#### YEAR 10 YEARLY PART A 2009

### SECTION A – 30 Marks (1 mark each)

1. Solve 3-2x < 7x < -2 B x > -2 C x < 2 D x > 2Α 2.  $x^{\frac{3}{4}}$  is equivalent to:  $\frac{x^3}{4}$  $\sqrt[4]{x^3}$  C  $\frac{3}{x^4}$  D  $\sqrt[3]{\chi^4}$ В A 3. If  $\cos x^{\circ} > 0$  and  $\tan x^{\circ} < 0$ , then 0 < x < 90Α В 90 < x < 180С 180 < x < 270270 < x < 360D

4. Sarah borrowed \$2500 from a bank for 3 years. She was charged simple interest on the loan. Altogether she repaid \$3287.50. What was the rate of interest charged per annum? A 7.98% В 10.5% С 23.95% D 31.5%

5.



The equation of the line *l* through the origin and perpendicular to the line PQ is

A 
$$y = 4x$$
  
B  $y = -4x$   
C  $y = \frac{1}{4}x$   
D  $y = -\frac{1}{4x}$ 

A 
$$\frac{a}{1+2a^2}$$
 B  $\frac{1+2a^2}{a}$  C  $a + \frac{1}{2a}$  D  $\frac{1}{1+2a}$ 

| 7. S | olve $x^2 + 5x - 3 = 0$          |   |                                 |
|------|----------------------------------|---|---------------------------------|
| А    | $x = \frac{-5 \pm \sqrt{37}}{2}$ | В | $x = \frac{5 \pm \sqrt{37}}{2}$ |
| С    | $x = \frac{-5 \pm \sqrt{13}}{2}$ | D | $x = \frac{5 \pm \sqrt{13}}{2}$ |

8. Which equation represents the line through (-3, 2) parallel to y = 3 - 4x?

| А | y + 2 = -4(x + 3) | В | y - 2 = -3(x + 3) |
|---|-------------------|---|-------------------|
| С | y - 2 = -4(x + 3) | D | y - 2 = 3(x + 3)  |

| 9. | Events A and B are | e sub | sets of the sample | spac | e <i>S</i> in which all o       | utcon | nes are equally likely. |
|----|--------------------|-------|--------------------|------|---------------------------------|-------|-------------------------|
| If | $n(A)=10, \ n(B)$  | = 15  | 5, $n(S) = 30$ and | P(A  | $(\cup B) = \frac{3}{5}$ , then | n(A ( | B) is equal to:         |
| А  | 7                  | В     | 9                  | С    | 18                              | D     | 25                      |

10. The base of a triangle is twice as long as a side of a square and their areas are the same. Then the ratio of the altitude of the triangle to the side of the square is:

A 1:4 B 1:2 C 1:1 D 2:1

11. At 2:15pm, the hour and minute hands of a clock form an angle of:

A  $30^{\circ}$  B  $5^{\circ}$  C  $22\frac{1}{2}^{\circ}$  D  $7\frac{1}{2}^{\circ}$ 12. If  $8 \cdot 2^{x} = 5^{y+8}$ , then when y = -8, x =A -4 B -3 C 0 D 4

- 13. The graph  $y = 2x^2 + 4x + 3$  has its
- A lowest point at (-1, 1)
- B highest point at (-1, 1)
- C lowest point at (-1, 9)
- D highest point at (-1, 9)

14. A straight line joins the points (-1, 1) and (3, 9). Its x-intercept is:

A 
$$-\frac{3}{2}$$
 B  $-\frac{2}{3}$  C  $\frac{2}{5}$  D 2

15. The diameters of two circles are 8cm and 12cm respectively. The ratio of the area of the smaller to the area of the larger circle is:

16. When simplified,  $(x^{-1} + y^{-1})^{-1}$  is equal to:

A 
$$x + y$$
 B  $\frac{xy}{x+y}$  C  $xy$  D  $\frac{1}{xy}$ 



18. If a worker receives a 20 percent cut in wages, he may regain his original pay exactly by obtaining a raise of:

| А | 20 percent | В | 25 percent |
|---|------------|---|------------|
| С | \$20       | D | \$25       |



20. Water is poured into a container at a constant rate. The graph shows the depth of water in the container as it was being filled. Which of the following containers

A

could have been used?



