STAGE 5.1-5.3 MATHEMATICS

2010 Year 10 Final Examination

General instructions

- Working time - 120 minutes.
- Marks may be deducted for careless or poorly arranged work.
- Commence each new question on a new sheet.
- Write using blue or black pen. Where diagrams are to be sketched, these may be done in pencil.
- Board approved calculators may be used.
- All necessary working should be shown in every question.
- Attempt all questions.
- At the conclusion of the examination, bundle the sheets used in the correct order within this paper and hand to examination supervisors.

Class (please \boldsymbol{V})
O 10M1 - Mr Berry/Mr Weiss
O 10M2 - Mr Ireland
O 10M3 - Mr Lam/Mr Fletcher
O 10M4-Mr Barrett
○ 10M5 - Mr Lowe

NAME: \qquad \# SHEETS USED: \qquad

Marker's use only.

QUESTION	$\boxed{1}$	$\boxed{2}$	3	$\boxed{3}$	5	$\boxed{6}$	7	$\boxed{8}$	$\boxed{9}$	$\overline{10}$	$\overline{11}$	Total	$\%$
MARKS	$\overline{12}$	$\overline{12}$	$\overline{12}$	$\overline{11}$	$\overline{13}$	$\overline{13}$	$\overline{12}$	$\overline{12}$	$\overline{16}$	$\overline{8}$	$\overline{11}$	$\overline{132}$	

Question 1
(12 Marks)
Commence a NEW page.
(a) Write the exact value of $\tan 150^{\circ}$.
(b) Find the value of θ to the nearest minute.

(c) Given that $y=3 \sin 4 \theta$,
i. What is the amplitude of the curve?
ii. What is the period of the curve?
iii. Sketch the curve between $0^{\circ} \leq \theta \leq 180^{\circ}$.
(d) If θ is an acute angle and $\cos \theta=\frac{1}{3}$, find the exact values of $\tan \theta$ and $\sin \theta$.
(e) Find $C D$ correct to 2 decimal places.

Question 2 (12 Marks)
Commence a NEW page.
Marks
(a) If $(a+\sqrt{2})^{2}=m+6 \sqrt{2}$, find the value of a and m.
(b) Solve $(x-1)^{2}=36$.
(c) Simplify:
i. $5 \sqrt{12} \times 3 \sqrt{3}$.
ii. $2 \sqrt{8}+5 \sqrt{18}-3 \sqrt{50}$.
(d) Solve $x^{2}-6 x+6=0$, leaving your solution as exact values.
(e) Rationalise $\frac{1}{5-2 \sqrt{6}}$ and write in simplest form.
(f) What is the minimum value of $x^{2}+6 x+13$?

Question 3 (12 Marks)
Commence a NEW page.
(a) Find the volume of the square pyramid.

(b) Find the surface area of the cylinder.

Note: the hole goes through the entire cylinder.

(c) Calculate the compound interest on $\$ 3000$ invested at 6% p.a. for 5 years, with interest calculated annually.
(d) After 10% GST is added, a TV costs $\$ 605$.

What is the cost of the TV before tax?
(e) Solids P and Q are similar. Find:

i. Area of $\triangle A B C$: Area of $\triangle E F G$.
ii. Volume of P : Volume of Q.
iii. Volume of P if the volume of Q is $2000 \mathrm{~m}^{3}$.

Question 4 (11 Marks)
Commence a NEW page.
Marks
(a) This unordered stem and leaf plot represents the marks of 18 students in an examination.

4	5	1	3		
5	0	8	1	2	4
6	8	9	2		
7	3	2	4	3	9
8	9	6			

i. Find the median mark.

1
ii. Find the interquartile range.
iii. Draw the box and whisker plot.
(b) A student's report mark is to be made from two tests which will be equally weighed.

	Test 1	Test 2
Mean	55	70
Standard deviation	10	8
Student's mark	60	78

i. Which test did the student perform better in? Justify your answer by a reason.
ii. Find the equivalent mark for both tests with a new mean of 65 and standard deviation of 12 .
(c) The following frequency distribution shows the height of a large group of people.

