SECTION A (1 Mark Each)

(1) $0.0025 \mathrm{~m}^{3}$ is the same as
(A) $0.25 \mathrm{~cm}^{3}$
(B) $2.5 \mathrm{~cm}^{3}$
(C) $25 \mathrm{~cm}^{3}$
(D) $2500 \mathrm{~cm}^{3}$
(2) The expression $x^{5}\left(x+\frac{1}{x}\right)\left(1+\frac{1}{x}+\frac{1}{x^{3}}\right)$ is a polynomial of degree
(A) 2
(B) 3
(C) 6
(D) 8
(3) The value of $(\sqrt{5}-1)^{2}$ is
(A) 4
(B) 6
(C) $6-2 \sqrt{5}$
(D) $6-\sqrt{10}$
(4) The exact value of $\sin \left(480^{\circ}\right)$ is
(A) $\frac{1}{2}$
(B) $\frac{1}{\sqrt{2}}$
(C) $\frac{\sqrt{3}}{2}$
(D) $\frac{1}{\sqrt{3}}$
(5) The best description of the graph of the equation $(x+y)^{2}=x^{2}+y^{2}$ is
(A) a hyperbola
(B) one point only
(C) two intersecting lines
(D) a circle
(6) The value of $\left(\frac{1}{4}\right)^{-\frac{1}{4}}$ is
(A) -16
(B) $\frac{-1}{\sqrt{2}}$
(C) $\sqrt{2}$
(D) $\frac{1}{256}$
(7) The equation $x^{3}-x+2=0$ may be solved by drawing a line on the graph $y=x^{3}$. The equation of the line is
(A) $y=x+2$
(B) $y=x-2$
(C) $y=-x+2$
(D) $y=-x-2$
(8) The equation of the axis of symmetry of the graph of $y=2 x^{2}-8 x+5$ is
(A) $x=2$
(B) $y=2$
(C) $y=-2$
(D) $x=-2$
(9) The number of integers that satisfy the inequality $\frac{3}{7}<\frac{n}{14}<\frac{2}{3}$ is
(A) 0
(B) 2
(C) 3
(D) 4
(10) If $p(x)=a x^{2}+b x+c$ and $p(3)=15$ and $p(-3)=9$ then the value of b is
(A) 2
(B) 3
(C) 1
(D) -2
(11) This is the graph of the function $y=f(x)$.

Which of the following shows the graph of $y=-f(x+2)$.
(A)

(B)

(C)

(D)

(12) If $x^{2}-5 x+6<0$ and $Y=x^{2}+5 x+6$ then Y can take any real value such that
(A) $20<Y<30$
(B) $0<Y<20$
(C) $Y<0$
(D) $Y>30$
(13) The smallest value of $x^{2}+8 x$ for real values of x is
(A) -16.25
(B) -16
(C) 16
(D) -8
(14) If b men take c days to lay f bricks, then the number of days it will take c men working at the same rate to lay b bricks is
(A) $f b^{2}$
(B) $\frac{b}{f^{2}}$
(C) $\frac{f^{2}}{b}$
(D) $\frac{b^{2}}{f}$
(15) Successive discounts of 10% followed by 20% are equivalent to a single discount of
(A) 15%
(B) 22%
(C) 28%
(D) 32%
(16) Given that $\frac{1}{a}=\frac{1}{b}+\frac{1}{c}$, then $c=$
(A) $a-b$
(B) $\frac{a-b}{a+b}$
(C) $\frac{a b}{b-a}$
(D) $\frac{b-a}{a b}$
(17) If another score of 5 is added to this set of scores,