 $\frac{x^2}{\sqrt[3]{y}}$ 

D



21. 
$$x^{-2}y^{\frac{1}{3}} =$$
  
A  $\frac{x}{2\sqrt[3]{y}}$  B  $\frac{2\sqrt[3]{y}}{x}$  C  $\frac{\sqrt[3]{y}}{x^{2}}$ 

х

22. A square and an equilateral triangle have equal perimeters. The area of the triangle is  $9\sqrt{3}$  cm<sup>2</sup>. Expressed in centimetres, the diagonal of the square is:

9 2  $\frac{9\sqrt{2}}{2}$ B  $2\sqrt{5}$  C  $4\sqrt{2}$  D А

23. If the parabola  $y = ax^2 + bx + c$  passes through the points (-1,12), (0,5) and (2,-3), the value of a + b + c is:

-2 C 0 В D 1 Α -4



26. In  $\triangle ABC$ ,  $\angle BAC = 60^{\circ}$  and BC = 9. Find the length of the diameter of the circle.



27. There are two natural ways to inscribe a square in a given isosceles right triangle. If it is done as in Figure 1 below, then one finds that the area of the square is  $441 \text{cm}^2$ . What is the area (in cm<sup>2</sup>) of the square inscribed in the same  $\triangle ABC$  as shown in Figure 2 below?



28. It takes 30 seconds to fill a 5 litre bucket with water. What is the rate of flow in litres per hour?

| А | 10 | В | 150 | С | 600 | D | 1200 |
|---|----|---|-----|---|-----|---|------|
|---|----|---|-----|---|-----|---|------|

29. A regular hexagon and a regular pentagon have a common edge as shown. Find the size of  $\langle BAC$ .



30. If x varies directly as the cube of y, and y varies directly as the fifth root of z, then x varies directly as the  $n^{th}$  power of z, where n is:

A 
$$\frac{1}{15}$$
 B  $\frac{5}{3}$  C  $\frac{3}{5}$  D 15

### **END OF SECTION A**

А

### Question 31. (20 marks) Start a new page

- a) What is the exact value of  $cos(180^{0} 60^{0})$ ?
   1

   b) Solve cos x = 1 for  $0^{0} \le x \le 360^{0}$  1
- c) Solve  $2x 7\sqrt{x} = 15$ .

d) What is the domain and range of 
$$y = -\sqrt{25 - (x - 2)^2} + 3$$
?

e) Find the remainder when  $P(x) = x^3 - 2x^2 + x - 1$  is divided by (x + 2).

f) A certain integer is between 10 and 100. Its value is 8 times the sum of its digits and if the integer is reduced by 45, its digits are reversed. By forming a pair of simultaneous equations or otherwise find the integer.

| g) i) Write down the centre and the radius of the circle with equation $(x + 2)^2 + (y + 3)^2 = 4$ . | 2 |
|------------------------------------------------------------------------------------------------------|---|
| ii) Find the shortest distance from the line $x - 2y - 8 = 0$ to the centre of the circle in (i).    | 2 |
| iii) Hence or otherwise determine the length of the chord cut off from the line by the circle.       | 3 |
| (Giving reasons for your answer).                                                                    |   |

### Question 32. (20 marks) Start a new page

a) *ABCD* is a cyclic quadrilateral in which *AB*//*DC*. Given that *O* is the centre of the circle,  $\langle AOD = 130^{\circ}, \langle CBD = 20^{\circ} \rangle$  and *DC* is produced to *E*:



i) Copy the diagram **neatly** and include **all** of the given information.