The mean \bar{x} is 155 cm and standard deviation is 11.2 cm .

Between what two values would 95% of heights from the mean be found?

Question 5 (13 Marks)

(a) Refer to the following diagram.

i. What is the gradient of the line ℓ_{1} ?
ii. Show that the equation of the line ℓ_{2} passing through $(0,3)$ and perpendicular to ℓ_{1} is $2 x+3 y-9=0$.
iii. Reproduce the diagram on your own paper, and sketch the line ℓ_{2}, showing its x intercept.
iv. Shade the region bounded by the lines ℓ_{1}, ℓ_{2} and the x axis.
v. Calculate the area of the shaded region.
vi. Write down a system of inequalities which defines the shaded region.
(b) Find the points of intersection of the curves

$$
\left\{\begin{array}{l}
y=x^{2}+5 \\
y=4 x+50
\end{array}\right.
$$

Question 6 (13 Marks)
(a) On separate diagrams, sketch the graph of
i. $y=x^{2}-1$.
ii. $y=-\frac{1}{x}$.
iii. $\quad x^{2}+y^{2}=9$.
iv. $y=2^{x}$.
(b) Explain how, without using a table of values, it is possible to use the graph of $y=2^{x}$ to assist drawing the graph of $y=2^{x}+2$.
(c) i. Show that $1-\frac{1}{x+1}=\frac{x}{x+1}$.
ii. Hence or otherwise, sketch $y=\frac{x}{x+1}$.

Question 7 (12 Marks)

Commence a NEW page.
(a) A bag contains 3 blue and 4 red marbles. Two marbles are drawn without replacement.
i. What is the probability that the first marble drawn is red.
ii. By drawing a probability tree, find the probability that one marble of each colour is chosen.
(b) A captain and a vice-captain are to be selected from a team of 12 players.

What is the probability of 2 particular players being chosen?
(c) Three dice are thrown. What is the probability of
i. all three numbers are even?

1
ii. all three numbers are odd?

1
iii. one even and two odd numbers?
(d) The probability that it will rain on any given day in Sunnyville is 0.4 . The Zhang family spend a three day holiday in Sunnyville. Find the probability that
i. There will be three fine days.
ii. There will be at least one day when it will rain.

Question 8 (12 Marks)

Commence a NEW page.
Marks
(a) Find the value of each pronumeral. No reasons are required.
i.

ii.

iii.

iv.

v.

vi.

(b) $A B C D$ is a cyclic quadrilateral. O is the centre of the circle.

i. Prove that $\angle D A B+\angle D C B=180^{\circ}$.
ii. If $\angle D A B=x$ and $\angle D O B=\angle D C B$, find the value of x.
(c) If $\operatorname{arc} A B=7 \mathrm{~cm}$, which of the following statements is true?

Statement 1: arc $D C=7 \mathrm{~cm}$.

Statement 2: The circumference of the circle is 44 cm .
(A) Statement 1 only.
(B) Statement 2 only.
(C) Both Statement 1 and Statement 2.
(D) Neither Statement 1 or Statement 2.
Question 9 (16 Marks)
Commence a NEW page.
(a) State the domain and range of
i. $\quad\{(1,2),(2,3),(3,8),(3,9)\}$.
ii. $y=x^{2}$.
(b) i. Is $(x-3)^{2}+y^{2}=16$ the graph of a relation or function?
ii. Why?
(c) Find the equation of the inverse function of $y=3 x-2$.
(d) i. Draw a graph of $y=x^{2}, x \leq 0$.

1
ii. Draw the inverse function $f^{-1}(x)$ on the same graph.
iii. Write the equation of the inverse function $f^{-1}(x)$.
(e) If $F(x)=\frac{1}{x}+\frac{1}{x^{2}}-\frac{1}{x^{3}}$, find the following values in simplest form.
i. $\quad F(1)$.
ii. $F\left(\frac{1}{\sqrt{2}}\right)$.
iii. $F\left(x^{2}\right)$.

