2006

Question 1 (20 marks)
a) Evaluate to 3 significant figures $\frac{\sqrt{5 \cdot 7+2 \cdot 3^{4}}}{3 \cdot 6 \times 10^{-5}}$
b) Find the value of an investment of $\$ 6000$ at $5 \cdot 2 \%$ p.a., compounding quarterly, for 3 years.
c) Rationalise the denominator $\frac{\sqrt{3}}{5+2 \sqrt{3}}$
d) Expand and simplify $(3 x-5)^{2}$
e) Two cards are dealt from a standard pack of playing cards.

What is the probability of not getting a king, queen or jack?
f) A plasma television costing $\$ 4990$ is offered for sale at 10% deposit, followed by 24 monthly payments of $\$ 235.78$.
i) Find the total cost of the television to the customer who buys it on terms.
ii) Find the total amount of interest paid.
iii) Find the annual interest rate to the nearest per cent.
g) If $\tan \alpha=\frac{\sqrt{5}}{8}$ find the exact value of $\sin \alpha$. (α is acute)
h) Find the exact value of $\cos 225^{\circ}$
i) $\quad 2^{n}+2^{n}=$
B) $4^{2 n}$
C) $2^{n^{2}}$
D) $\quad 2^{n+1}$

Question 2 (16 marks) START A NEW PAGE
$\begin{array}{ll}\text { a) Solve the following equations and Inequations } & \mathbf{8}\end{array}$
i) $3 \mathrm{x}+7=12 \mathrm{x}-8$
ii) $\frac{4 x-3}{2}-\frac{x+7}{5}=4$
iii) $3 x^{2}-7 x-8=0$
iv) $\quad 2^{5 x}=8^{x+4}$
b) \quad Solve simultaneously for a and $b: \quad 3 a=2 b+4$ and $\quad 7 b=3 a+1$
c) Simplify $\frac{6 x^{2}-11 x-35}{2 x^{2}-7 x} \div \frac{9 x^{2}-25}{3 x-5}$
d) Sketch on a number plane the region represented by $y>5 x-4$ and $x<6$

Question 3 (16 marks) START A NEW PAGE
a) For the following data

Score	Frequency
4	3
5	10
8	6
9	9
12	2

Find i) the mean ii) the mode
iii) median iv) standard deviation
b) The box and whisker plot below represents the results of a survey which measured the heights in centimetres, of students in year 10.

i) Find the median.

True or false?
ii) 50% of the scores are between 168 cm and 180 cm .
iii) the interquartile range is 14 .
iv) 75% of the scores are less than 180 cm .
c) The test results for 2 class tests gave the following information.

Test 1: mean 30 and standard deviation 5
Test 2: mean 30 and standard deviation 8
i) Which set of scores is clustered more about the mean and why?
ii) A student scored 36 on both tests. Which is his better result and why?
d) A bag contains 6 black and 8 white balls. If 2 balls are drawn out

Find i) the probability they are both the same colour.
ii) the probability that at least one is black.

Question 4 (9 marks) START A NEW PAGE
a) Find the value of the pronumeral in each case. No reasons required.
i)

ii)

Centre O
iii)

iv)

b) \quad i) $\quad \operatorname{Prove} \angle \mathrm{AFE}+\angle \mathrm{CDE}=180^{\circ}$
(Copy the diagram on to your answer page)

Question 5 (14 marks)

a) Prove that the coordinates of B must be $(16,0)$.
b) Find the equation of AC.
c) Find D, the midpoint of $A C$.
d) Find the equation of the line through D , drawn to E on BC , parallel to AB .
e) Find the coordinates of E.
f) Find the area of $\triangle \mathrm{ABC}$.
g) Find $\mathrm{DE}: \mathrm{AB}$. What geometrical property does this demonstrate?
h) If AB is a tangent to a circle centre C , find the equation of the circle.