Score	Frequency
2	2
3	3
4	1
5	4
6	7
7	3

the measure that will change is the
(A) Mean
(B) Median
(C) Mode
(D) Range
(18) A shop advertised a 45% discount on all clothes in the store. Angela bought a coat and paid $\$ 88$ after the discount. Angela saved
(A) $\$ 16.00$
(B) $\$ 39.60$
(C) $\$ 48.40$
(D) $\$ 72.00$
(19) The probability that a randomly drawn positive factor of 60 is less than 7 is
(A) $\frac{1}{6}$
(B) $\frac{1}{4}$
(C) $\frac{1}{3}$
(D) $\frac{1}{2}$
(20) If $\tan A=\frac{-24}{7}$, where $90^{\circ}<A<180^{\circ}$, then the exact value of $\cos A$ is
(A) $\frac{7}{25}$
(B) $\frac{-7}{25}$
(C) $\frac{24}{25}$
(D) $\frac{-24}{25}$
(21) In an examination, 10% of the students gained 70 marks, 25% got 80 marks, 20% got 85 marks, 15% gained 90 marks and the rest received 95 marks. The median mark is
(A) 80
(B) 85
(C) 87.5
(D) 90
(22) The mean height of 1000 men was found to be 1.80 m . The standard deviation was 0.02 m . Assuming that the heights of the men are normally distributed, then the number of men expected to be taller than 1.82 m is
(A) 50
(B) 160
(C) 340
(D) 680
(23) $A B$ is a diameter of a circle. Tangents $A D$ and $B C$ are drawn so that $A C$ and $B D$ intersect on the circle at point X.

If $A D=a$ units and $B C=b$ units and $a \neq b$, the diameter of the circle is
(A) $\frac{a+b}{2}$ units
(B) $\sqrt{a b}$ units
(C) $\frac{a b}{a+b}$ units
(D) $\frac{a b}{2(a+b)}$ units
(24) The area of a triangle is numerically equal to its perimeter.

The radius of the inscribed circle is
(A) 2 units
(B) 3 units
(C) 4 units
(D) 5 units
(25) The maximum value of the function $f(x)=\frac{6}{4+2 \sin x}$ is
(A) 0
(B) 1
(C) 1.5
(D) 3
(26) The exterior angles of a triangle, x^{0}, y^{0}, z^{0}, are in the ratio 4:5:6.

NOT TO SCALE

The interior angles, $a^{0}, b^{\mathrm{o}}, c^{\mathrm{o}}$, are in the ratio
(A) $7: 5: 3$
(B) $3: 2: 1$
(C) $4: 2: 1$
(D) $8: 5: 2$
(27) The number 0.010599 written to 4 significant figures is
(A) 0.01060
(B) 0.011
(C) 0.0106
(D) 0.010599
(28) Jane is paid $\$ 9.50$ per hour for the first 36 hours she works in a week. She is paid time and a half for every extra hour worked. This week Jane worked 41 hours. Her pay for this week is
(A) $\$ 389.50$
(B) $\$ 413.25$
(C) $\$ 460.75$
(D) 584.25
(29) The value of $\angle B A C$ in the triangle below is

NOT TO SCALE
(A) 45°
(B) 60°
(C) 90°
(D) 135°
(30) A circle with centre at $(3,2)$ intersects the x-axis at the origin O and at the point B. The tangents to the circle at O and B intersect at the point P.

The y-coordinate of P is
(A) -3.5
(B) -4
(C) -4.5
(D) -5

SECTION B

Question 31 (20 marks) START A NEW PAGE
(a) Write $\frac{\sqrt{3}+4 \sqrt{2}}{2 \sqrt{3}-\sqrt{2}}$ as a fraction in simplest terms with a rational denominator.
(b) Solve the equations for x :
(i) $3 x^{2}+2 x-2=0$.
(ii) $5^{x} \times 25^{x+1}=0.2$
(c) Sketch the graph of $y=(x-1)^{3}(x+2)$.

3
(d) Find the perpendicular distance from the point $(2,-1)$ to the line $3 x-4 y-2=0$.
(e) Find the values of x which satisfy the inequality $3 x^{2}+2 x-8<0$.
(f) The distance (d) to the horizon varies directly as the square root of the height (h) of the observer above the ground.

From the branch of a tree 4 m above the ground a person can see 5.2 km .
(i) Write an equation relating d and h

2
(ii) What distance would a helicopter pilot, 625 m above the ground, 1 expect to be able to see?
(g) Prove that $(1-\cos \theta)(1+\sec \theta)=\sin \theta \tan \theta$

3

Question 32 (20 marks) START A NEW PAGE

(a) Simplify the following expressions
(i) $\left(\frac{a^{2}-b^{2}}{a b}\right)-\left(\frac{a b-b^{2}}{a b-a^{2}}\right)$