ii) Find the value of  $\langle BCE giving full reasons.$ 

### **QUESTION 32 continued over the page!**

marks

4

2

3

1

3

| b | <b>)</b> i | i) Neatly draw the graph of $y = 3\sin 2x$ for $0^0 \le x \le 360^0$ .                                                             | 2 |
|---|------------|------------------------------------------------------------------------------------------------------------------------------------|---|
|   | i          | ii) State the amplitude and period for $y = 3\sin 2x$ .                                                                            | 2 |
|   | i          | iii) Solve $3\sin 2x = -3$ for $0^0 \le x \le 360^0$ .                                                                             | 1 |
| с | :) i       | i) On your answer sheet about 6cm below your final answer for b) draw an 8cm interval on your page. Label the interval <i>AB</i> . | 1 |
|   | j          | ii) Construct using compass and ruler only a $60^0$ angle with its vertex at <i>A</i> . Show all construction lines.               | 2 |
|   | i          | iii) Construct a perpendicular at <i>B</i> . Show all construction lines.                                                          | 2 |
| d | l)         | Solve $2^{2n+2} - 2^{2n-1} = 1792$ .                                                                                               | 3 |
| e | ;)]        | Find the solution set to $6k^2 + 13k < 8$ .                                                                                        | 3 |
|   |            |                                                                                                                                    |   |

## Question 33. (20 marks) Start a new page

| a) | In the diagram below A is the point $(4,0)$ and B is $(9,0)$ find the coordinates of P; | 3 |
|----|-----------------------------------------------------------------------------------------|---|
|    | giving reasons.                                                                         |   |



b) A hill with a uniform slope is inclined at  $14^0$  to the horizontal. From the bottom of the hill *A*, the angle of elevation of *T*, the top of a tower *TB* standing on a hill is  $25^0$ . On moving 50m up the hill to a point *C*, the angle of elevation of *T* is  $55^0$ .

| i) Draw a <b>neat</b> diagram to represent this data. (Use a ruler). | 1 |
|----------------------------------------------------------------------|---|
| ii) Find the size of <i>&lt;ATC</i> .                                | 2 |
| iii) Find the length of TA correct to one decimal place.             | 2 |
| iv) Find the height of the tower TB correct to two decimal places.   | 2 |

# **QUESTION 33 continued over the page!**

c) ABCD is a square with M the midpoint of BC and N is the midpoint of CD. AM and BN intersect at P.



iv) Find the area of the quadrilateral *APND* if AB = 10cm.

## Question 34. (20 marks) Start a new page

| a) | Two dice are thrown. What is the probability of getting a sum under seven if it is known that at least one of the two dice shows a two?   | 2 |
|----|-------------------------------------------------------------------------------------------------------------------------------------------|---|
| b) | It takes 45 hours for one cleaner to clean the school. How many hours are saved if six cleaners are cleaning the school at the same rate? | 2 |
| c) | AC is a tangent to the circle at B. AE is a tangent to the circle at F. Given that $\langle CBD \rangle$ is $63^{\circ}$                  |   |

4

3

4

1

4

and  $\langle DFE \text{ is } 49^{\circ} \rangle$ , find the values of x and y giving reasons.



| d) | Prove that $\cot A(\csc A - \cot A) = \frac{\cos A}{1 + \cos A}$                                                     |
|----|----------------------------------------------------------------------------------------------------------------------|
| e) | Solve $\sin^2\theta - 2\sin\theta\cos\theta = 8\cos^2\theta$ to the nearest minute for $-180^0 \le \theta \le 180^0$ |

- f) i) Write down the equation of the line through L(-1,2) with gradient m.
  - ii) Hence, determine the equation of the line through L, if L divides the intercepts with the coordinate axis in the ratio -2:5.

