STAGE 5.1-5.3 MATHEMATICS

General instructions

- Working time - 2 periods.
- Write on one side of lined A4 paper supplied by yourself.
- Commence each new question on a new sheet.
- Write using blue or black pen. Where diagrams are to be sketched, these may be done in pencil.
- Board approved calculators may be used.
- All necessary working should be shown in every question.
- Attempt all questions.
- At the conclusion of the examination, bundle the sheets used in the correct order within this paper and hand to examination supervisors.

Class teacher (please $\boldsymbol{\checkmark}$

\bigcirc Mr LoweMr FletcherMr LamMiss WeiMr Weiss
\qquad

Marker's use only.

QUESTION	1	2	3	4	5	6	7	Total	Total (\%)
MARKS	$\overline{15}$	$\overline{10}$	$\overline{10}$	$\overline{11}$	$\overline{21}$	$\overline{18}$	$\overline{21}$	$\overline{106}$	$\overline{100}$

Question 1 (15 Marks)
Commence on a NEW sheet.
(a) Write 0.000738 in scientific notation, correct to 2 significant figures.
(b) Evaluate $\frac{1}{\sqrt{45.8-5.8}}$ correct to 2 decimal places.
(c) Find 8.5% of $\$ 300$.
(d) \quad Simplify $\frac{7 x-21}{7}$.
(e) \quad Factorise $9-4 x^{2}$.
(f) \quad Solve $x^{2}=5 x$.
(g) If $\sqrt{a}=3 \sqrt{7}$, find the value of a.
(h) Calculate the area of a rhombus with diagonals of length 7 cm and 10 cm .
(i) If the dimensions of a cube are doubled, by what factor is the volume increased?
(j) Light travels at a speed of 3×10^{8} metres per second. Find the number of kilometres that light travels in 1 hour.
(k) The point $(k, 2)$ lies on the line $2 x+3 y-8=0$. Find the value of k.
(l) What is the maximum value of $25-(3 x-7)^{2}$?
(m) If a marathon runner completes a course of 42.2 km in 2 hours and 30 minutes, calculate her average speed in kilometres per hour.
(n) Find the value of α. No reasons are necessary.
i.

ii.

Question 2 (10 Marks)
 Commence on a NEW sheet.

(a) What is the equation of a circle with centre $(5,-1)$ and radius $16 ?$
(b) Draw the following graphs:
i. $\quad y=5^{x}$.
ii. $\quad y=\frac{-5}{x}$.
iii. $\quad y=\sqrt{x-4}$.
(c) If $\$ 7420$ is invested in a building society for 10 years with an interest of 8% p.a. compounding every six months, how much money is in the account after 10 years?

Question 3 (10 Marks)
Commence on a NEW sheet.
Marks
(a) What is the probability of throwing a total of 8 with one throw of a pair of dice?
(b) From a bag containing 5 red and 3 blue balls, a ball is taken at random from the bag. A second ball is then withdrawn and placed beside it.

Draw a tree diagram to show this and use it to find the probability that one ball is blue and one is red.
(c) If the probability of an event is $\frac{1}{4}$, how many times would you expect the event to occur in 80 trials?
(d) A four digit number is to be formed from the digits $1,3,5$ and 8 . What is the probability that the number will
i. Start with the digit ' 3 '?

1
ii. Be odd?
iii. Be greater than 5000 ?
(e) A family has 3 children. What is the probability of
i. $\quad 3$ boys?

1
ii. At least 1 boy?
iii. $\quad 2$ boys and a girl?

Question 4 (11 Marks)
Commence on a NEW sheet.
(a) At a school swimming carnival, 40 students entered the diving competition. Each dive was awarded points on a scale of 1 to 10 . The table below shows the distribution of the scores.

Score	1	2	3	4	5	6	7	8	9	10
Students	1	1	2	3	4	4	5	9	8	3

i. Find the mode of the scores.
(b) If the mean of a set of scores is 24 and standard deviation is P and a further score of 24 is added to the set,
i. What is the new mean?

1
ii. Will the standard deviation be more than P, less than P or remain the same?
(c) After completing 4 tests, Harry has an average mark of 60%. If there are 2 more tests and Harry scores $\frac{37}{45}$ and $\frac{78}{80}$, what will be his new average?
(d) What is the relative frequency of the letter " \mathbf{i} " in the word artificial?

Question 5 (21 Marks)
Commence on a NEW sheet.
Marks
(a) In each of the following, state whether the set of ordered pairs represents a function or not, then write down the domain and range.
i. $(1,8),(2,7),(3,6),(4,5)$.
ii. $(1,1),(1,2),(0,4),(2,3)$.
(b) If $f(x)=x^{2}-5$, find:
i. $\quad f(0)$.
ii. $\quad f(-2)$.
(c) In each of the following, state whether the curve sketched represents a function or not, then write down the domain and range.
i.
ii.
iii.

(d) Find the inverse function $f^{-1}(x)$ for each of these linear functions.
i. $\quad y=2 x-7$.
ii. $y=\frac{2 x-1}{x-3}$.
(e) Use the graph of $y=f(x)$ to sketch the following functions:

i. $\quad y=f(x)+1$.
ii. $\quad y=f(x-1)$.
iii. $\quad y=-f(x)$.

Question 6 (18 Marks)
Commence on a NEW sheet.
(a) Simplify $\frac{18 x^{3}}{9 x^{4}}$.

2
(b) Solve for x :
i. $\quad 2^{x}=\frac{1}{16}$.
ii. $\quad 4^{x+1} \geq 8$.
(c) Write $a^{\frac{3}{4}}$ without any indices.
(d) Find the exact value of $9^{-\frac{1}{2}}+3^{0}$.
(e) Evaluate:
i. $\quad \log _{3} 27$.
ii. $\quad \log _{2}\left(\frac{1}{2 \sqrt{2}}\right)$.
(f) Solve for x :
i. $\quad \log _{2} x=4$.
ii. $\quad \log _{x} 81=4$.
iii. $\quad \log _{5} 125=x$.
(g) \quad Simplify $\frac{2^{n+1}}{2^{n}-2^{n-1}}$.

Question 7 (21 Marks)
Commence on a NEW sheet.
(a) For the equation $y=x^{2}+4 x-4$,
i. Find the y intercept.

1
ii. Find the x intercepts. 1
iii. Find the axis of symmetry.
iv. Find the vertex.
v. Sketch the curve.
(b) What is the reciprocal of $x+\frac{1}{x} ?$
(c) If θ is reflex and $\cos \theta=\frac{\sqrt{3}}{2}$, what is the size of θ ?
(d) Draw a triangle where $\tan \theta=\frac{8}{15}$. Hence write down the value of $\sin \theta$.
(e) A ship sails from O for 60 nautical miles on a bearing of $\mathrm{N} 25^{\circ} \mathrm{E}$ to a point A. It then changes course and sails for 40 nautical miles on a bearing of $\mathrm{S} 75^{\circ} \mathrm{E}$ to a point B.

Draw a diagram to represent the above information, and find
i. The distance from B to O, to the nearest nautical mile.
ii. The bearing of B from O.
(f) For the function $y=3 \sin 2 x$,
i. Find the amplitude.
ii. Find the period.
iii. Sketch the graph for $0^{\circ} \leq x \leq 360^{\circ}$.

End of paper.

