5\}$
D $\{2,3,4,5\}$
13. If $M=\sqrt{\frac{N}{2 L^{2}}}$ and $L>0$ then $L=$
A $\sqrt{\frac{N}{2 M}}$
B $\frac{1}{M} \sqrt{\frac{N}{2}}$
C $\frac{\sqrt{2 N}}{M}$
D $\frac{2}{M} \sqrt{N}$
14. The experimental data obtained by a laboratory test are recorded in the table below.

\boldsymbol{P}	5	10	25	30	40
\boldsymbol{Q}	4	16	100	144	256

What is the relationship between P and Q ?
A $P \propto Q$
B $P \propto Q^{2}$
C $P \propto \sqrt{Q}$
D $P \propto \frac{1}{Q^{2}}$
15. The region representing the solution to $\{(x, y): y \geq 2 x+1\} \cap\{(x, y): y+x \leq 2\}$ is

A \boldsymbol{A}
В \boldsymbol{B}
C C
D \boldsymbol{D}
16. The graphs of $y=3+4 x-x^{2}$ and $y=K$ have only one point in common. The value of K is
A -1
B 1
C 4
D 7
17. $\sin 120^{\circ}+\cos 210^{\circ}=$
A $\sqrt{3}$
B $\frac{\sqrt{3}}{2}-\frac{1}{2}$
C 0
D $\frac{1-\sqrt{2}}{2}$
18. The following graphs represent functions $y=f(x)$ and $y=g(x)$.

The equation $f(x)=g(x)$ has
A Two positive solutions.
B Two positive solutions and one negative solution.
C Two negative solutions.
D One positive and one negative solution.
19. Which of the following equations describes a circle?
A $x^{2}+4 x+y^{2}+9=0$
B $x^{2}+4 x+y^{2}-9=0$
C $x^{2}+4 x-y^{2}+9=0$
D $x^{2}-4 y+y^{2}+9=0$
20. The time taken (T weeks) to build a road is directly proportional to the length of the road (L metres) but inversely proportional to the number of men (M) working on it. Which of the following formulae is correct where k and c are constants?
A $T=k L M$
B $T=k \frac{M}{L}$
C $T=k L+c M$
D $T=k \frac{L}{M}$
21. $\frac{x-y^{-1}}{x^{-1}-y}=$
A $\frac{-x}{y}$
B $\frac{y}{x}$
C $\frac{x}{y}$
D $\frac{-y}{x}$
22. The same class sat for three tests in English, Mathematics and Science. Jill's results are shown in the table below.

SUBJECT	CLASS MEAN	CLASS STANDARD DEVIATION	JILL'S MARK
ENGLISH	65	10	80
MATHEMATICS	70	5	80
SCIENCE	55	20	85

Compared to the rest of the class Jill performed better in
A Mathematics than English.
B Science than English.
C Science than Mathematics.
D English than Science.
23. In the diagram below $B E=C E=6 \mathrm{~cm}$ and $\angle B A C=\angle C E D$.

The length of $A D$ is
A 9 cm
B 17 cm
C 20 cm
D 24 cm
24. A new model of a car costs $\$ P$ each to manufacture. It is sold for $\$ S$. So far a total of $\$ W$ has been spent on the advertising campaign and N cars have been sold. The percentage profit overall so far is
A $\frac{N S}{W+N P} \times 100$
B $\frac{N S-1}{W-N P} \times 100$
C $\frac{N S-W-N P}{W-N P} \times 100$
$\mathrm{D}\left(\frac{N S}{W+N P}-1\right) \times 100$
25. The graph of the function $y=b^{-x}$ passes through the point $\left(2, \frac{1}{4}\right)$. The value of b is
A $\frac{1}{4}$
B $\frac{1}{2}$
C 2
D 4
26. The number of solutions to the pair of simultaneous equations

$$
(x+2)^{2}+(y-3)^{2}=4 \text { and } 2 x-y-2=0 \text { is }
$$

A 0
B 1
C 2
D 4
27. $\frac{\left(2^{-x} \times 4^{2 x}\right)}{16^{\frac{-x}{4}}}=$
A $2^{-2 x^{2}}$
B $2^{2 x^{2}}$
C $2^{-4 x}$
D $2^{4 x}$
28. $A B$ is a tangent to a circle as shown in the diagram below. $B C=2 \mathrm{~cm}$ and $C D=5 \mathrm{~cm}$.

The length of $A B$ in centimetres is
A $\sqrt{10}$
B $\sqrt{14}$
C $\sqrt{20}$
D $\sqrt{35}$
29. The equations of two lines are $y=3 x+5$ and $6 x-2 y+7=0$.