Question 10 (8 Marks)
Commence a NEW page.
(a) Simplify:
i. $\frac{x^{5} y^{2}}{y^{3}} \times \frac{x y}{x^{6}}$.
ii. Express without a negative index: $\left(\frac{5}{3}\right)^{-2}$.
(b) Solve $8^{x-3}=16^{3-x}$.
(c) Express $25^{n} \times 5^{n+3}$ as a power of 5 .
(d) Simplify $\left(x^{-1}+y^{-1}\right)^{-1}$ fully, expressing the answer as a fraction.

Exam continues overleaf ...

Question 11 (11 Marks)

Commence a NEW page.
Marks
(a) On the number plane given, the graphs of $y=x^{2}-4, y=2 x+2$ and $y=-2 x+2$ are shown.

The solutions of $x^{2}+2 x-6=0$ are given by the x coordinates of which of the following points P, Q, R or S ? Show working.
(b) Solve for x and y if:

$$
5^{x+y}=\frac{1}{5} \quad \text { and } \quad 5^{3 x+2 y}=1
$$

(c) A ship sails 50 km from port A to port B on a bearing of 63°, then sails 130 km from port B to port C on a bearing of 296°.
i. Sketch a diagram representing the above information.
ii. Show that $\angle A B C=53^{\circ}$.
iii. Find, to the nearest km, the distance of port A from port C.
iv. Find $\angle A C B$ and hence find the bearing of port A from port C.

End of paper.

Suggested Solutions

Question 1 (Commences on page (2)
(a) (2 marks)
$\checkmark \quad$ [1] for correct numerical value.
\checkmark [1] for sign.

$$
\tan 150^{\circ}=-\frac{1}{\sqrt{3}}
$$

$$
\begin{gathered}
1^{2}+x^{2}=3^{2} \\
x^{2}=8 \\
x=\sqrt{8} \\
\therefore \sin \theta=\frac{\sqrt{8}}{3} \quad \tan \theta=\sqrt{8}
\end{gathered}
$$

(b) (2 marks)
$\checkmark \quad[1]$ for correct substitution of values into cosine rule.
$\checkmark \quad[1]$ for correct final answer.

$$
\begin{gathered}
\cos \theta=\frac{7^{2}+11^{2}-6^{2}}{2 \times 7 \times 11}=\frac{67}{77} \\
\therefore \theta=29^{\circ} 32^{\prime}
\end{gathered}
$$

(c) i. (1 mark)

$$
a=3
$$

ii. (1 mark)

$$
T=90^{\circ}
$$

iii. (1 mark)

(d) (3 marks)
$\checkmark \quad$ [1] for correct right angle triangle.
\checkmark [1] for $\tan \theta$.
$\checkmark \quad$ [1] for $\sin \theta$.

(e) (2 marks)
$\checkmark \quad[1]$ for $\frac{A D}{12}=\tan 36^{\circ}$.
$\checkmark \quad[1]$ for $C D=17.02$ (2 d.p.)

$$
\begin{gathered}
\frac{A C}{12}=\tan 65^{\circ} \Rightarrow A C=12 \tan 65^{\circ} \\
\frac{A D}{12}=\tan 36^{\circ} \Rightarrow A D=12 \tan 36^{\circ} \\
C D=A C-A D=12 \tan 65^{\circ}-12 \tan 36^{\circ} \\
\quad=17.02 \text { (2 d.p.) }
\end{gathered}
$$

Question 2 (Commences on page 2)

(a) (2 marks)
$\checkmark \quad[1]$ for $a=3$.
$\checkmark \quad[1]$ for $m=11$.

$$
\begin{aligned}
(a+\sqrt{2})^{2} & =a^{2}+2 a \sqrt{2}+2 \\
& \equiv m+6 \sqrt{2}
\end{aligned}
$$

i.e. $a^{2}+2=m, 2 a=6$

$$
\begin{gathered}
\therefore a=3 \\
\therefore a^{2}+2=3^{2}+2=m=11
\end{gathered}
$$