Question 6 (13 marks) START A NEW PAGE
a)

A hang glider left the top of Mt Anirudh (A) and flew 10 km on a bearing of $210^{\circ} \mathrm{N}$ to Mt Botica (B). From Mt Botica he flew on a bearing of $290^{\circ} \mathrm{N}$ to Mt Curtis (C) and then flew the 15 km back to Mt Anirudh.
i) \quad Show $\theta=41^{\circ} 02^{\prime}$
(Hint: find the measure of $\angle \mathrm{ABC}$ first, then use the sine rule.)
ii) Find the total distance travelled.
b) i) Sketch the curve $y=3 \sin 4 \theta \quad 0 \leq \theta \leq 180^{\circ}$
ii) Sketch the curve $y=2-3 \sin 4 \theta \quad 0 \leq \theta \leq 180^{\circ}$
c) Solve the equation $\cos \alpha=\frac{-1}{2} \quad 0 \leq \alpha \leq 360^{\circ}$

Question 7 (8 marks)
a) Find the surface area of the one-eighth section of a sphere, radius 5 cm below.

b) These two cones are similar. Their heights are 15 cm and 10 cm .

i) What is the ratio of their surface areas?
ii) If the volume of the smaller cone is $16 \mathrm{~cm}^{3}$, find the volume of the larger cone.
c) A hemispherical bowl is filled at a constant rate.

Sketch a graph of time against the depth of the water as the bowl is being filled.

Question 8 (23 marks) START A NEW PAGE
a) A ball is thrown up in the air from a balcony on a building and follows the path represented by the equation $h=(4+t)(8-t)$.
h is the height above the ground in metres and t is the time travelled in seconds.
i) How high was the balcony when the ball was initially thrown? (i.e. when $t=0$)
ii) Sketch the parabola showing the t and h intercepts and the axis of symmetry.
iii) How high and at what time was the ball at its highest point?
iv) At what time did the ball hit the ground?
b) Find the locus of $\mathrm{P}(x, y)$ if P is equidistant from $\mathrm{A}(1,5)$ and $\mathrm{B}(6,0)$.
c) Consider the equations $\mathrm{y}=x^{2}$ and $y=8 x-7$
i) Find the two points of intersection algebraically.
ii) Show your solution graphically on a number plane.
d) Sketch the graphs of the following, showing intercepts and any asymptotes.
i) $y=2^{x}$
ii) $y=\frac{1}{x+3}$
iii) $\quad y=(x-2)^{3}$

Question 9 (15 marks) START A NEW PAGE
Consider the graphs below
i)

ii)

iii)

a) Which of the above graphs represent functions?
b) Which of the above graphs have an inverse which is a function?
c) For the function $\mathrm{f}(\mathrm{x})=3 x-8$ find:
i) $\quad \mathrm{f}(6)$
ii) $\quad \mathrm{f}(m+2)$
iii) the value of k if $\mathrm{f}\left(k^{2}\right)=4$
d) If $f(x)=\frac{2}{x+3}$ find its inverse function $f^{-1}(x)$
e) If $f(x)=8-x$
i) Show that $f^{-1}(x)=8-x$
ii) By sketching $y=f(x)$ and $y=x$ on the same axis, explain why $f(x)=f^{-1}(x)$.

Q'
a) $\begin{array}{ll}161216 \cdot 68 & 2 \\ 161000 & 2\end{array}$
b)

$$
\begin{align*}
& 6000 \times 1.013^{12} \\
& =\$ 7005.91 \tag{2}
\end{align*}
$$

Ic) $\frac{\sqrt{3}}{5+2 \sqrt{3}} \times \frac{5-2 \sqrt{3}}{5-2 \sqrt{3}}$,

$$
=\frac{5 \sqrt{3}-6}{13}
$$

h) $-\frac{1}{\sqrt{2}}$
d) $9 x^{2}-30 x+25 \quad 2$
i) $D 1$
e) $\frac{40}{52} \times \frac{39}{51}=\frac{10}{17}$
f) :

$$
\begin{align*}
& 499+24 \times 235.781 \tag{2}\\
& =\$ 6157.72
\end{align*}
$$

ii) $\$ 1167.72 \quad 1$

$$
\text { iii) } \begin{aligned}
I & =583.86 / 4 \mathrm{r} \quad \\
\therefore & \frac{58380}{4491} \\
& =13 \%
\end{aligned}
$$

