YEAR 10 YEARLY PART A

SECTION A - 30 Marks (1 mark each)

1. Solve $3-2 x<7$
A $\quad x<-2$
B $\quad x>-2$
C $\quad x<2$
D $\quad x>2$
2. $x^{\frac{3}{4}}$ is equivalent to:
A $\sqrt[3]{x^{4}}$
B $\sqrt[4]{x^{3}}$
C $\frac{3}{x^{4}}$
D $\frac{x^{3}}{4}$
3. If $\cos x^{\circ}>0$ and $\tan x^{\circ}<0$, then
A $0<x<90$
B $\quad 90<x<180$
C $180<x<270$
D $\quad 270<x<360$
4. Sarah borrowed $\$ 2500$ from a bank for 3 years. She was charged simple interest on the loan. Altogether she repaid $\$ 3287.50$. What was the rate of interest charged per annum?
A 7.98%
B 10.5%
C 23.95%
D 31.5%
5.

The equation of the line l through the origin and perpendicular to the line PQ is

A $y=4 x$
B $y=-4 x$
C $y=\frac{1}{4} x$
D $y=-\frac{1}{4 x}$
6. What is the reciprocal of $\left(\frac{1}{a}+2 a\right)$?
A $\frac{a}{1+2 a^{2}}$
B $\frac{1+2 a^{2}}{a}$
C $\quad a+\frac{1}{2 a}$
D $\frac{1}{1+2 a}$
7. Solve $x^{2}+5 x-3=0$
A $\quad x=\frac{-5 \pm \sqrt{37}}{2}$
B $\quad x=\frac{5 \pm \sqrt{37}}{2}$
C $\quad x=\frac{-5 \pm \sqrt{13}}{2}$
D $\quad x=\frac{5 \pm \sqrt{13}}{2}$
8. Which equation represents the line through $(-3,2)$ parallel to $y=3-4 x$?
A $\quad y+2=-4(x+3)$
B $\quad y-2=-3(x+3)$
C $\quad y-2=-4(x+3)$
D $\quad y-2=3(x+3)$
9. Events A and B are subsets of the sample space S in which all outcomes are equally likely. If $n(A)=10, n(B)=15, n(S)=30$ and $P(A \cup B)=\frac{3}{5}$, then $n(A \cap B)$ is equal to:
A 7
B 9
C 18
D 25
10. The base of a triangle is twice as long as a side of a square and their areas are the same.

Then the ratio of the altitude of the triangle to the side of the square is:
A 1:4
B 1:2
C 1:1
D $2: 1$
11. At $2: 15 \mathrm{pm}$, the hour and minute hands of a clock form an angle of:
A 30°
B 5°
C $\quad 22 \frac{1^{\circ}}{2}$
D $7 \frac{1}{2}^{\circ}$
12. If $8.2^{x}=5^{y+8}$, then when $y=-8, x=$
A -4
B $\quad-3$
C 0
D 4
13. The graph $y=2 x^{2}+4 x+3$ has its

A lowest point at $(-1,1)$
B highest point at $(-1,1)$
C lowest point at $(-1,9)$
D highest point at $(-1,9)$
14. A straight line joins the points $(-1,1)$ and $(3,9)$. Its x-intercept is:
A $-\frac{3}{2}$
B $-\frac{2}{3}$
C $\frac{2}{5}$
D 2
15. The diameters of two circles are 8 cm and 12 cm respectively. The ratio of the area of the smaller to the area of the larger circle is:
A $2: 3$
B $1: 2$
C $\quad 9: 4$
D $4: 9$
16. When simplified, $\left(x^{-1}+y^{-1}\right)^{-1}$ is equal to:
A $x+y$
B $\frac{x y}{x+y}$
C $x y$
D $\frac{1}{x y}$
17.

PT is a tangent to the circle, centre O .
T is the point of contact.
What is the size of θ ?
A 32°
B 26°
C 64°
D 58°
18. If a worker receives a 20 percent cut in wages, he may regain his original pay exactly by obtaining a raise of:
A 20 percent
B $\quad 25$ percent
C $\quad \$ 20$
D $\quad \$ 25$
19.