The two lines are:
A Perpendicular to each other.
B Parallel but not the same line.
C The same line.
D Neither parallel nor perpendicular.
30. R is the point with coordinates $(6,0)$.

The area of the shaded rectangle in square units is
A 20
B 24
C 28
D 60

END OF SECTION A

QUESTION 31 (20 Marks) START A NEW PAGE

a) If $\sqrt{27}+\sqrt{12}=\sqrt{x}$, find the value of x, showing intermediate working.

2
b) Find all solutions, for $0^{\circ} \leq x^{\circ} \leq 360^{\circ}$, of $2 \sin ^{2} x+15 \cos x-9=0$. 4
c) A triangle with two adjacent sides of length 12 cm and 14 cm has an area of $70 \mathrm{~cm}^{2}$. What, to the nearest minute, is the angle between the two sides?
d) Find rational numbers a and b if $\frac{\sqrt{3}-4}{2+3 \sqrt{3}}=a+b \sqrt{3}$.
e) Draw a neat sketch of $y=2-\cos 2 x^{\circ}$ for $0^{\circ} \leq x^{\circ} \leq 360^{\circ}$.
f) Let $A B P Q C$ be a circle such that $A B=A C, A P$ meets $B C$ at X and $A Q$ meets $B C$ at Y, as shown in the diagram. Let $\angle B A P=\alpha$ and $\angle A B C=\beta$.
i) Copy the diagram and state why $\angle A X C=\alpha+\beta$.

$$
1
$$

ii) State why $\angle B Q P=\alpha$. 1
iii) Prove that $\angle B Q A=\beta$.2
iv) State why $P Q Y X$ is a cyclic quadrilateral. $\mathbf{1}$

QUESTION 32 (20 Marks) START A NEW PAGE

a) A new car, valued at $\$ 20000$, loses 10% of its value on first leaving the car yard and then depreciates by 5% each year. What is the value, to the nearest dollar, of the car after 3 years?
b) A ship A, sailing in a straight line with constant speed, is 10 nautical miles SW of a harbour H from which ship B is just leaving. B sails for two hours at 8 knots (8 nautical miles/hour) in a direction $105^{\circ} \mathrm{T}$ at which time ships A and B collide.
i) Draw a diagram with this information shown on it.
ii) Show that the distance travelled by A in the two hours is 22.7 n.m.(1DP) $\mathbf{2}$
iii) Find the bearing (to the nearest degree) on which ship A was travelling? $\quad \mathbf{2}$

QUESTION 32 (continued)

c) The points A, B and C have coordinates $(2,2),(1,10)$ and $(8,6)$ respectively. The angle between the line $A C$ (extended if necessary) and the x axis is θ.
i) Draw the points A, B and C on a suitable diagram and find the gradient of the line $A C$.
ii) Calculate the size of angle θ to the nearest minute.
iii) Find the equation of the line $A C$.
iv) Find the coordinates of D , the midpoint of $A C$.
v) Show that $A C$ is perpendicular to $B D$. $\mathbf{2}$
vi) Find the area of triangle $A B C$.
vii) Write down the coordinates of a point E such that $A B C E$ is a rhombus.

2

QUESTION 33 (20 Marks) START A NEW PAGE

Marks
a) \quad Find the values of x and y if $3^{x+y}=27$ and $4^{x-y}=8$ simultaneously. 3
b) If $\sin \theta=8 / 17$, find two possible values of $\tan \theta+\sec \theta$.
c) i) Use long division to divide $P(x)=3 x^{3}-2 x^{2}-5 x-1$ by $D(x)=x^{2}+1$ and express your answer in the form

$$
\begin{equation*}
P(x)=D(x) Q(x)+R(x) \tag{3}
\end{equation*}
$$

where $R(x)$ is the remainder polynomial.
ii) $\quad F(x)$ is a polynomial which gives a remainder of 7 when it is divided by $(x-2)$ and a remainder of 3 when it is divided by $(x+2)$. Find the remainder polynomial when $F(x)$ is divided by $x^{2}-4$.
d) Tangents from the origin O touch the circle $(x-4 \sqrt{3})^{2}+(y-4)^{2}=16$ at two points.
i) Prove that the x axis is a tangent to the circle and write down the coordinates of A, the point of contact of the circle with the x axis.
ii) The other tangent from O touches the circle at B. Show that the angle $A O B$ is 60° and hence that triangle $O A B$ is equilateral. (Any congruences used must be clearly stated but need not be proved.)
iii) $\quad P$ is a point on the major arc $A B$ of the circle. Find the size of the angle $A P B$.