2
(ii) $\frac{4 \times 3^{n}-9 \times 3^{n-1}}{3^{n+3}-8 \times 3^{n+1}}$

2
(b) Solve the equation for $x: \sqrt{16-8 x}=2 x-1$
(c) A line with equation $y=x+2$, intersects the circle with equation $x^{2}+y^{2}=10$, at points A and B. Find the coordinates of A and B.
(d) Sketch on a number plane the solution set to:

$$
\{(x, y): 2 x+3 y-1>0\} \cap\{(x, y): 3 x-y+2 \geq 0\}
$$

Question 32 continued

REMOVE THIS PAGE AND ATTACH IT TO YOUR QUESTION 32 ANSWERS

Name: \qquad

Maths Class

\qquad

Marks 3
(e) Using only a pair of compasses and a ruler, neatly construct a circle through the points A, B and C shown below. Show all construction lines.

- A
- C

B •
question 32 continued over page

Question 32 continued

(f) Two unequal circles, with centres at O and P, intersect at points B and C such that $\angle B P C=80^{\circ}$.
The line $P B$ produced, meets the circle, with centre O, at point A.

(i) Copy the diagram and find the size of $\angle A O C$, giving reasons. 3
(ii) What type of quadrilateral is $A O C P$. Give a reason for your answer.

Question 33 (20 marks) START A NEW PAGE

(a) The line ℓ, which has the equation of $2 x+y-9=0$, meets the interval joining $A(-2,3)$ and $B(8,8)$ at point P.
(i) Find the equation of the line passing through A and B.
(ii) Show that the coordinates of P are $(2,5)$.
(iii) Find the ratio in which P divides the interval $A B$.
(b) The function $f(x)$ has the equation $y=3-\sqrt{16-(x+2)^{2}}$.
(i) Sketch the graph of $f(x)$.
(ii) State the domain and range of $f(x)$.
(c) Rhombus $A B C D$ is similar to rhombus $B F D E$.

The area of $A B C D$ is 24 units 2 and $\angle B A D=60^{\circ}$.

NOT TO SCALE
(i) The diagonals of $A B C D$ intersect at point O.

Show that $O B: O A=1: \sqrt{3}$, giving reasons.
(ii) Calculate the area of $B F D E$, giving reasons.

Question 33 continued
(d) Solve the equation for $x: \frac{3}{x-2}-\frac{12}{x^{2}-4}=1$
(e) The line described by the equation $3 x-4 y-1+k(2 x+3 y-5)=0$ has a gradient of 2 .

2
Calculate the value of k.

Question 34 (20 marks) START A NEW PAGE

(a) Coast station A receives a radio transmission from a ship on a bearing of $110^{\circ} \mathrm{T}$. At the same time the radio transmission is also heard by coast station B, which is 550 km North of A. The bearing of the ship from B is $135^{\circ} \mathrm{T}$.
(i) Draw a diagram showing the given information.
(ii) Calculate the distance (to the nearest km) from coast station A to the ship.
(b) Box A contains 5 sheets of blue paper and 2 sheets of white paper. Box B has 4 blue envelopes and 1 white envelope. Two pieces of paper are chosen from Box A to write a letter and an envelope is selected from Box B. All are chosen at random.
(i) Calculate the probability that the two sheets of paper and the envelope are all of the same colour.
(ii) What is the probability that at least one of the sheets of paper chosen is the same colour as the selected envelope?
(c) (i) Solve the equation $1+2 \cos 3 x=0$ for $0^{\circ} \leq x \leq 180^{\circ}$
(ii) Sketch the graph of $y=1+2 \cos 3 x$ for $0^{\circ} \leq x \leq 180^{\circ}$.
(d) In the diagram below $D E=6$ units, $B C=B E=8$ units, $A B=A C=x$ units, and $\angle A B C=\angle E D C=\theta^{\circ}$.

NOT TO SCALE
(i) Copy the diagram and prove that $\triangle A B C|\mid \triangle B C E$, giving reasons.
(ii) Name one other triangle which is similar to $\triangle A B C$.
(Do not prove similarity).
(iii) Calculate the exact length of $A B$.