Subject	Mean Mark	SD
English	50	6
Maths	60	8

What mark in Maths is equivalent to a mark of 62 in English?
A 68
B 66
C 76
D $\quad 74$
20. Water is poured into a container at a constant rate. The graph shows the depth of water in the container as it was being filled.

Which of the following containers could have been used?

A

B

21. $x^{-2} y^{\frac{1}{3}}=$
A $\quad \frac{x}{2 \sqrt[3]{y}}$
B $\quad \frac{2 \sqrt[3]{y}}{x}$
C $\frac{\sqrt[3]{y}}{x^{2}}$
D $\frac{x^{2}}{\sqrt[3]{y}}$
22. A square and an equilateral triangle have equal perimeters. The area of the triangle is $9 \sqrt{3} \mathrm{~cm}^{2}$. Expressed in centimetres, the diagonal of the square is:
A $\frac{9}{2}$
B $2 \sqrt{5}$
C $\quad 4 \sqrt{2}$
D $\frac{9 \sqrt{2}}{2}$
23. If the parabola $y=a x^{2}+b x+c$ passes through the points $(-1,12),(0,5)$ and $(2,-3)$, the value of $a+b+c$ is:
A $\quad-4$
B $\quad-2$
C 0
D 1
24.

From this diagram, which statement is correct?
A $\quad \frac{x}{\sin 70^{\circ}}=\frac{25}{\sin 30^{\circ}}$
B $\frac{x}{\sin 100^{\circ}}=\frac{25}{\sin 80^{\circ}}$
C $\frac{x}{\sin 70^{\circ}}=\frac{25}{\sin 50^{\circ}}$
D $\quad \frac{x}{\sin 70^{\circ}}=\frac{25}{\sin 80^{\circ}}$
25.

In $\triangle A B C, A B=8, B C=7, C A=6$ and side $B C$ is extended, as shown in the figure, to a point P so that $\triangle P A B$ is similar to $\triangle P C A$. The length of $P C$ is:
A 6
B $\quad 7$
C 8
D $\quad 9$
26. In $\triangle A B C, \angle B A C=60^{\circ}$ and $B C=9$. Find the length of the diameter of the circle.

Diagram not to scale
A $11 \frac{1}{2}$
B $\frac{9 \sqrt{3}}{2}$
C $\quad 12 \frac{1}{2}$
D $6 \sqrt{3}$
27. There are two natural ways to inscribe a square in a given isosceles right triangle. If it is done as in Figure 1 below, then one finds that the area of the square is $441 \mathrm{~cm}^{2}$. What is the area (in cm^{2}) of the square inscribed in the same $\triangle A B C$ as shown in Figure 2 below?

Figure 1

Figure 2
A 378
B 392
C 400
D 441
28. It takes 30 seconds to fill a 5 litre bucket with water. What is the rate of flow in litres per hour?
A 10
B 150
C 600
D 1200
29. A regular hexagon and a regular pentagon have a common edge as shown. Find the size of $<B A C$.

A 24°
B $\quad 30^{\circ}$
C $\quad 36^{\circ}$
D 45°
30. If x varies directly as the cube of y, and y varies directly as the fifth root of z, then x varies directly as the $n^{\text {th }}$ power of z, where n is:
A $\frac{1}{15}$
B $\frac{5}{3}$
C $\frac{3}{5}$
D 15
a) What is the exact value of $\cos \left(180^{\circ}-60^{\circ}\right)$? $\quad \mathbf{1}$
b) Solve $\cos x=1$ for $0^{0} \leq x \leq 360^{\circ} \quad 1$
c) Solve $2 x-7 \sqrt{x}=15$.
d) What is the domain and range of $y=-\sqrt{25-(x-2)^{2}}+3$?
e) Find the remainder when $\mathrm{P}(\mathrm{x})=x^{3}-2 x^{2}+x-1$ is divided by $(x+2)$.
f) A certain integer is between 10 and 100. Its value is 8 times the sum of its digits and if the integer is reduced by 45 , its digits are reversed. By forming a pair of simultaneous equations or otherwise find the integer.
g) i) Write down the centre and the radius of the circle with equation $(x+2)^{2}+(y+3)^{2}=4$.
ii) Find the shortest distance from the line $x-2 y-8=0$ to the centre of the circle in (i).
iii) Hence or otherwise determine the length of the chord cut off from the line by the circle.
(Giving reasons for your answer).