(b) (2 marks)

$$
\begin{array}{r}
\checkmark \quad[1] \text { for } x-1= \pm 6 . \\
\checkmark \quad[1] \text { for } x=-5,7 . \\
\\
(x-1)^{2}=36 \\
x-1= \pm 6 \\
x=1 \pm 6 \\
\therefore x=-5,7
\end{array}
$$

(c) i. (1 mark)

$$
\begin{aligned}
5 \sqrt{12} \times 3 \sqrt{3} & =5 \times 2 \sqrt{3} \times 3 \sqrt{3} \\
& =30 \times 3=90
\end{aligned}
$$

ii. (2 marks)
$\checkmark \quad$ [1] for simplifying surds to multiples of $\sqrt{2}$.
$\checkmark \quad[1]$ for final answer.

$$
\begin{aligned}
& 2 \sqrt{8}+5 \sqrt{18}-3 \sqrt{50} \\
= & 2 \times 2 \sqrt{2}+5 \times 3 \sqrt{2}-3 \times 5 \sqrt{2} \\
= & 4 \sqrt{2}
\end{aligned}
$$

(d) (2 marks)
$\checkmark \quad[1]$ for correctly substituting into quadratic formula.
$\checkmark \quad$ [1] for correct final answer.

$$
\begin{aligned}
& x^{2}-6 x+6=0 \\
x & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{6 \pm \sqrt{36-4 \times 1 \times 6}}{2 \times 1} \\
= & \frac{6 \pm \sqrt{12}}{2}=\frac{\mathscr{b}^{3} \pm \not 2 \sqrt{3}}{\not 2} \\
& =3 \pm \sqrt{3}
\end{aligned}
$$

(e) (1 mark)

$$
\begin{aligned}
\frac{1}{5-2 \sqrt{6}} \times \frac{5+2 \sqrt{6}}{5+2 \sqrt{6}} & =\frac{5+2 \sqrt{6}}{25-24} \\
& =5+2 \sqrt{6}
\end{aligned}
$$

(f) (2 marks)
$\checkmark \quad$ [1] for correctly converting expression to vertex form/finding axis of symmetry.
$\checkmark \quad$ [1] for final answer.

$$
\begin{aligned}
x^{2}+6 x+13 & =x^{2}+6 x+9-9+13 \\
& =(x+3)^{2}+4
\end{aligned}
$$

Minimum value is 4 .

Alternatively find the axis of symmetry via $x=-\frac{b}{2 a}$ and substitute back into expression to obtain 4.

Question 3 (Commences on page 3)

(a) (2 marks)
$\checkmark \quad$ [1] for finding the missing perpendicular height $(h=6)$
$\checkmark \quad$ [1] for final answer.

$$
\begin{aligned}
& h^{2}+8^{2}=10^{2} \\
& \therefore h=6 \\
& V= \frac{1}{3} \times A h \\
&= \frac{1}{3} \times 16^{2} \times 6 \\
&= 512 \mathrm{~cm}^{3}
\end{aligned}
$$

(b) (3 marks)
$\checkmark \quad$ [1] for correct outer surface area.
$\checkmark \quad[1]$ for correct inner surface area.
$\checkmark \quad$ [1] for final answer.

$$
\begin{aligned}
S A_{\text {outer }} & =2 \pi r^{2}+2 \pi r h \\
& =2 \pi r(r+h) \\
& =2 \times \pi \times 5(5+20) \\
& =250 \pi
\end{aligned}
$$

The "inner" surface area contains four rectangles, but subtracts the areas of the squares at the front and back

$$
\begin{aligned}
S A_{\text {inner }} & =4 \times(20 \times 3)-2 \times 3^{2} \\
& =240-18=222 \\
\therefore S A_{\text {total }} & =250 \pi-222 \approx 1007.4 \mathrm{~cm}^{2}
\end{aligned}
$$