Q 2
a) i)

$$
\begin{align*}
& 3 x+7=12 x-8 \\
& 9 x=15 \\
& x=\frac{5}{3} \tag{2}
\end{align*}
$$

i)

$$
\begin{gathered}
20 x-15-x-14=40 \\
18 x=69 \\
x=\frac{69}{18}=\frac{33}{6}(2)
\end{gathered}
$$

iii) $3 x^{2}-7 x-8=0$
$x=\frac{7 \pm \sqrt{49 \times 4 \times 3 \times 8}}{6}$

$$
=7 \pm \frac{\sqrt{145}}{6}
$$

iv)

$$
\begin{aligned}
& 2^{5 x}=2^{3 x+12} \\
& 5 x=3 x+12 \\
& 2 x=12 \\
& x=6
\end{aligned}
$$

b)

$$
\begin{align*}
& 3 a=2 b+4 \tag{1}\\
& 7 b=3 a+1 \tag{2}
\end{align*}
$$

(1) into (2)

$$
\begin{align*}
7 b & =2 b+5 \\
5 b & =5 \\
b & =1 \tag{2}\\
\therefore a & =2
\end{align*}
$$

c)

$$
\begin{align*}
& \frac{(3 x-5)(2 x-7)}{x(2 x-7)} \times \frac{3 x-5}{(3 x-5)(3 x+5)} \\
& =\frac{1}{x} \quad 3 \tag{3}
\end{align*}
$$

a)
i) 7.16
ii) 5
iii) 8
iv) 2.296
b) i) 174
ii) F
iii) T
iv) TorF
c) Testil is more clustered
i) about the mean asits Standardeloviution in 1,1
Smaller (686 infact betullen 25-35)
ii) Agair T, as 36151×2 SD 1,1 above mean Inta it is anty "7r abore the mean
d)
i) $\frac{6}{14} \times \frac{5}{13}+\frac{8}{14} \times \frac{7}{13} 1$ $=\frac{86}{182}=\frac{43}{91}$
ii) 1-Noblack

$$
=1-\frac{56}{182}=\frac{126}{182}=\frac{9}{1!}
$$

1

Qu
a) i) 40°
ii) 105°
iii) 94°
iv)

$$
\begin{aligned}
& 6(x+6)=12 \times 4(1) \\
& x=2
\end{aligned}
$$

$$
5
$$

b)

Let $1 A F E=x$
$\therefore \angle E B C=x$. (EXt \angle of a cyclic quadvilatera)
$\therefore \angle C D E=180-x \quad$ (opp $\angle s$ cyclic quads)

$$
\therefore \angle A F E+\angle C D E=x+180-x=180
$$

$4(-1$ for each missing bit)

$$
4
$$

Q 5
a) Gradient of $A C=2$
\therefore Grodent of $B C=\frac{-1}{2}$

$$
\begin{equation*}
C O=8 \quad \therefore O B=16 \tag{1}
\end{equation*}
$$

b) $y=2 x+8$
(2)
c) $D(-2,4)$
(2)
d) $y=4$
e) $(8,4)$
f)

$$
\begin{aligned}
A & =\frac{1}{2} \times 20 \times 8 \\
& =80 \text { squnits }
\end{aligned}
$$

g)

$$
\begin{aligned}
D E & =10 \\
A B & =20 \\
\therefore & D E: A B=1: 2 \quad(1)
\end{aligned}
$$

join of midpants is half. the length of the parallel side
h) $x^{2}-(y-8)^{2}=64$

Qb

a)

i) $\angle A B C=100$
$\frac{\operatorname{Sin} \theta}{10}=\frac{\operatorname{Sin} 100}{15}$
$\sin \theta=10 \times \frac{5 \min 100}{15}$

$$
\begin{align*}
& =0.6565 \tag{1}\\
\theta & =41^{\circ} 2^{\prime}
\end{align*}
$$