Question 32. (20 marks) Start a new page

a) $A B C D$ is a cyclic quadrilateral in which $A B / / D C$. Given that O is the centre of the circle, $\angle A O D=130^{\circ}, \angle C B D=20^{\circ}$ and $D C$ is produced to E :

i) Copy the diagram neatly and include all of the given information.
ii) Find the value of $<B C E$ giving full reasons.
b) i) Neatly draw the graph of $y=3 \sin 2 x$ for $0^{\circ} \leq x \leq 360^{0}$.
ii) State the amplitude and period for $y=3 \sin 2 x$.
iii) Solve $3 \sin 2 x=-3$ for $0^{0} \leq x \leq 360^{\circ}$.
c) i) On your answer sheet about 6 cm below your final answer for b) draw an 8 cm interval on your page. Label the interval $A B$.
ii) Construct using compass and ruler only a 60° angle with its vertex at A. Show all construction lines.
iii) Construct a perpendicular at B. Show all construction lines.
d) Solve $2^{2 n+2}-2^{2 n-1}=1792$.
e) Find the solution set to $6 k^{2}+13 k<8$.

Question 33. (20 marks) Start a new page

a) In the diagram below A is the point $(4,0)$ and B is $(9,0)$ find the coordinates of P; giving reasons.

b) A hill with a uniform slope is inclined at 14^{0} to the horizontal. From the bottom of the hill A, the angle of elevation of T, the top of a tower $T B$ standing on a hill is 25°. On moving 50 m up the hill to a point C, the angle of elevation of T is 55°.
i) Draw a neat diagram to represent this data. (Use a ruler).
ii) Find the size of $<A T C$.
iii) Find the length of $T A$ correct to one decimal place.
iv) Find the height of the tower $T B$ correct to two decimal places.

QUESTION 33 continued over the page!

c) $A B C D$ is a square with M the midpoint of $B C$ and N is the midpoint of $C D . A M$ and $B N$ intersect at P.
A
D

N
i) Draw the diagram neatly to represent this data. (mark on all given data).
ii) Prove $\triangle A B M \equiv \triangle B C N$.
iii) Prove $\triangle B P M / / / \triangle B C N$.
iv) Find the area of the quadrilateral $A P N D$ if $A B=10 \mathrm{~cm}$.

Question 34. (20 marks) Start a new page

a) Two dice are thrown. What is the probability of getting a sum under seven if it is known that at least one of the two dice shows a two?
b) It takes 45 hours for one cleaner to clean the school. How many hours are saved if six cleaners are cleaning the school at the same rate?
c) $A C$ is a tangent to the circle at $B . A E$ is a tangent to the circle at F. Given that $\angle \mathrm{CBD}$ is 63° and $<\mathrm{DFE}$ is 49°, find the values of x and y giving reasons.
A

d) Prove that $\cot A(\operatorname{cosec} A-\cot A)=\frac{\cos A}{1+\cos A}$
e) Solve $\sin ^{2} \theta-2 \sin \theta \cos \theta=8 \cos ^{2} \theta$ to the nearest minute for $-180^{\circ} \leq \theta \leq 180^{\circ}$
f) i) Write down the equation of the line through $L(-1,2)$ with gradient m.
ii) Hence, determine the equation of the line through L, if L divides the intercepts with the coordinate axis in the ratio $-2: 5$.