(c) (2 marks)
$\checkmark \quad$ [1] for total amount at the end of 5 years.
(b)
$\checkmark \quad$ [1] for correct amount of interest.

$$
\begin{aligned}
A & =P(1+r)^{n} \\
& =3000 \times 1.06^{5}=4014.68 \\
& I=A-P=\$ 1014.68
\end{aligned}
$$

(d) (1 mark)

$$
\begin{gathered}
\underset{1.1 x}{ }=\$ 1.1 \\
\times 1.1 \\
x=\frac{605}{1.1}=\$ 550 .
\end{gathered}
$$

(e) i. (1 mark)

$$
A_{\triangle A B C}: A_{\triangle E F G}=3^{2}: 2^{2}=9: 4
$$

ii. (1 mark)

$$
V_{P}: V_{Q}=3^{3}: 2^{3}=27: 8
$$

iii. (2 marks)
$\checkmark \quad$ [1] for correctly setting up equation.
\checkmark [1] for final answer.

$$
\begin{gathered}
\frac{V_{P}}{V_{Q}}=\frac{V_{P}}{2000}=\frac{27}{8} \\
\therefore V_{P}=\frac{2000 \times 27}{8}=6750 \mathrm{~m}^{3}
\end{gathered}
$$

Question 4 (Commences on page (4)
(a) i. (1 mark)

$$
\tilde{x}=65
$$

ii. (2 marks)
$\checkmark \quad$ [1] for correct values of Q_{1} and Q_{3}.
\checkmark [1] for final answer.

$$
I Q R=73-51=22
$$

iii. (2 marks)
$\checkmark \quad$ [1] for correct median sketched.
$\checkmark \quad$ [1] for correct maximum sketched.

- Student's score in Test 1 is only 0.5σ above μ. Score in test 2 is 1σ above μ - i.e. 0.5σ above the mean compared to test 1 .
ii. (2 marks)
$\checkmark \quad$ [1] for each correct value of the scaled result.

$$
\begin{gathered}
z=\frac{x-\mu}{\sigma} \\
z_{1}=\frac{60-55}{10} \\
=0.5
\end{gathered} \begin{aligned}
z_{2} & =\frac{78-70}{8} \\
& =1
\end{aligned}
$$

Rescale to $\mu=65$ and $\sigma=12$:

$$
\begin{array}{rlrl}
z & =\frac{x_{1}-\mu}{\sigma} & z & =\frac{x_{2}-\mu}{\sigma} \\
0.5 & =\frac{x_{1}-65}{12} \\
6 & =x_{1}-65 \\
\therefore x_{1} & =71 & 1 & =\frac{x_{2}-65}{12} \\
12 & =x_{2}-65 \\
& \therefore x_{2} & =77
\end{array}
$$

(Alternatively, $z_{1}=0.5$ and $z_{2}=1$.
Hence $x_{1}=\mu+0.5 \sigma=71$ and $x_{2}=\mu+1 \sigma=77$)
(c) (2 marks)
$\checkmark \quad$ [1] for each correct value.

$$
\begin{aligned}
x_{L} & =\mu-2 \sigma \\
& =155-2(11.2) \\
& =132.6
\end{aligned}
$$

$$
\begin{aligned}
x_{U} & =\mu+2 \sigma \\
& =155+2(11.2) \\
& =177.4
\end{aligned}
$$

Question 5 (Commences on page 5)
(a) i. (1 mark)

$$
m_{1}=\frac{3}{2}
$$

ii. (2 marks)

$$
m_{\perp}=-\frac{2}{3}
$$

Passes through $(0,3)$. Hence $b=3$.

$$
\begin{gathered}
\therefore \underset{\times 3}{y}=\underbrace{-\frac{2}{3} x+3}_{\times 3} \\
3 y=-2 x+9 \\
2 x+3 y-9=0
\end{gathered}
$$

iii. (2 marks)
$\checkmark \quad \begin{array}{ll}{[1]} \\ \text { sketched. }\end{array}$ sketched.

