

NORTH SYDNEY BOYS HIGH SCHOOL

2007 YEAR 10 YEARLY EXAMINATION Mathematics

Examiner: R Lowe

General Instructions

- Working time - 120 minutes
- Write on one side of the paper
- Write using blue or black pen
- All necessary working should be shown in every question
- Board approved calculators may be used
- Write all attempted solutions neatly on your own paper

Total Marks (117)

- Attempt questions
- Class Teacher: \square Mr Lowe
\square Mr Fletcher,
\square Mr Barrett,
$\square \mathrm{Mr}$ Weiss,
$\square \mathrm{Mr}$ Ireland

Student Name :

Number of working pages used $=$ (fill this in at the end of the exam)

Q1	$\mathbf{Q 2}$	$\mathbf{Q 3}$	$\mathbf{Q 4}$	$\mathbf{Q 5}$	$\mathbf{Q 6}$	$\mathbf{Q 7}$	Total	\%
$\overline{20}$	$\overline{13}$	$\overline{16}$	$\overline{13}$	$\overline{22}$	$\overline{21}$	$\overline{12}$	$\overline{117}$	

Question 1) 20 marks

a) (1) Write 0.54 as a fraction in simplest form.
b) (1) Find the simple interest on $\$ 980$ at 11% p.a over 5 years
c) (2) Find the exact value of
i) $\quad \sin 60^{\circ}$
ii) $\tan 135^{\circ}$
d) (1) If θ is reflex and $\cos \theta=\frac{1}{2}$ what is the size of θ ?
e) (1) If $\sqrt{a}=2 \sqrt{3}$ find the value of a
f) (2) Evaluate correct to 3 decimal places $\sqrt{\frac{2.691^{3}}{4.6+7.3}}$
g) (2) Factorise fully $5 x^{2}-245$
h) (2) How many 3 digit numbers can be formed from the numbers 5, 4,3,2,1?
i) (2) Change the subject of the following formula form C to F

$$
C=\frac{5}{9}(F-32) . \text { For what value is } \mathrm{C}=\mathrm{F} ?
$$

j) (2) Solve $x^{2}+10 x-24=0$
k) (2) Simplify $\sqrt{75}-\sqrt{12}$

1) (2) If a motorist left Sydney at 6 a.m and travelled 880 km to Melbourne at an average speed of $64 \mathrm{~km} / \mathrm{hr}$, at what time did he arrive? Answer in 12 hour time
Question2) 13 marks
a)(1) When shooting at a target in archery the probability of Bob hitting the bullseye on the first throw is $\frac{1}{4}$ and for Ted on the first throw it is $\frac{1}{5}$. Find the probability that both Bob and Ted hit it on the first throw?
b)(1)

Each of the sets of scores A to D has a mean of 60 . Wiflout calculating the standard deviations, arrange the sets in order of increasing standard deviation.

c) (3) A die is thrown twice, what is the probability:
i) Of throwing a double (the same number twice)?
ii) That the sum of the numbers thrown is 8 ?
d) (4) A regular coin is tossed 3 times, what is the probability
i) Of throwing 3 heads?
ii) Of throwing at least 1 tail?
iii) Of throwing 2 heads and a tail?
e) (2) The mean life expectancy of wombats is 12 years with a standard deviation of $2 \frac{1}{2}$ years. What percentages of wombats die between the age range of 7 and 17 years?
f) (2) After completing 4 tests Willson has a mean of 60%. If there are 2 more tests out of 100 , what is the maximum mean mark that Willson can achieve?

Question 3) $\mathbf{1 6}$ marks
a) (3) In each of the following, state whether the set of ordered pairs represents a function or not.
i) $(1,5),(2,6),(3,7),(4,8)$
ii) $(8,4),(7,5),(6,6),(5,4)$
iii) $(1,3),(1,4),(0,3),(2,4)$
b) (2) If $f(x)=2 x-5$, find:
i) $f(0)$
ii) $f(2)$
c) (2) If $F(p)=p^{2}$, find an expression for $\frac{F(p+h)-F(p)}{h}$
d) (3)

Which of the following are graphs of functions?
a

b

c

e) (3) Find the inverse function, $f^{-1}(x)$, for each of these linear functions.
i) $y=3 x+5$
ii) $y=\frac{x-1}{x-2}$
f) (3) Use the given graph of $y=f(x)$ to sketch the following functions
i) $y=f(x)+1$
ii) $y=f(x-1)$
iii) $y=-f(x)$

Question 4) 13 marks
a) (1) How many square centimetres in a square metre?
b) (1) The escape velocity of a space shuttle to leave the Earth is $112 \mathrm{~m} / \mathrm{s}$.