YEAR 10 YEARLY 2009 EXAMINATION

ANSWER SHEET

SECTION A: 30 QUESTIONS [1 MARK EACH]

NAME: \qquad
CLASS: \qquad
Mark the appropriate answer with an cross \mathbf{X}

1	A	\%	C	D
2	A	2	C	D
3	A	B	C	8
4	A	B	C	D
5	A	B)	D
6	A		C	D
7	<	B	C	D
8	A	B	8	D
9	-	B	C	D
10	A	B	8	D
11	A	B	8	D
12	A	18	C	D
13	A	B	C	D
14	*	B	C	D
15	A	B	C	-
16	A	决	C	D
17	A	2	C	D
18	A	D	C	D
19	A	B	8	D
20	A	面	C	D
21	A	B	d	D
22	A	B	C	W
23	A	B)	D
24	A	B	C	
25	A	B	C	
26	A	B	C	D
27	A	¢	C	D
28	A	B	¢	D
29	λ	B	C	D
30	A	B	20	D

Question	Mark
Section A	
$1-30$	$/ \mathbf{3 0}$
Section B	
31	$/ 20$
32	$/ 20$
33	$/ 20$
34	$/ \mathbf{1 1 0}$

Year 10 marly 2009

Question 31
a) $\begin{aligned} \cos \left(180^{\circ}-60^{\circ}\right) & =-\cos 60^{\circ}\left(\begin{array}{c}\text { mk } \\ \text { ingtor } \\ \text { inorg }\end{array}\right) \\ & =-1 / 2\end{aligned}$ $=-1 / 2$
for $0^{\circ} \leqslant x \leqslant 360^{\circ}$
b) $\cos x=1$ for $0^{\circ} \leqslant x \leqslant 360^{\circ}$ $x=0^{\circ}$ or $360^{\circ} \quad$ (1/2 each)

$$
\Rightarrow \quad 2 x-7 \sqrt{x}-15=0
$$

let $\sqrt{x}=m$

$$
\begin{align*}
\therefore & 2 m^{2}-7 m-15=0 \tag{lm}\\
& (2 m+3)(m-5)=0 \\
& m=-1 / 2 \quad \text { or } m=5 \\
& \sqrt{x}=-1 / 2 \text { or } \quad \sqrt{x}=5(1)
\end{align*}
$$ no realselution

($12 \times x$) as $\sqrt{x} \geqslant 0$

$$
\therefore x=25
$$

$$
\left(y_{2} m k\right)^{\circ n} y
$$

gui) centre is $(-2,-3)$
(Ink)
radius is 2
ii) $d=\left|\frac{1 x-2+-2 x-3-8}{\sqrt{1+4}}\right|$

$$
\begin{equation*}
=\frac{|-2+6-8|}{\sqrt{5}} \tag{imk}
\end{equation*}
$$

$$
=\frac{4}{\sqrt{5}}
$$

$=\frac{4 \sqrt{5}}{5}$ units
(ink)

\Rightarrow

$$
\begin{align*}
& y=-\sqrt{25-(x-2)^{2}}+3 \\
& (y-3)^{2}=25-(x-2)^{2}
\end{align*}
$$

Domain is $-3 \leqslant x \leqslant 7$ (1 mk)
Range is $-2 \leqslant y \leqslant 3$ ($1 \mathrm{~m} k$)

$$
\begin{align*}
\Rightarrow & P(x)=x^{3}-2 x^{2}+x-1 \\
& P(-2)=-8-8-2-1 \\
\therefore & P(-2)=-19 \tag{2mks}
\end{align*}
$$

f) no. is 72
(by pythagoras.
(1) $4-16=2$

$$
x=\frac{2}{\sqrt{5}}
$$

$$
\text { in } x>0
$$ (perpendicular

line from centre bisect the chord.)
total 20 mks

Question 32 (20 marks)
(a) (1)

(ii) (et $\hat{B C E}=x$
(1) $\hat{A B A}=65^{\circ}$ (the angle ot the circunteop is half the angle at the cettre on thessame arc).