iv. (1 mark) See shading.
v. (1 mark)

$$
\begin{aligned}
A & =\frac{1}{2} b h \\
& =\frac{1}{2} \times \frac{13}{2} \times 3=\frac{39}{4}
\end{aligned}
$$

vi. (3 marks)
$\checkmark \quad$ [1] for each correct inequality.

$$
\begin{gathered}
\ell_{1}: \underset{\times 2}{y}=\underbrace{\frac{3}{2} x+3}_{\times 2} \\
\therefore 2 y=3 x+6 \\
3 x-2 y+6=0
\end{gathered}
$$

The inequalities defining the shaded region is

$$
\begin{gathered}
y \geq 0 \\
2 x+3 y-9 \leq 0 \quad\left(y \leq-\frac{2}{3} x+3\right) \\
3 x-2 y+6 \geq 0 \quad\left(y \leq \frac{3}{2} x+3\right)
\end{gathered}
$$

(b) (3 marks)
$\checkmark \quad$ [1] for equating both equations.
$\checkmark \quad[1]$ for correct x values.
$\checkmark \quad[1]$ for correct points of intersection.

$$
\left\{\begin{array}{l}
y=x^{2}+5 \\
y=4 x+50
\end{array}\right.
$$

Equating both equations

$$
\begin{gathered}
x^{2}+5=4 x+50 \\
x^{2}-4 x-45=0 \\
(x-9)(x+5)=0 \\
x=9,-5
\end{gathered}
$$

Substitute into (A)

$$
\begin{aligned}
& y=81+5=86 \\
& y=25+5=30
\end{aligned}
$$

The pts of intersection are $(9,86)$ and $(-5,30)$.

Question 6 (Commences on page 6)
iv. (2 marks)
$\checkmark \quad$ [1] for intercepts
$\checkmark \quad$ [1] for curve.

(a) i. (2 marks)
$\begin{array}{lll}\checkmark & \text { [1] for intercepts. } \\ \checkmark & \text { [1] for curve. }\end{array}$
$\begin{array}{lll}\checkmark & \text { [1] for intercepts. } \\ \checkmark & \text { [1] for curve. }\end{array}$
(c) i. (1 mark)

$$
\begin{aligned}
1-\frac{1}{x+1} & =\frac{x+1}{x+1}-\frac{1}{x+1} \\
& =\frac{x}{x+1}
\end{aligned}
$$

(b) (1 mark) By shifting 2 units up.

ii. (2 marks)
$\checkmark \quad$ [1] for points shown on curve.
$\checkmark \quad$ [1] for curve.

ii. (3 marks)
\checkmark [1] for intercepts.
$\checkmark \quad$ [1] for curve.
$\checkmark \quad$ [1] for asymptotes.

$$
y=\frac{x}{x+1}=-\frac{1}{x+1}+1
$$

iii. (2 marks)
\checkmark [1] for intercepts.
$\checkmark \quad$ [1] for curve.

Question 7 (Commences on page 6)
(a) i. (1 mark)

$$
P(R)=\frac{4}{7}
$$

ii. (2 marks)
$\checkmark \quad$ [1] for tree diagram.
$\checkmark \quad$ [1] for final answer. ${ }_{\frac{2}{6}}$

(b) (2 marks)

$$
\checkmark \quad[1] \text { for correct expression. }
$$

$\checkmark \quad$ [1] for correct final answer.

$$
\frac{1}{12} \times \frac{1}{11}=\frac{1}{132}
$$

(c) i. (1 mark)

ii. (1 mark)

$$
P(O O O)=\left(\frac{1}{2}\right)^{3}=\frac{1}{8}
$$

iii. (2 marks)

$$
P(1 E, 2 O)=3 \times\left(\frac{1}{2}\right)^{3}=\frac{3}{8}
$$

(d) i. (1 mark)

$$
P(\text { all days sunny })=\left(\frac{3}{5}\right)^{3}=\frac{27}{125}
$$

ii. (2 marks)
$\checkmark \quad$ [1] for using the complement.
$\checkmark \quad$ [1] for final answer.