Express this in km/h
c) (1) If a cube has volume $15625 \mathrm{~cm}^{3}$, what is the length of each side?
d) (1) Find the ratio of the length of the sides of 2 squares if their areas are $81 \mathrm{~cm}^{2}$ and $256 \mathrm{~cm}^{2}$
e) (1) The radius of the Earth is approximately 6400 km . What is the circumference of the Earth at the Equator?
f) (2) A tap is dripping at the rate of 1 drop every 5 seconds. How much water is wasted if the tap is left to drip for 18 hours, if 10 drops of water make 1 mL ?
g) (3) Find the TOTAL surface area of a cone with height 12 cm and slant height 13 cm .
h) (3) A swimming pool is 8 m long and 3 m wide. It is 2.1 m at the deep end and 1.3 m at the shallow end, with a constant fall from the shallow end to the deep end. If the pool is full how much water will it hold $\left(\mathrm{m}^{3}\right)$? What is the capacity of the pool in litres?

Question 5) 22 marks
a) (5) Simplify
i) $3 x-2(x-5)$
ii) $\frac{x+2}{3}-\frac{x}{2}$
iii) $\frac{x^{4}-x^{2}}{x^{2}+x}$
b) (5) Solve simultaneously
i) $2 x+y-5=0$ and $3 x-4 y-24=0$
ii) $y=\frac{3}{x}$ and $x+y=0$. What does your solution mean?
c) (3) Three towns A, B and C are connected by straight roads, where $\mathrm{AB}=25 \mathrm{~km}$, $\mathrm{AC}=40 \mathrm{~km}$ and $\angle B A C=20^{\circ}$. What distance is saved by going directly from A to C, instead of via B?
d) (2) For the circle $(x+8)^{2}+y^{2}=64$ what are the coordinates of the centre and the length of the radius?
e) (3) Two parallel chords in a circle of diameter 50 cm have lengths of 14 cm and 48 cm . What is a possible distance between the chords?
f) (4) Find the value of α and β, no reasons are required
i)

ii)

Question 6) 21 marks
a) (7) Consider the points $\mathrm{A}(-2,7)$ and $\mathrm{B}(3,6)$

Find:
i) The distance AB
ii) The gradient of AB
iii) The mid point of $A B$
iv) The equation of the line $A B$
v) The equation of a line that is perpendicular to AB and passes through the origin
b) (6) Sketch graphs of the following, showing all intercepts
i) $y=3^{x}$
ii) $y=\frac{1}{x+1}$
iii) $y=(4-x)(x+3)$
c) (4) Given the curve $y=3 \sin 4 \theta$
i) What is the amplitude of the curve?
ii) What is the period of the curve?

Sketch the curve where $0^{\circ} \leq \theta \leq 180^{\circ}$
d) (4) Simplify
i) $\quad\left(3 x^{3}\right)^{2}$
ii) $\frac{2 a^{2} \times 3 a b^{2}}{12 a b^{3}}$

Question 7) 12 marks
a)(3) Solve
i) $\quad 9^{x}=3^{5}$
ii) $\quad 2^{3 x+1}=32^{x}$
b)(2) Solve for x

c)(5)

In the diagram above, $A B=A C$.
(i) Prove that $\angle C P Q=\theta$.
(ii) Prove that $\angle C P A=\phi$.
(iii) Hence prove that $P Q Y X$ is cyclic.
d) (2)

I bought two trays of mangoes. In the first tray a quarter of them were bad. In the second tray, which contained four less mangoes, only a fifth of them were bad. If I had a total of 34 good mangoes, how many were in each tray?