3
ii)

$$
\text { (1) } \begin{align*}
& \angle C A B=38^{\circ} 58^{\prime} \\
& C B^{2}=15^{2}+10^{2}-2 \times 15 \times 10 \times \cos 38^{\circ} 58^{\prime}(1) \\
&=91.74 \\
& C B=9.578 . \tag{1}
\end{align*}
$$

b)
i)

1 - amp.
$1-$ shape $E B$
ii)

1- correct core.
(2)
c) 120° 240°

\therefore Total distance $\doteqdot 34.6 \mathrm{Km}(1)$
$B 7$
a)

$$
\begin{align*}
& 3 \times \frac{1}{4} \text { arde }+\frac{1}{8} \text { surface } \\
= & \frac{3 \times \pi \times 5^{2}}{4}+\frac{1}{8} \times 4 \pi r^{2} \\
= & \frac{75 \pi}{4}+\frac{25 \pi}{2} \quad(-1 \text { no units }) \\
= & \left.\frac{125 \pi}{4} \text { squnts }\right\} 1 \tag{13}\\
\div & 98.17 \text { squuts }
\end{align*}
$$

b)

$$
\begin{align*}
& \text { i) } l_{1}: l_{2}=3: 2 \\
& \therefore S A_{1}: S A_{2}=9: 4 \tag{2}
\end{align*}
$$

ii)

$$
\begin{align*}
& V_{1}: V_{2}=27: 8 \\
& \therefore \frac{V_{1}}{V_{2}}=\frac{27}{8}=\frac{V_{1}}{16} \\
& V_{1}=54 \text { cubients } \tag{1}
\end{align*}
$$

Q
c)

QB.
a) i) $h=32 m$

(2) intercepts
(1) Axis of Sym
\square 3
iii) 36 m at 2 sec

2
iv) 8 seconds after starting
b)

$$
\begin{gather*}
P A=P B \\
P A^{2}=P B^{2} \\
(x-1)^{2}+(y-5)^{2}=(x-6)^{2}+y^{2} \\
x^{2}-2 x+1+y^{2}-10 y+25=x^{2}-12 x+36+y^{2} \\
10 x-10 y=10 \\
x-y=1 \tag{3.}
\end{gather*}
$$

c)

$$
\begin{gather*}
\text { i) } x^{2}=8 x-7 \\
x^{2}-8 x+7=0 \tag{1}\\
(x-7)(x-1)=0 \\
x=7 \quad \text { or } x=1 \\
\therefore y=49 \quad y=1 \\
(7,49) \quad(1)
\end{gather*}
$$

d)
i)

1 ntercept
1 ascipmptote

$$
\alpha
$$

ii) $y=\frac{1}{2 c+3}$

(3)

$$
\begin{aligned}
& 1 \text {-intercept } \\
& \text { 1-asymp } \\
& \text { 1-shape } 3
\end{aligned}
$$

iii)

2 interepts 1 -shope

QQ
a) $1,1, v, v_{1}(-1$ for each mistake) 3
b) $v, v_{i}, \quad\left(\begin{array}{llll}-1 & " & " & ") \\ 2\end{array}\right.$ 5
c) i) 10

$$
\text { (i) } \begin{aligned}
= & 3(m+1)-8 \\
& =3 m-2
\end{aligned}
$$

iii)

$$
\begin{aligned}
3 k^{2}-8 & =4 \\
3 k^{2} & =12 \\
k^{2} & =4, \\
k & = \pm 2, \quad 2
\end{aligned}
$$

d)

$$
\begin{align*}
& x=\frac{2}{y+3} \tag{1}\\
& x(y+3)=2 \\
& y+3=\frac{2}{x} \\
& y=\frac{2}{x}-3 \tag{1}
\end{align*}
$$

e) i) $f: y=8-c$

$$
\begin{equation*}
f^{-1}: x=8-y \Rightarrow y=8-x \tag{1}
\end{equation*}
$$

$$
\text { " } y=0-x=-1
$$

\therefore line us 1 to axis (1)