QUESTION 34 (20 Marks) START A NEW PAGE

a) Find the minimum value of $2 x^{2}-5 x+3$.
b) If A and B are the points $(1,2)$ and $(5,6)$ respectively, find the point C which divides the interval $A B$ externally in the ratio 3:1. Show your answer on a sketch, illustrating the meaning of external division in this case.
c) Prove that $\frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta}=2 \cos ^{2} \theta-1$
d) Consider the curve of $y=\frac{(1-x)(2 x+5)}{(x+1)(x-5)}$.
i) Write down the equation of the horizontal asymptote to the curve and determine any point(s) where the curve crosses this asymptote.
ii) Sketch the curve, clearly showing any asymptotes, intercepts and other point(s) of interest.
iii) How many solutions are there to the equation $\frac{(1-x)(2 x+5)}{(x+1)(x-5)}=2^{-x}$?

Explain your answer with reference to your sketch.
e) Show that, for $n=1,2,3 \ldots$, the number $n^{4}+2 n^{3}+2 n^{2}+2 n+1$ can never be the square of an integer.

3

2

3

3

2008 IEAKGU,
Sectron A

(31)

$$
\text { a) } \begin{align*}
\sqrt{27}+\sqrt{12} & =3 \sqrt{3}+2 \sqrt{3} \\
& =5 \sqrt{3} \\
& =\sqrt{75} \\
\therefore x & =75 \tag{2}
\end{align*}
$$

b)

$$
\begin{gather*}
2\left(1-\cos ^{2} x\right)+15 \cos x-9=0 \\
2 \cos ^{2} x-15 \cos x+7=0 \\
(2 \cos x-1 x \cos x-7)=0 \\
\cos x=7(\text { impossible) or } 1 / 2 \\
\therefore x^{\circ}=60^{\circ} \text { or } 300^{\circ} \tag{4}
\end{gather*}
$$

c) Area $=\frac{1}{2} a b \sin C$

$$
\therefore 70=\frac{1}{2} 12 \cdot 14 \cdot \sin C
$$

$$
\therefore \sin C=\frac{10}{12}=\frac{5}{6}
$$

$$
C=56^{\circ} 27^{\prime} \text { or } 123^{\circ} 33^{\prime}
$$

$$
\therefore c=56^{\circ} 27^{\prime}\left(a_{\text {cute }}\right)
$$

d)

$$
\begin{align*}
\frac{(\sqrt{3}-4)(2-3 \sqrt{3})}{(2+3 \sqrt{3})(2-3 \sqrt{3})} & =\frac{14 \sqrt{3}-17}{4-27} \\
& =+\frac{17}{23}-\frac{14 \sqrt{3}}{23} \\
& =a+b \sqrt{3} \tag{3}
\end{align*}
$$

if $a=\frac{17}{23}, b=-\frac{14}{23}$
e)

f) i) $A X C=\alpha+\beta$ (External angle or triangle equals the sum of the two remote interior angles) (1)
ii) $\angle B Q P=\angle B A P=\alpha$ (Angles at the circumference standing on the same are of the circe are equal)
$\therefore \therefore$) $\angle A C B=\beta$ (Angles opposite equal sides in $\triangle A B C$ are equal)

$\therefore \angle A Q B=\beta$ (Angles at the circumference standing on the same are ($A B$) are equal.)
iv) $P Q Y X$ is cyclic as $\angle Y Q P=\angle Y X A$ (External angle of quadrilateral equals the oppointe interior angle)
(32) a) After deliver, value $=\$ 18000$ after 3 years, value $=\$ 18000\left(\frac{95}{100}\right)^{3}$

ii) Cosine Rule

$$
\text { ii) } \begin{align*}
& A B^{2}=10^{2}+16^{2}-2 \cdot 10.16 \cdot \cos 120^{\circ} \tag{2}\\
&=100+256+160 \tag{2}\\
&=516 \\
& \therefore A B=\sqrt{516}=22 \cdot 7(\mathrm{n} . \mathrm{m}) \\
&(1 \mathrm{DP})
\end{align*}
$$

iii) Let $\angle H A B=\theta$

$$
\begin{aligned}
\frac{\sin \theta}{16} & =\frac{\sin 120^{\circ}}{\sqrt{516}} \\
\sin \theta & =0.6100 \\
\theta & =38^{\circ} \quad \text { (nearest degree) }
\end{aligned}
$$

b) i)