## END OF EXAM

# YEAR 10 YEARLY 2009 EXAMINATION

## **ANSWER SHEET**

# SECTION A: 30 QUESTIONS [1 MARK EACH]

NAME: ANSWERS

Mark the appropriate answer with an cross X

| Iviai | K me         | app | lopii | aleal |
|-------|--------------|-----|-------|-------|
| 1     | A            | X   | C     | D     |
| 2     | A            | X   | C     | D     |
| 3     | A            | В   | C     | X     |
| 4     | A            | ×   | C     | D     |
| 5     | A            | В   | X     | D     |
| 6     | $\mathbb{X}$ | X   | С     | D     |
| 7     | $\times$     | В   | C     | D     |
| 8     | A            | В   | ×     | D     |
| 9     | X            | В   | С     | D     |
| 10    | A            | B   | X     | D     |
| 11    | Α            | В   | X     | D     |
| 12    | Α            | X   | С     | D     |
| 13    | ×            | B   | C     | D     |
| 14    | ×            | B   | C     | D     |
| 15    | Α            | В   | С     | X     |
| 16    | Α            | ×   | C     | D     |
| 17    | A            | X   | C     | D     |
| 18    | A            | X   | С     | D     |
| 19    | Α            | В   | X     | D     |
| 20    | Α            | ×   | С     | D     |
| 21    | Α            | B   | X     | D     |
| 22    | A<br>A<br>A  | В   | С     | X     |
| 23    | A            | В   | X     | D     |
| 24    | Α            | В   | С     | X     |
| 25    | A<br>A       | B   | С     | X     |
| 26    |              | В   | С     | X     |
| 27    | Α            | ×   | С     | D     |
| 28    | A            | В   | X     | D     |
| 29    | X            | В   | С     | D     |
| 30    | Α            | B   | X     | D     |

| Question  | Mark  |
|-----------|-------|
| Section A |       |
| 1 - 30    | / 30  |
| Section B |       |
| 31        | / 20  |
| 32        | / 20  |
| 33        | / 20  |
| 34        | / 20  |
| TOTAL     | / 110 |

HAND IN SEPARATELY AT THE END OF EXAM

$$\frac{y_{car} + 0}{y_{car} + 0} \frac{y_{car}}{y_{car}} \frac{y_{car}}{y_{ca$$

3. Lestion 3.3 (20 merks)  
) 
$$OP^{2} = OP, OB$$
 (Longet symmetic  
equile the product  
if the ideogets and  
the second):  
 $OP^{2} = 4 \times 9$   
 $OP^{2} = 3 \subseteq (V)$   
 $OP^{2} = 3 \subseteq (V)$   
 $OP^{2} = 6$  (see  $OP > 0$  its a length  
 $OP^{2} = 4 \times 9$   
 $OP^{2} = 3 \subseteq (V)$   
 $OP = 6$  (see  $OP > 0$  its a length  
 $OP = 6$  (see  $OP > 0$  its a length  
 $OP = 6$  (see  $OP > 0$  its a length  
 $OP = 6$  (see  $OP > 0$  its a length  
 $OP = 6$  (see  $OP > 0$  its a length  
 $OP = 6$  (see  $OP > 0$  its a length  
 $OP = 6$  (see  $OP > 0$  its a length  
 $OP = 6$  (see  $OP > 0$  its a length  
 $OP = 6$  (see  $OP > 0$  its a length  
 $OP = 6$  (see  $OP > 0$  its a length  
 $OP = 6$  (see  $OP > 0$  its a length  
 $OP = 6$  (see  $OP > 0$  its a length  
 $OP = 6$  (see  $OP > 0$  its a length  
 $OP = 6$  (see  $OP > 0$  its a length  
 $OP = 6$  (see  $OP > 0$  its a length  
 $OP = 6$  (see  $OP > 0$  its a length  
 $OP = 6$  (see  $OP > 0$  its a length  
 $OP = 6$  (see  $OP > 0$  its a length  
 $OP = 6$  (see  $OP > 0$  its a length  
 $OP = 6$  (see  $OP > 0$  its a length  
 $OP = 6$  (see  $OP > 0$  its a length  
 $OP = 6$  (see  $OP > 0$  its a length  
 $OP = 6$  (see  $OP > 0$  its a length  
 $OP = 6$  (see  $OP > 0$  its a length  
 $OP = 6$  (see  $OP > 0$  its a length  
 $OP = 6$  (see  $OP > 0$  its a length  
 $OP = 6$  (see  $OP > 0$  its a length  
 $OP = 6$  (see  $OP > 0$  its a length  
 $OP = 6$  (see  $OP > 0$  its a length  
 $OP = 6$  (see  $OP > 0$  its a length  
 $OP = 6$  (see  $OP > 0$  its a length  
 $OP = 6$  (see  $OP > 0$  its a length  
 $OP = 6$  (see  $OP > 0$  its a length  
 $OP = 6$  (see  $OP > 0$  its a length  
 $OP = 6$  (see  $OP > 0$  its a length  
 $OP = 100 - 25 - 25 + 5 = 55 en$   
 $OP = 100 - 25 - 25 + 5 = 55 en$ 

high.

square are

equal side)

(3

3

1.x=5cm

5