Suggested Sol's yew ic yeurly
a) $\frac{21}{50}$
b) $\$ 539-1$
c) $1 / \frac{\sqrt{3}}{2} \ldots 1$
$11-1-1$
2) $240^{\circ}-1$
e) $a=12 \quad-1$
f.) $1.280-2$ (IIF not rocendel)
g) $5\left(x^{2}-49\right)-1$

$$
5(x-7)(x+7)-1
$$

h) $5 \times 4 \times 3$

$$
=60
$$

©)

$$
\begin{aligned}
& F=\frac{9 c}{5}+32-1 \\
& F=C \text { Then } \\
& C=\frac{9 c}{5}+32 \\
& 5 C=9 c+160 \\
& C=-40-1
\end{aligned}
$$

1) $(x+12)(x-2)=0-1$

$$
x=2 \text { or }-1)
$$

k) $5 \sqrt{3}-2 \sqrt{3}-1$

$$
3 \sqrt{3}
$$

-1

1) $\frac{880}{6 L}=13 \frac{3}{4}$
\therefore Arrive al $19.45-1$
\% 7.45pm -1
(2) a) $\frac{1}{4} \times \frac{1}{5}=\frac{1}{20}-1$
b) $C B A D-1$
c) $1 / \frac{6}{36}=\frac{1}{6} \quad-1$
$11 /(3, r),(5,1),(4,4),(6,1),(2,6)$

$$
\frac{5}{36} \quad-2
$$

d) $1 / \frac{1}{8}$
"/ $1-\frac{1}{8}$

$$
=\frac{7}{8}
$$

$\begin{gathered}11 / \text { MHT, иTM, тнM } \\ \frac{3}{8}\end{gathered}-2$
e) 2 standend deviations

$$
95 \% \quad-2
$$

()

$$
\begin{aligned}
& 240+200 \\
& =440
\end{aligned}
$$

$$
\frac{440}{6}=73 \frac{1}{3} 6-1
$$

(3)
a) y yes
"I Yes - !
II) No - 1
b) $1 / f(0)=-5 \quad-1$

$$
" f f(z)=-1 \quad-1
$$

c) $\frac{(p+h)^{2}-p^{2}}{h}$

$$
=\frac{p^{2}+2 p h+h^{2}-p^{2}}{h}
$$

$$
={ }^{2} p+h \quad-1
$$

d)
a) yes \qquad
b) Yes
c) No

If consur Just $a+b$ gue 3 moak
e) y Inouse is

$$
\begin{aligned}
x & =3 y+5 \\
y & =\frac{x-5}{3} \\
f^{-1}(x) & =\frac{x-5}{3}
\end{aligned}
$$

1/ Linverse b

$$
\begin{aligned}
& x=\frac{y-1}{y-2} \\
& x y-2 x-y=-1 \\
& y(x-1)=2 x-1 \\
& y=\frac{2 x-1}{x-1} \\
& f^{-1}(x)=\frac{2 x-1}{x-1}-1
\end{aligned}
$$

f) $y=f(x) m$

y $\quad 4=f(x-1)$

i') $\quad y=-f(x)$

(4) a) 100000
-1
b) $\frac{112 \times 60 \times 60}{10.0}$

$$
=403.2 \mathrm{kin} / \mathrm{hr}_{r}-1
$$

c) $\sqrt[3]{15625}$

$$
=25 \mathrm{~cm} \quad-1
$$

d) $9: 16-1$
e) $2 \times \pi \times 66.00$
$\binom{12800 \pi \pi}{40212.4}=1$
(E) 121 mm
$12 \times 60 / \mathrm{lir}$

$$
12 \times 60 \times 18=12960 \text { orps }-1
$$

41296 mL

$$
1.296 \mathrm{~L}-1
$$

9)

$$
\begin{aligned}
& \pi r^{2}+\frac{1}{3} \pi r L \\
= & 25 \pi+\frac{65 \pi}{3}(l=13-1) \\
= & \frac{140 \pi}{3} \mathrm{~cm}^{2} \\
& (146.6) \mathrm{cm}^{2}-1
\end{aligned}
$$

15) holds $\frac{8}{2}(1.3+2.1) \times 3-1$

$$
\begin{aligned}
& =40.8 \mathrm{~m}^{3}-1 \\
& =40800 \mathrm{~L}
\end{aligned}
$$

(5) ay $5 x-2 x+10$

$$
x+10
$$

ii) $\frac{2(x+2)-3 x}{6}$

$$
=\frac{4-x}{6} \quad-1
$$

$11 / \frac{x^{2}\left(x^{2}-1\right)}{x+11}$

$$
=x(x-1)
$$

b) $1 /$

$$
\begin{gather*}
2 x+y-5=0 \\
3 x-4 y-24=0 \tag{2}\\
8 x+4 y-20=0 \\
15 x=44 \\
x=4 \\
8+4-5=0 \\
4=-3 \\
(x, y)=(4,-3)
\end{gather*}
$$