$$
\begin{aligned}
P(\text { at least } 1 \text { rainy day }) & =1-P(\text { no rain }) \\
& =1-\frac{27}{125} \\
& =\frac{98}{125}
\end{aligned}
$$

Question 8 (Commences on page 7)
(a) i. (1 mark)

$$
a=70^{\circ}
$$

ii. (1 mark)

$$
b=70^{\circ}
$$

iii. (1 mark)

$$
c=70^{\circ}
$$

iv. (1 mark)

$$
x=6
$$

v. (1 mark)

$$
x=110^{\circ}
$$

vi. (2 marks)

$$
\begin{gathered}
x(x+10)=4 \times 10 \\
x^{2}+10 x=40 \\
x^{2}+10 x-40=0 \\
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
=\frac{-10 \pm \sqrt{100+160}}{2} \\
=-5 \pm \sqrt{65}
\end{gathered}
$$

As x is a length, the negative solution of x is invalid.

$$
\therefore x=-5+\sqrt{65} \approx 3.06 \text { (2 d.p.) }
$$

(b)
i. (2 marks)
$\checkmark \quad[0]$ for stating the theorem for opposite \angle in cyclic quad.
$\checkmark \quad[1]$ for using \angle at the centre is double the \angle at circumference.
$\checkmark \quad$ [1] for final successful proof.

- Let $\angle D A B=x$.
- $\therefore \angle D O B=2 x$
(angle at the centre is double the angle at the circumference subtended by the same arc)
- \therefore reflex $\angle D O B=360^{\circ}-2 x$
- $\therefore \angle D C B=\frac{1}{2}(360-2 x)$

$$
=180^{\circ}-x
$$

(angle at the centre is double the angle at the circumference subtended by the same arc)

$$
\begin{aligned}
\therefore \angle D A B & +\angle D C B \\
& =x+\left(180^{\circ}-x\right) \\
& =180^{\circ}
\end{aligned}
$$

ii. (2 marks)
\checkmark [1] for $\angle D O B=2 x$.
$\checkmark \quad[1]$ for $x=60^{\circ}$.

- $\angle D A B=x$.
- $\angle D C B=180^{\circ}-x$.
- $\therefore \angle D O B=2 x$.
- $\angle D C B=\angle D O B$:

$$
\begin{gathered}
180^{\circ}-x=2 x \\
3 x=180^{\circ} \\
\therefore x=60^{\circ}
\end{gathered}
$$

(c) (1 mark) - (D)

Question 9 (Commences on page 9)
(a) i. (2 marks)

$$
D=\{1,2,3\} \quad R=\{2,3,8,9\}
$$

ii. (2 marks)

$$
D=\{x: x \in \mathbb{R}\} \quad R=\{y: y \geq 0\}
$$

(b) i. (1 mark) - relation.
ii. (1 mark)

More than one y value per x value.
(c) (2 marks)
$\checkmark \quad$ [1] for interchanging x and y.
$\checkmark \quad$ [1] for correct final answer.

$$
\begin{aligned}
& y=3 x-2 \\
& x=3 y-2 \\
& x+2=3 y \\
& \therefore y=\frac{x+2}{3}
\end{aligned}
$$

(d) i. (1 mark)

ii. (1 mark) - see above.
iii. (2 marks)
$\checkmark \quad$ [1] for $x=y^{2}$.
$\checkmark \quad[1]$ for $y=-\sqrt{x}$.

$$
y=x^{2} \quad x \leq 0
$$

Interchanging variables,

$$
\begin{gathered}
x=y^{2} \quad y \leq 0 \\
\therefore y=-\sqrt{x}
\end{gathered}
$$