END OF EXAMINATION

\qquad
CLASS: \qquad
Mark the appropriate answer with an cross \mathbf{X}

1	A	B	C	
2	A	B		D
3	A	B		D
4	A	B		D
5	A	B		D
6	A	B		D
7	A		C	D
8	-	B	C	D
9	A	B		D
10	A	B		D
11	A	B	C	
12		B	C	D
13	A		C	D
14	A	B	C	
15	A	B		D
16	A	B		D
17	A		C	D
18	A	B	C	
19	A	B	C	
20	A		C	D
21	A		C	D
22	A		C	D
23	A	\cdots	C	D
24	,	B	C	D
25	A	B	C	$2 \cdot$
26		B	C	D
27		B	C	D
28	A	183	C	D
29	A	B	C	23
30	A	B		

Question	Mark
Section A	
$1-30$	$/ 30$
Section B	
31	$/ 20$
32	$/ 20$
33	$/ 20$
34	$/ 20$
TOTAL	$/ 110$

SECTIONA:
1).

$$
\begin{aligned}
0.0025 \mathrm{~m}^{3} & =0.0025 \times(100)^{3} \\
& =2500 \mathrm{~cm}^{2}
\end{aligned}
$$

2) $x^{5}\left(x+\frac{1}{x}\right)\left(1+\frac{1}{x}+\frac{1}{x^{3}}\right)$

Leadingterm is x^{6}
$\cdots a^{\prime}=$ Degree $=6$
3) $(\sqrt{5}-1)^{2}=5-2 \sqrt{5}+1=6-2 \sqrt{5}$
4) $\sin \left(480^{\circ}\right)=\sin (120)=\frac{\sqrt{3}}{2}$
5)

$$
\begin{aligned}
& (x+y)^{2}=x^{2}+y^{2} \\
& x^{2}+2 x y+y^{2}=\quad x^{2}+y^{2} \\
& 2 x y=0 \quad \therefore \quad x=0 \text { or } y=0
\end{aligned}
$$

6) $\left(\frac{1}{4}\right)^{-\frac{1}{4}}=4 \sqrt{4}$ $=\sqrt{2}$
7) $\quad x^{3}-x+2=0$

$$
x^{3}=x-2 \quad \therefore y=x-2
$$

8)

$$
y=2 x^{2}-8 x+5
$$

$$
\begin{aligned}
& A \times 15 x=2 x=8 x+5 \\
& x=-b / 2 a=8 / 4=2
\end{aligned}
$$

9)

$$
\frac{3}{7}<\frac{n}{14}<\frac{2}{3}
$$

$$
18<3 n<28 \quad 6<n<9 \frac{1}{3} \quad n=7,8,9
$$

10) $p(x)=a x^{2}+b x+c$

$$
\left.\begin{array}{l}
P(3)=9 a+3 b+c \\
P(-3)=9 a-3 b+c
\end{array}\right\} \begin{aligned}
& 6 b=6 \\
& b=1
\end{aligned}
$$

ii) Reflect about x a \times is Move graph to left.

12)

$$
\begin{aligned}
& \frac{x^{2}-5 x+6<0}{(x-3)(x-2)<0} \quad \frac{1}{2} \quad 2<x<3 \\
& y=x^{2}+5 x+6 \quad y(2)=20 \quad y(3)=30
\end{aligned}
$$

A.
13) $x^{2}+8 x$

Vind $x^{2}+8 x+16-16=(x+4)^{2}-16$ minvalue $=-16 \mathrm{~B}$
14)
10% descont 20%
$15)$
stant with $\$ 100$
) d ant $\phi 100 \rightarrow \$ 90 \rightarrow \$ 72=289$ secount
28\%.dacionat
16) $\frac{1}{a}-\frac{1}{b}=\frac{1}{c} \therefore \quad \frac{c}{c}=\frac{b-a}{a b} \quad \therefore c=\frac{u b}{b-a}$.
17) Before mewscore: Mean $=\frac{100}{20}=5$ nochange Old medei $=5 \frac{1}{2}$ nea medhai $5 \ldots \ldots$ change Mode $=7$ Range $=5$
(18) $\$ 88=55 \%<100 \%=\$ 160$
\therefore saved ${ }^{\$} 160$ 震 88

$$
=\$ 72
$$

19) Factors $[123456] 101512203060=12$ factors

$$
P(<7)=\% / 12=\frac{1}{2}
$$

20) $\tan A=\frac{-24}{7} \quad \frac{24}{25}+7 \quad \therefore \cos A=\frac{-7}{25}$
21) Medow τ moddlemark $=8.5$
22) 1.82 is one 50 above mean

$$
\therefore 50 \%-34 \%=16 \% \Rightarrow 160 \text { mes }
$$

23) Using simelantriangles

$$
\begin{gather*}
B b c \quad-d^{2}=a b-2 a+2 b+2 c \\
P=2\left[\frac{1}{a b}\right. \\
\left.A=\frac{1}{2} b r+\frac{1}{2} c r\right] \\
A=P \\
\therefore(a+b+c)=2 a+2 b+2 c \\
r=2
\end{gather*}
$$