1) $\widehat{A B C}=65^{\circ}+20$ (som of atjacent $=85^{\circ} \quad$ anglea).
$1) \therefore \hat{B C E}=85^{\circ}$ (alterate ongles are equal; $A B|\mid(\mid C)$.

ii) amplitude is 3
period is 180° Tink
i) $\quad 3 \sin 2 x=-3$ for $0^{\circ} \leqslant x \leqslant 360^{\circ}$. $x=135^{\circ}$ or 315° (1 mk)

(i) Ink (8cm and At B labelled)
(ii) 2 mks (deduct maks, if there's no constrution).
(iii) 2 mks
(d)

$$
\begin{align*}
2^{2 n+2}-2^{2 n-1} & =1792 \\
2^{2 n-1}\left(2^{3}-1\right) & =1792 \\
\therefore 2^{2 n-1} & =256 \\
2^{2 n-1} & =2^{8} \tag{1}\\
2 n-1 & =8 \\
2 n & =9 \\
\therefore n & =4^{1 / 2} \tag{1}
\end{align*}
$$

(1792:7)

$$
\text { e) } \begin{align*}
6 k^{2} & +13 k<8 \\
6 k^{2}+13 k-8 & <0 \tag{12}\\
(3 k+8)(2 k-1) & <0 \tag{1}
\end{align*}
$$

$$
\therefore-2^{2 / 3}<k<1 / 2
$$

$\frac{\text { Question } 33}{(20 \text { marks) }) ~}$
) $O P^{2}=O A, O B \quad$ (tangent squared equals the product of the intersects on the secant.).

$$
O P^{2}=4 \times 9
$$

$$
o p^{2}=36(\sqrt{11})
$$

$o p=6 \quad(a s$ op>o its a length)
(120) (1)

د) (1)

(i) $\overline{T A C}=11^{\circ}\left(25^{\circ}-14^{\circ}\right)$
ii) $A \hat{T C}=41^{\circ}-11^{\circ}$ (exterior angle ot $\triangle T A C$
(1)

$$
=30^{\circ}
$$ equals sum of 2 interior opposite angles.).

ii) $\hat{A C T}=139^{\circ}$ (angle sum of a triangle is 180°.)

$$
\begin{align*}
& \frac{50}{\sin 30^{\circ}}=\frac{T A}{\sin 139^{\circ}} \tag{1/2}\\
& 100 \times \sin 139^{\circ}=T A \\
& T A=65.6059029 \\
& T A=65.6 \mathrm{~m} \quad \text { (1 d.p.). } \tag{2}
\end{align*}
$$

v) $\hat{A B D}=76^{\circ}$ (angle sum of $\triangle A B O$ is 180°).
$\hat{C B T}=104^{\circ}$ (sum of adjacent angles
In $\triangle A T C$, on a st. angle is 180°).

$$
\begin{aligned}
\frac{T_{C}}{\sin 11^{\circ}} & =\frac{50}{\sin 30^{\circ}} \\
T C & =100 \cdot \sin 11^{\circ}
\end{aligned}
$$

I $\triangle C B T$,

$$
\begin{aligned}
\frac{T B}{\sin 41^{\circ}} & =\frac{T C}{\sin 104^{\circ}} \\
T B & =\frac{100 \sin 11^{\circ} \sin 41^{\circ}}{\sin 104^{\circ}} \\
& =\frac{12.51819642}{0.9702957263} \\
& =12.90142385
\end{aligned}
$$

\therefore Rowe is 12.9 m high.

1 mk (all data must be preset.).
(ii) In As $A B M, B C N$
$A B=B C$ (sides of a square are all equal.).
$B M=C N$ (midpoints of equal sides)
$A B_{M}=\hat{B C N}$ (all angles in a square are 90°).
$\therefore \triangle A B M \equiv \triangle B C N$ (SAB.)
(iii) In Δ 's $B P M, B C N$