(32)c) 10 (1)
i) $m_{A C}=\frac{6-2}{8-2}=\frac{4}{6}=2 / 3$
ii) $\tan \theta=2 / 3 \therefore \theta=33^{\circ} 41^{\prime}$
ii) $A C$ is the lime

$$
\begin{align*}
y-2 & =\frac{2}{3}(x-2) \\
3 y-6 & =2 x-4 \\
3 y & =2 x+2 \tag{1}
\end{align*}
$$

iv) D is $\left(\frac{8+2}{2}, \frac{6+2}{2}\right)=(5,4)$
v) $m_{B D}=\frac{10-4}{1-5}=-\frac{3}{2}$

$$
\begin{equation*}
m_{B D} m_{A C}=-\frac{3}{2} \cdot \frac{2}{3}=-1 \tag{2}
\end{equation*}
$$

- $B D \perp A C$.
v)

$$
\begin{aligned}
& A C=\sqrt{(8-2)^{2}+(6-2)^{2}}=\sqrt{52} \\
& B D=\sqrt{(10-4)^{2}+(5-1)^{2}}=\sqrt{52}
\end{aligned}
$$

Area $\triangle A B C=\frac{1}{2} A C \cdot B D=\frac{1}{2} \sqrt{52} \sqrt{52}$

$$
\begin{equation*}
=26 \mathrm{gq} \text { mint } \tag{3}
\end{equation*}
$$

vii) D is the midpoint of $B E$

$$
\begin{equation*}
\therefore E=(9,-2) \tag{2}
\end{equation*}
$$

(33) $3^{x+y}=3^{3}$

$$
2^{2(x-y)}=2^{3}
$$

$$
\begin{array}{r}
\left.\begin{array}{r}
x+y=3 \\
2 x-2 y=3
\end{array}\right\}(1) \\
2 x+2 y=6 \\
4 x=9 \quad(2)+ \\
\therefore x=9 / 4 \\
\therefore y=3-9 / 4=3 / 4
\end{array}
$$

$$
\begin{equation*}
\therefore x=9 / 4, y=3 / 4 \tag{3}
\end{equation*}
$$

b) $\sin \theta=8 / 17$

$$
\begin{align*}
\cos ^{2} \theta & =1-\sin ^{2} \theta \\
& =1-\frac{64}{289} \\
& =\frac{225}{289} \\
\therefore \cos \theta & = \pm \frac{15}{17} \\
\sec \theta & = \pm \frac{8}{15} \pm \frac{17}{15} \tag{3}\\
& = \pm \frac{25}{15}= \pm \frac{5}{3}
\end{align*}
$$

$$
\therefore \tan \theta+\sec \theta= \pm \frac{8}{15} \pm \frac{17}{15}
$$

c)

$$
\begin{align*}
& \text { c) } \begin{aligned}
& 3 x-2 \\
& x^{2}+1 \begin{array}{l}
3 x^{3}-2 x^{2}-5 x-1 \\
\\
\\
\frac{3 x^{3}+3 x}{-2 x^{2}-8 x} \\
\frac{-2 x^{2}-2}{-8 x+1}
\end{array} \\
& \therefore \frac{\left(3 x^{3}-2 x^{2}-5 x-1\right)=\left(x^{2}+1\right)(3 x-2)+(-8 x+1)}{P(x)}=(x)(x)+R(x)
\end{aligned}
\end{align*}
$$

ii) By remainder theorem
$F(2)=7$ and $F(-2)=3$
Divisor of degree 2 thus remainder could be of degree ((or 0). Say $R(x)=a x+b$.

$$
\begin{aligned}
& F(x)=\left(x^{2}-4\right) Q(x)+a x+b \\
&=(x-2)(x+2) Q(x)+a x+b \\
& \operatorname{But}(2)=2 a+b=7 \\
& F(2)
\end{aligned}
$$

$$
\begin{equation*}
F(-2)=-2 a+b=3 \tag{3}
\end{equation*}
$$

Solving, $b=5, a=1$
\therefore Remanider is $-x+5$
d) i) Circle has radius 4, centre $(4 \sqrt{3}, 4)$
Distance from centre to $y=0$ is $\frac{4}{\sqrt{1}}=\frac{4}{1}$ which is the radium. Thus $y=0$ is a. tangent to the circe. Point o) contact is $y=0 \Rightarrow$

$$
\begin{equation*}
x=4 \sqrt{3} \tag{3}
\end{equation*}
$$

A is $(4 \sqrt{3}, 0)$

$\angle C A O=90^{\circ}$ (Radius forms a 90° with al tangent)
$\therefore \tan C O A=\frac{4}{4 \sqrt{3}}=\frac{1}{\sqrt{3}}$

$$
\therefore C O A=30^{\circ}
$$

$\triangle O B C \equiv \triangle O A C$ (sss) (since $O B=\Delta A$-tangents from and exterior point equal).
$\therefore \angle B O C=30^{\circ}$ (Comesponding angles in congruat triangles are equal.