25) $f(x)=\frac{6}{4+282 x} \quad$ minvalue $=\frac{6}{4-2}=3$
26) Exterior argles $4: 5: 6=96: 120: 140$
\therefore Intervor angles $84: 60: 36=7: 5: 3$ A
27) $0.010599=0.01060$ (4sigfigs) A

$$
28](41-36) \times 1.5+310] \times \$ 9.80=\$ 413-25
$$

29) $\operatorname{Cos} A=\frac{4+(6-\sqrt{2})^{2}-8}{4(\sqrt{6}-\sqrt{2})}$. usecalculator $A=135^{\circ}$

- note $A \neq 45^{\circ}$

30)

$$
\begin{aligned}
\text { eq of } O P \Rightarrow y & =-3 / 2 x \\
x & =3 \\
y & =\frac{-9}{2}=4.5
\end{aligned}
$$

C.

SECTION B.
Q31 $\frac{(\sqrt{3}+4 \sqrt{2})}{(2 \sqrt{3}-\sqrt{2})} \times \frac{(2 \sqrt{3}+\sqrt{2})}{(2 \sqrt{3}+\sqrt{2})}=\frac{6+\sqrt{6}+8 \sqrt{6}+8}{12-2}$

$$
\begin{equation*}
=\frac{14+9 \sqrt{6}}{10} \tag{i}
\end{equation*}
$$

b)

$$
\text { i) } \begin{aligned}
3 x^{2} & +2 x-2=0 \\
x & =\frac{-2 \pm \sqrt{4-4(3)(-2)}}{6} \\
& =\frac{-2 \pm \sqrt{28}}{6} \\
& =\frac{-2 \pm 2 \sqrt{7}}{6} \\
& =\frac{-1 \pm \sqrt{7}}{3}
\end{aligned}
$$

ii)

$$
\begin{gathered}
5^{x} \times 25^{x+1}=0 \cdot 2 . \\
5^{x} \times 5^{2(x+1)}=5^{-1} \\
x+2 x+2=-1 \\
3 x=-3 \\
x=-1
\end{gathered}
$$

C)

$$
y=\frac{(x-1)^{3}(x+2)}{y \uparrow}
$$

x intercepts at $x=1, x=2$.
y "entercept at $y=-2$
"(harezontal pasit of inflexiosis)"
($\frac{3}{2}$) $(-2,0)$
(2) $(1,0)$:
(1) yindercept
(12) dinection
(1) Shaple:

* turneng point is Nor bo yaxis.

Q31 d

$$
d=\frac{|3(2)-4(-1)-2|}{\sqrt{3^{2}+4^{2}}}=\frac{8}{5}
$$

nerpendicular dustance $=1 / 5$ units
e)

$$
\begin{aligned}
& 3 x^{2}+2 x-8<0 \\
& (3 x-4)(x+2)<0 \\
& \therefore-2<x<1 \frac{1}{3}
\end{aligned}
$$

f) (i) $d=k \sqrt{h}$

$$
\begin{aligned}
& 5.2=k \sqrt{4} \quad \therefore k=2.6 \\
& \therefore d=206 \sqrt{h}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
d & =2 \cdot 6 \sqrt{625} \\
& =65 \\
\text { distance } & =65 \mathrm{~km}:
\end{aligned}
$$

g)

$$
\begin{aligned}
\text { LHS } & =(1-\cos \theta)(1+\cos \theta)\left(1+\frac{1}{\cos \theta}\right)=\operatorname{sen} \theta \tan \theta \\
& =-1+\frac{1}{\cos \theta}-\cos \theta-1 \\
& =\frac{1-\cos ^{2} \theta}{\cos \theta} \\
& =\frac{\sin 2}{\cos \theta} \\
& =\sin \theta \times \frac{\sin \theta}{\cos \theta} \\
& =\sin \theta \tan \theta=R H S .
\end{aligned}
$$