$\hat{A M B}=\hat{B N C}$ (corresponding angles in congruent tingles are equal l
\hat{B} is common
$\therefore \triangle B P M \| \triangle B C N$ (equiangular)
(iv) $A B$ is 10 cm data
area of $\triangle A B M=\frac{1}{2} \times 10 \times 5$

$$
\begin{equation*}
=25 \mathrm{~cm}^{2} \tag{3}
\end{equation*}
$$

area of $\triangle B N C=25 \mathrm{~cm}^{2}$
ratio of $\triangle B P M: \triangle B C N=1: \sqrt{5}$
ratio of areas $=1: 5$

$$
=x: 25 \quad \therefore x=5 \mathrm{~cm}^{2}
$$

area of APND $=100-25-25+5=55$ er

Question 34 (20mks)
a) $P(\operatorname{sum}<7)$.

$$
\therefore P(\operatorname{sum}<7)=\frac{7}{11}
$$

b) 45 hours for 1 deaner
$\frac{45}{6}$ for 6 cleaners $=7^{1 / 2}$

$$
\begin{align*}
\text { hours saved } & =45-7^{1 / 2} \tag{2}\\
& =37^{1 / 2} \text { hours. }
\end{align*}
$$

(f)(i) $y-2=m(x+1)$

(ii)

$$
\begin{align*}
& A(0, m+2) \\
& B\left(-\frac{m-2}{m}, 0\right) \tag{112}
\end{align*}
$$

x intercept: y intercept $-2: 5$

$$
\begin{gathered}
\left(-\frac{m-2}{m}, 0\right) \\
-2: 5
\end{gathered}
$$

$$
(-1,2)=\left(\frac{-2 \times 0+5\left(-\frac{m-2}{m}\right)}{3}, \frac{5 \times 0+-2(m+2)}{3}\right)
$$

$$
\begin{gather*}
-3=\frac{-5 m-10}{m} \\
-3 m=-5 m-10 \\
2 m=-10 \\
m=-5 \tag{1}
\end{gather*}
$$

$$
\text { or } 5 x+y+3=0
$$

Join B to F
$\hat{B F D}=63^{\circ}$ (angle in the alternate seaneert equals angle between chords $\tan 8=-t y$.
Similarly $\hat{F B} D=49^{\circ}$

$$
\therefore x=180^{\circ}-49-63^{\circ}\binom{\text { angle sun } \delta}{\triangle B P F \text { is } 180^{\circ}}
$$

$\hat{A B F}=68^{\circ}$ (angl sum of $\hat{A B C}$ is 180°).
similarly $A \hat{F B}=65^{\circ}$

$$
\begin{align*}
& \therefore y=180^{\circ}-2\left(68^{\circ}\right) \quad(\text { angle } \operatorname{sim} \text { of } \tag{1}\\
&\left.\triangle A B F \text { is } 180^{\circ}\right) . \\
& y=44^{\circ}
\end{align*}
$$

(d)

$$
\begin{align*}
\text { LHS } & =\cot A(\operatorname{cosec} A-\cot A) \\
& =\frac{\cos A}{\sin A}\left(\frac{1}{\sin A}-\frac{\cos A}{\sin A}\right) \tag{1}\\
& =\frac{\cos A(1-\cos A)}{\sin ^{2} A} \\
& =\frac{\cos A(1-\cos A)}{(1-\cos A)(1+\cos A)} \tag{1}\\
& =\frac{\cos A}{1+\cos A} \tag{1}\\
& =\text { RHS. }
\end{align*}
$$

(e) $\sin ^{2} \theta-2 \sin \theta \cdot \cos \theta-8 \cos ^{2} \theta=0$

$$
\begin{aligned}
\tan ^{2} \theta-2 \tan \theta-8 & =0 \\
(\tan \theta-4)(\tan \theta+2) & =0 \\
\tan \theta & =4 \quad \text { or } \tan \theta
\end{aligned}=-2(1 / 2)
$$

$$
\begin{equation*}
\therefore \theta=7 \underbrace{\circ}_{c} 58^{\circ},-104^{\circ} 2^{\prime},-\underbrace{63^{\circ} 26^{\prime}, 116^{\circ} 34^{\prime}}_{1} \tag{1}
\end{equation*}
$$

Join B to F

$$
\therefore x=68^{\circ}
$$