(e) i. (1 mark)

$$
\begin{aligned}
& F(x)=\frac{1}{x}+\frac{1}{x^{2}}-\frac{1}{x^{3}} \\
& F(1)=1+1-1=1
\end{aligned}
$$

ii. (2 marks)

$$
\begin{aligned}
F\left(\frac{1}{\sqrt{2}}\right) & =\sqrt{2}+2-2 \sqrt{2} \\
& =2-\sqrt{2}
\end{aligned}
$$

iii. (1 mark)

$$
\begin{aligned}
F\left(x^{2}\right) & =\frac{1}{x^{2}}+\frac{1}{x^{4}}-\frac{1}{x^{6}} \\
& =\frac{x^{4}+x^{2}-1}{x^{6}}
\end{aligned}
$$

Question 10 (Commences on page 9)
(a) i. (1 mark)

$$
\frac{x^{5} y^{2}}{y^{3}} \times \frac{x y}{x^{6}}=1
$$

ii. (1 mark)

$$
\left(\frac{5}{3}\right)^{-2}=\frac{9}{25}
$$

(b) (2 marks)
$\checkmark \quad[1]$ for obtaining $3 x-9=12-4 x$.
$\checkmark \quad$ [1] for final answer.

$$
\begin{aligned}
8^{x-3} & =16^{3-x} \\
2^{3 x-9} & =2^{12-4 x} \\
3 x-9 & =12-4 x \\
7 x & =21 \\
x & =3
\end{aligned}
$$

(c) (1 mark)

$$
25^{n} \times 5^{n+3}=5^{2 n} \times 5^{n+3}=5^{3 n+3}
$$

(d) (3 marks)
$\checkmark \quad[1]$ for removing negative indices within the parentheses.
$\checkmark \quad$ [1] for forming common denominator.
$\checkmark \quad$ [1] for final answer.

$$
\begin{aligned}
\left(x^{-1}+y^{-1}\right)^{-1} & =\left(\frac{1}{x}+\frac{1}{y}\right)^{-1} \\
& =\left(\frac{x+y}{x y}\right)^{-1}=\frac{x y}{x+y}
\end{aligned}
$$

Question 11 (Commences on page 10)
(a) (2 marks)

$$
\begin{aligned}
& \left\{\begin{array}{l}
y=x^{2}-4 \\
y=-2 x+2
\end{array}\right. \\
& x^{2}-4=-2 x+2 \\
& x^{2}+2 x-6=0
\end{aligned}
$$

Hence P and R are give the correct solutions.
(b) (3 marks)
$\checkmark \quad[1]$ for converting to 5^{-1} and 5^{0}.
$\checkmark \quad[2]$ for solving simultaneous equations correctly.
$\left\{\begin{array}{l}5^{x+y}=\frac{1}{5}=5^{-1} \\ 5^{3 x+2 y}=5^{0}\end{array} \Rightarrow \begin{cases}x+y=-1 \\ 2 x+2 y=-2 \\ 3 x+2 y=0\end{cases}\right.$
$(2)-(1 a)$

$$
\therefore x=2 \quad y=-3
$$

(c) i. (1 mark)

ii. (1 mark)

- $\angle A B D=90^{\circ}-63^{\circ}=27^{\circ}$
$(\angle$ sum of $\triangle A B D)$
- $\angle C B D=296^{\circ}-270^{\circ}=26^{\circ}$

$$
\begin{aligned}
\angle A B C & =\angle A B D+\angle C B D \\
& =27^{\circ}+26^{\circ}=53^{\circ}
\end{aligned}
$$

iii. (2 marks)
$\checkmark \quad$ [1] for applying the cosine rule.
$\checkmark \quad$ [1] for final answer.

$$
\begin{aligned}
A C^{2} & =50^{2}+130^{2}-2(50)(130) \cos 53^{\circ} \\
& =11576.40 \cdots \\
A C & =108 \mathrm{~km}
\end{aligned}
$$

iv. (2 marks)
$\cos \angle A C B=\frac{130^{2}+A C^{2}-50^{2}}{2 \times 130 \times A C}=0.9285 \cdots$
$\therefore \angle A C B=21.78^{\circ}$
Hence the bearing of A from C (shown as θ) is
$180^{\circ}-\left(360^{\circ}-296^{\circ}\right)+\angle A C B=138^{\circ}$