(1) formula subvalues
(1) Answer
(1) factorise'
(1) endpoint's
(1) inequalite signs.
(1) Formula
(1) 2 value
(1) Answer
(1) $\sec \theta=\frac{1}{\cos \theta}$

A1 muldiply
Eyommon denonnador
(i) $\sin ^{2} \theta$
(2) $\tan \theta=\frac{\sin 1}{\cos C}$

Questron 32.
$22 a$

$$
\begin{aligned}
& \left(\frac{a^{2}-b^{2}}{a b}\right)-\left(\frac{a b-b^{2}}{a b-a^{2}}\right) \\
& =\frac{a^{2}-b^{2}}{a b}-\frac{b(a-b)}{a(b-a)} \\
& =\frac{a^{2}-b^{2}+b^{2}}{a b} \\
& =\frac{a^{2}}{a b}=\frac{a}{b} .
\end{aligned}
$$

(1) factorsing
(ㄷ) common denominatio
(2) simplifued answer
\qquad

$$
\frac{4 \times 3^{n}-9 \times 3^{n-1}}{3^{n+3}-3 \times 3^{n+1}}=\frac{4 \times 3^{n}-3^{n+1}}{3^{n+3}-8 \times 3^{n+1}}
$$

$$
=\frac{3^{n}(4-3)}{3^{n+1}(9-8)}
$$

$$
=\frac{|x|}{3 x 1}=\frac{1}{3}
$$

b)

$$
\begin{aligned}
& \sqrt{16-8 x}=2 x-1 \\
& 16-8 x=(2 x-1)^{2} \\
& 16-8 x=4 x^{2}-4 x+1 \\
& 0=4 x^{2}+4 x-15 \\
& 0=(2 x+5 x(2 x-3) \\
& x=-2 \frac{1}{2} \text { or } x=3 / 2
\end{aligned}
$$

but $2 x-1>0 \therefore x>\frac{1}{2}$ $\therefore x=-2 \frac{1}{2}$ not a solution

$$
\therefore \quad x=3 / 2 \text { only }
$$

c)

$$
\begin{gathered}
y=x+2 \ldots x^{2}+y^{2}=10 \\
x^{2}+(x+2)^{2}=10 \\
x^{2}+x^{2}+4 x+4=0 \\
2 x^{2}+4 x-6=0 \\
x^{2}+2 x-3=0 \\
(x-1 x x+3)=0 \\
x=1 \text { or } x=-3 \\
y=3 \quad y=-1 \\
\text { inderemiction pomits }(1,3) \text { and }
\end{gathered}
$$

interatiction porits $(1,3)$ and $(-3,-1)$

Q32

(c) 32

See Atsached.

32.
f)

Construct $B C$

$$
B P=P C \text { (equal } / \text { radi) }
$$

$\angle P B C=\angle P C B$
(equal angles opposile equal sidis in $\triangle P B C$)

$$
\angle P B C+\angle P C B+\angle B P C=180^{\circ}
$$

(angle coum of $\triangle P B C=180^{\circ}$).

$$
\begin{align*}
& \therefore 2 \angle P B C+80^{\circ}=180^{\circ} \tag{1}\\
& \therefore \angle A B C+\angle P B C=50^{\circ} \\
& \therefore \angle 80^{\circ}
\end{align*}
$$

(anglesum of strought angle $P B A=180^{\circ}$)
$\therefore \angle A B C=130^{\circ}$

$$
\begin{align*}
\text { Reflex } \angle A O C & =2 \times 130^{\circ} \tag{1}\\
& =260^{\circ} \\
\therefore \quad \angle A O C & =360^{\circ}-260^{\circ} \quad(\text { andle atpoint } \tag{1}\\
& \left.=100^{\circ} . \quad \text { is } 300^{\circ}\right)
\end{align*}
$$

REMOVE THIS PAGE AND ATTACH IT TO YOUR QUESTION 34 ANSWERS

Question 34 continued

(e) Using only a pair of compasses and ruler accurately construct a circle through points A, B and C shown below. Show all construction lines.

Question 32.
(ii) AOCP is a cyelic quadribateral as opposite angles add to 180° \qquad $\angle A O C+\angle A P C=180^{\circ}$.