$4 \times 0 \frac{8 x+4 y-20=0}{15 x}=44$
"i $y=\frac{3}{x}$
$x+y=0$
(1) \rightarrow (2)

$$
\begin{align*}
& \frac{3}{x}+x \\
&=3+x^{2}=0 \\
& x^{2}=-3 \\
& \therefore \text { no soch }
\end{align*}
$$

is no pount af untersecta betueen grafis
c)

$$
\begin{align*}
B C^{2} & =25^{2}+40^{2}-2 \times 25 \times 40 \cos 20 \\
& =345 \cdot 614 \\
B C & =\sqrt{0} \\
& =18.6 \mathrm{k}
\end{align*}
$$

\therefore Dista u Stueou

$$
25+18 \cdot 6-40=3 \cdot+k-1
$$

d) Cinke $(-8, c)-1$ facius 8
e)

\therefore districu co be $2 u+7$ (oppsicis)
$\left.\begin{array}{rl} & =31 \mathrm{~cm} \\ a & 24-7\end{array}\right) 17 \mathrm{~cm}(\mathrm{san} \mathrm{sos})$
f) $y \alpha=90^{\circ}-1$
$\beta=110^{\circ}-1$
"1 $\alpha=25^{\circ}-1$
$\beta=25^{\circ}-1$
(b) a) y $\partial=\sqrt{s^{2}+(-1)^{2}}$
$=\sqrt{26}-1$
${ }^{11} / M_{A B}=\frac{6-7}{3-(-2)}=\frac{-1}{5}-1$

$$
\begin{aligned}
\text { III/M.1) PT } & \left(\frac{3-2}{2}, \frac{6+7}{2}\right) \\
& =\left(\frac{1}{2}, \frac{13}{2}\right)-1
\end{aligned}
$$

i/ 14 lin^{2} on

$$
\begin{gather*}
y-6=-\frac{1}{5}(x-3)-1 \\
5 y-30=-x+3 \\
x+5 y=33
\end{gather*}
$$

vi $\quad y=5 x$
-2

c)

$$
\begin{array}{rl}
Y & =3 S 4 \theta \\
y & A=3 \\
M P & =\frac{360}{4}=90^{\circ}
\end{array}
$$

7) $1 / 9 x^{6}$
"/ $\frac{a^{2}}{2 b}$
7) a) 17 $3^{2 x}=3^{5}$

$$
2 x=5
$$

$$
x=\frac{5}{2} \quad-1
$$

$$
\begin{aligned}
11 / 2^{3 x+1} & =2^{5 x}-1 \\
3 x+1 & =5 x \\
2 x & =1 \\
x & =\frac{1}{2}-1
\end{aligned}
$$

b)

$$
\begin{aligned}
& x(12+x)=8^{2}-1 \\
& 12 x+x^{2}=64 \\
& x^{2}+12 x-64=0 \\
& (x-4)(x+16)=0 \\
& x=4 \quad x+-16
\end{aligned}
$$

c)

$$
\begin{align*}
& 1 \angle C P Q=\angle C A Q \text { (same ire) } \\
& \therefore \angle C P Q=\theta \tag{1}
\end{align*}
$$

y $\angle A C B=\angle A B C \quad(\operatorname{HOS} \triangle A B C)$

$$
=\phi
$$

$$
\angle A B C=\angle A P C \text { (Same ArC) }
$$

$$
=\phi \quad-2
$$

"i'/ $\angle A Y B=\phi+\theta($ ext $x \cdot 0 \Delta \Delta)$

$$
\begin{aligned}
\angle A P E & =\operatorname{LAC}+\operatorname{CrA} \\
& =\theta+\phi
\end{aligned}
$$

$\therefore x y \theta 0^{n}$ a cyclic
cope as supplementary)
d) Let Wangass be M

$$
\begin{align*}
3 \frac{m}{4}+\frac{4(m-4)}{5} & =34 \\
15 m+16 m-64 & =680 \\
31 m & =744 \\
m & =24
\end{align*}
$$

y (hae 24 mongoes -1