$$
\angle B O A=30^{\circ}+30^{\circ}=60^{\circ}
$$

But $O B=O A$ (above) so $\triangle O A B$ is isosceles. (
Thus $\angle O B A=\angle O A B$ (angles opposite equal sides are equal.
But. $\angle O A B+\angle O B A=120^{\circ}$

$$
\begin{equation*}
\therefore \angle O A B=\angle O B A=\angle B O A=60^{\circ} \tag{3}
\end{equation*}
$$

Thus $\triangle O A B$ is equilateral.
ii) $\angle B C A=120^{\circ}$ (sim of angles of quadrilateral $O A C B=360^{\circ}$)
$\therefore \angle A P B=60^{\circ}$ (Angle at the cirmiference is $1 / 2$ angle at the centre when standir on the same are.)
(34) a)

$$
\begin{align*}
2 x^{2}-5 x+3 & =2\left(x^{2}-\frac{5 x}{2}\right)+3 \\
& =2\left(\left(x-\frac{5}{4}\right)^{2}-\frac{25}{16}\right)+3 \\
& =2\left(x-\frac{5}{4}\right)^{2}-1 / 8 \tag{2}
\end{align*}
$$

\therefore Minimum value is $-1 / 8$. (since $(x-5 / 4)^{2} \geqslant 0$)
b) Use ratio 3:-1 in normal formula:

$$
\begin{equation*}
C=\left(\frac{3 \times 5-1 \times 1}{3+-1}, \frac{3 \times 6-1 \times 2}{3+1}\right) \tag{2}
\end{equation*}
$$

c)

$$
\begin{align*}
\frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta} & =\frac{1-\frac{\sin ^{2} \theta}{\cos ^{2} \theta}}{1+\frac{\sin ^{2} \theta}{\cos ^{2} \theta}} \\
& =\frac{\cos ^{2} \theta-\sin ^{2} \theta}{\cos ^{2} \theta+\sin ^{2} \theta} \\
& =\frac{\cos ^{2} \theta-\left(1-\cos ^{2} \theta\right)}{1} \\
& =2 \cos ^{2} \theta-1 \tag{3}
\end{align*}
$$

d)i) Horizontal Ass. $y=-2$

$$
\begin{align*}
\frac{(1-x)(2 x+5)}{(x+1)(x-5)} & =-2 \tag{1}\\
-2 x^{2}-3 x+5 & =-2\left(x^{2}-4 x-5\right) \\
-2 x^{2}-3 x+5 & =-2 x^{2}+8 x+10 \\
11 x & =-5
\end{align*}
$$

Crosses asymptote at $\left(-\frac{5}{11},-2\right)$
Vertical Asymptotes at $x=-1, x=5$ x intercepts at $(1,0),(-5 / 2,0)$ y intercept at $(0,-1)$ [No other crossing allowed]
(34) (cont)

iii) $y=2^{-x}$ is dram en on to the sketch. It will cross original graph at 2 points. Thus there will be 2 solutions to green equation. (Asymptotes ensure that there are no further crossing p).
e)

$$
\begin{align*}
n^{4}+2 n^{3}+2 n^{2}+2 n+1 & =\left(n^{4}+2 n^{3}+n^{2}\right)+\left(n^{2}+2 n+1\right) \tag{2}\\
& =\left(n^{2}+1\right)\left(n^{2}+2 n+1\right) \\
& =\left(n^{2}+1\right)(n+1)^{2} \\
& >n^{2}(n+1)^{2}=[n(n+1)]^{2}
\end{align*}
$$

So our expression is bigger than the square of $n(n+1)$. Now consider $(n(n+1)+1)$.

$$
\begin{aligned}
(n(n+1)+1)^{2} & =\left(n^{2}+n+1\right)^{2} \\
& =n^{4}+2 n^{3}+3 n^{2}+2 n+1 \\
\therefore n^{4}+2 n^{3}+2 n^{2}+2 n+1 & <(n(n+1)+1)^{2}
\end{aligned}
$$

is. Our expression is less than the square of $n(n+1)+1$
ie. it is sandwiched between the squares of two consecutive integers and hence canst be the square δ an integer itself.