Questron 33.
$\Rightarrow Q$
(a)
(a)

$$
\begin{gathered}
m_{A B}=\frac{8-3}{8+2}=\frac{5}{10}=\frac{1}{2} \\
y-y_{y}=8\left(x-x_{1}\right) \\
y-8) \\
2 y-16=x-8 \\
0=x-2 y+8 \\
\text { or } y=12 x+4
\end{gathered}
$$

Solve Simultaneously

$$
\begin{aligned}
& y=\frac{1}{2} x+4 \\
& 2 x+y-9=0 \\
& 2 x+\frac{1}{2} x+4-9=0 \\
& \frac{5 x}{2}=5 \\
& x=\frac{10}{5}=2 \\
& y=\frac{1}{2} x+4 \\
& =\frac{1}{2} \times 2+4 \\
& \\
& \therefore P=(2,5)
\end{aligned}
$$

Alyennaturely Test $(2,5)$ in:

$$
\begin{aligned}
& 2 x+y-9=0 \\
& \text { LHS }=2(2)+5-9 \quad \text { AND } \quad y \\
&=\frac{1}{2} x+4 \\
&=\text { RHS }
\end{aligned}
$$

(1)
must use correct. sethingout if testing solutions

Questron 33.
33 (a) (iui) $(2,5)=\left[\frac{8 m-2 n}{m+n}, \frac{8 m+3 n}{m+n}\right]$
use ewther x or y coordinate

$$
\begin{gathered}
2=\frac{8 m-2 n}{m+n} \\
2 m+2 n=8 m-2 n \\
4 n=6 m \\
\therefore \frac{m}{n}=\frac{4}{6}=\frac{2}{3}
\end{gathered}
$$

1.Ratio is (2:3)
(b) (is $y=3-\sqrt{16-(1+2)^{2}}$

Lowe somi curcle centre $(-2,3)$
 radius 4 unis.
(ii) Doman

Range

$$
\begin{aligned}
& -6 \leqslant x \leqslant 2 \\
& -1 \leqslant y \leqslant 3
\end{aligned}
$$

(i) correct relationshup
(1) Solution
(1)
(1)
(1) lower $\frac{1}{2}$ arcle
(1) shape faxes.
etcc
(1)
(1)

Question 33
$o(C)$
\qquad

C

$$
A B=\overline{A D}=D C=D \text { (equal sites) } \bar{D} \text { (hon ins })
$$

Let $A B=x$ and $a s \quad \angle B A D=60^{\circ}$
$\triangle A B D$ is equilateral

$$
\begin{aligned}
& A B=A D=B D=x \\
& \angle B O D=90^{\circ} \\
& O B=\frac{1}{2} B D=\frac{1}{2} x
\end{aligned}
$$

(Diagonals of rhombus bisect each other at right angles)
$\therefore \ln \triangle O A B$

$$
\begin{aligned}
& \text { In } \triangle O A B \\
& O B^{2}+O A^{2}=A B^{2} \quad \text { (Pythagoras) } \\
&\left(\frac{1}{2} x\right)^{2}+O A^{2}=x^{2} \\
& \therefore O A^{2}=x^{2}-\frac{1}{4} x^{2} \\
& \therefore O A=\frac{\sqrt{3} x}{4} x \quad O A>O \\
& \therefore \frac{1}{2} x=\frac{1}{\sqrt{3}} x \\
& \therefore O A=\frac{\sqrt{3}}{2} x \\
& O B: O A=1: \sqrt{3} \\
& \frac{|B F D E|}{|A B C D|}=\left(\frac{1}{\sqrt{3}}\right)^{2}
\end{aligned}
$$

Ratio of similar areas is

- equal to ratio of lengths squared

$$
\therefore \frac{|B F D E|}{24}=\frac{1}{3}
$$

$$
\therefore|B E D E|=
$$

Area BFDE $=8 \mathrm{~cm}^{2}$.
($\frac{1}{2}$)

Questron 33
Q33
d)

$$
\begin{aligned}
& \frac{3}{x-2}-\frac{12}{x^{2}-4}=1 \quad x \neq \pm 2 . \\
& \frac{3(x+2)}{x^{2}-4}-\frac{12}{x^{2}-4}=1 \\
& 3 x+6 \text { (} 12=x^{2}-4 \\
& 0=x^{2}-3 x+2 \\
& 0=(x-2 x-1) \\
& =x=2 \text { or } x=1
\end{aligned}
$$

but $x \neq 2$. (fromabove) $\therefore x=1$ only.
e)

$$
\begin{gathered}
3 x-4 y-1+k(2 x+3 y-5)=0 \\
3 x+2 k x+3 k y-4 y-1-5 k=0 \\
x(3+2 k)+y(3 k-4)-1-5 k=0 \\
m=a / b \Rightarrow \frac{3+2 k}{3 k-4}=\frac{2}{1} \\
\therefore 3+2 k=6 k-8 \\
\therefore 11=4 k \\
\therefore k=\frac{11}{4}
\end{gathered}
$$

Question 34

Question 34
b)

Q37
(i)

A
$5 B$
$2 W$
:---:
$1 W$

Paper "Envelope.

$$
\begin{gathered}
B B \\
W W \\
P(B B B)=\frac{5}{5} \times \frac{4}{6} \times \frac{4}{5}=\frac{8}{21} \\
P(W W W)=\frac{2}{7} \times \frac{1}{6} \times \frac{1}{5}=\frac{1}{105}
\end{gathered}
$$

$$
P(\text { Same colour })=\frac{41}{105}
$$

(ia) P (atlenst ons shat coleur = envelope)

$$
\begin{aligned}
& =1-P(\text { paper dyff colour to envelope }) \\
& =1-[P(B B W)+P(w W B)] \\
& =1-\left(\frac{5}{7} \times \frac{4}{6} \times \frac{1}{5}+\frac{2}{7} \times \frac{1}{6} \times \frac{4}{5}\right) \\
& =1-\left(\frac{2}{21}+\frac{4}{105}\right) \\
& =1-\frac{2}{15} \\
& =\frac{13}{15}
\end{aligned}
$$

Alternatwely

$$
\begin{aligned}
& P(B B B)+P(B W B)+P(W B B)+ \\
& P(W W W)+P(W B W)+P(B W W) \\
& \frac{8}{21}+\frac{4}{21}+\frac{4}{21}+\frac{1}{105}+\frac{1}{21}+\frac{1}{2}=\frac{13}{15}
\end{aligned}
$$

$$
\text { C) } \begin{aligned}
&(i) 1+2 \cos 3 x=0 \\
& \cos 3 x=-\frac{1}{2} 0^{\circ} \leq x \leq 180^{\circ} \\
& 3 x^{\circ}=180^{\circ}-60^{\circ} 180^{\circ}+60^{\circ} \\
& 3 x=120 \text { or } 240 \\
&+360 \\
& x=\frac{120}{3} \text { or } \frac{240}{3} \text { or } \frac{480}{3} \\
&=40 \text { or } 80 \text { or } 160
\end{aligned}
$$

Question 34
c)
(ii)
d)
(i)

$$
\begin{aligned}
& A B=A C \quad \text { (given) } \\
& \therefore \angle B C=\angle A C B=\theta
\end{aligned}
$$

equal angles opposite

$$
\text { equal sides in } \triangle A B C \text {) }
$$

$$
\begin{aligned}
& \overline{B C}=B E \quad(\text { given } \\
& \therefore \quad 1 B C E=1 B E C=\theta
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \angle B C E=\angle B E C=\theta \\
& \quad \text { equal angles }
\end{aligned}
$$

B

$$
\therefore
$$

$\ln \triangle A B C$ and $\triangle B C E$
$\angle A B C=\angle B E C=\theta$ (fromabore)
$\angle B C E$ is common (also equal to θ)
$\therefore \triangle A B C$ III $\triangle B C E$ (equiangular).
(iii) $\triangle D E C$ III $\triangle A B C$
(iii)

$\therefore y^{2}=48$

$$
y=4 \sqrt{3}
$$

in $\triangle A B C$ and $\triangle B E C$. $\frac{x}{8}=\frac{8}{y}$. (matching sidesin
$x=\frac{6 x}{4 \sqrt{3}}=\frac{16}{\sqrt{3}}$ are mi same ratio)
(1) max pts
(1) min pts. (1) $\left\{\begin{array}{c}x \text { intercepts } \\ \text { shape. }\end{array}\right.$
can say
($\frac{1}{2}$ similarly

Reasons not required
(1) Ratio
(i) Answer.

