

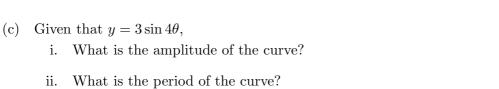
STAGE 5.1-5.3 MATHEMATICS

2010 Year 10 Final Examination

General instructions

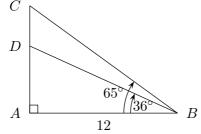
- Working time 120 minutes.
- Marks may be deducted for careless or poorly arranged work.
- Commence each new question on a new sheet.
- Write using blue or black pen. Where diagrams are to be sketched, these may be done in pencil.
- Board approved calculators may be used.
- All necessary working should be shown in every question.
- Attempt **all** questions.
- At the conclusion of the examination, bundle the sheets used in the correct order within this paper and hand to examination supervisors.

Class (please \checkmark)

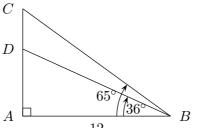

- \bigcirc 10M1 Mr Berry/Mr Weiss
- $\bigcirc~10\mathrm{M2}-\mathrm{Mr}$ Ireland
- \bigcirc 10M3 Mr Lam/Mr Fletcher
- \bigcirc 10M4 Mr Barrett
- $\bigcirc~10\mathrm{M5}-\mathrm{Mr}$ Lowe

NAME: # SHEETS USED:

Marker's use only.


QUESTION	1	2	3	4	5	6	7	8	9	10	11	Total	%
MARKS	12	12	12	11	13	13	12	12	16	8	11	132	

Question 1 (12 Mar	s) Commence a NEW page. Marks	5
(a) Write the exact val	e of $\tan 150^{\circ}$.	2
(b) Find the value of θ	o the nearest minute.	2
	θ 11	



11

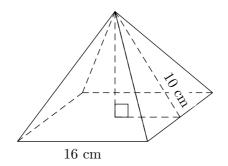
- Sketch the curve between $0^{\circ} \le \theta \le 180^{\circ}$. iii.
- (d) If θ is an acute angle and $\cos \theta = \frac{1}{3}$, find the exact values of $\tan \theta$ and $\sin \theta$.
- (e) Find CD correct to 2 decimal places.

\mathbf{Qu}	$estion \ 2$	(12 Marks)	Commence a NEW page.	Marks
(a)	If $(a + \sqrt{2})$	$\left(\overline{2}\right)^2 = m + 6\sqrt{2}, \text{ find}$	d the value of a and m .	2
(b)	Solve $(x -$	$(-1)^2 = 36.$		2
(c)	Simplify:			
(0)	× 0	$\overline{12} \times 3\sqrt{3}.$		1
	ii. $2\sqrt{8}$	$\overline{8} + 5\sqrt{18} - 3\sqrt{50}.$		2
(d)	Solve x^2 -	-6x+6=0, leaving	g your solution as exact values.	2
(e)	Rationalis	se $\frac{1}{5-2\sqrt{6}}$ and write	te in simplest form.	1
(f)	What is t	he minimum value o	of $x^2 + 6x + 13?$	2

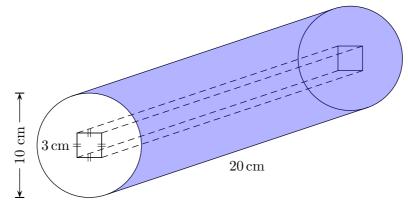
1

1

 $\mathbf{1}$


3

 $\mathbf{2}$


Question 3 (12 Marks)

Commence a NEW page.

(a) Find the volume of the square pyramid.


(b) Find the surface area of the cylinder. Note: the hole goes through the entire cylinder.

- (c) Calculate the compound interest on \$3 000 invested at 6% p.a. for 5 years, with interest calculated annually.
- (d) After 10% GST is added, a TV costs \$605.

What is the cost of the TV before tax?

(e) Solids P and Q are similar. Find:

- i. Area of $\triangle ABC$: Area of $\triangle EFG$.
- ii. Volume of P: Volume of Q.
- iii. Volume of P if the volume of Q is 2000 m^3 .

Marks

 $\mathbf{2}$

 $\mathbf{3}$

3

1

1

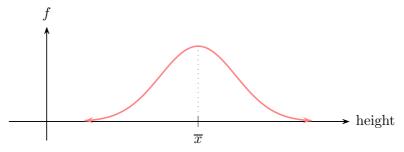
1

 $\mathbf{2}$

Question 4 (11 Marks)

Commence a NEW page.

Marks


(a) This unordered stem and leaf plot represents the marks of 18 students in an examination.

- i. Find the median mark.
- ii. Find the interquartile range.
- iii. Draw the box and whisker plot.
- (b) A student's report mark is to be made from two tests which will be equally weighed.

	Test 1	Test 2
Mean	55	70
Standard deviation	10	8
Student's mark	60	78

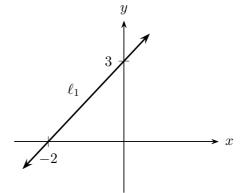
- i. Which test did the student perform better in? Justify your answer by a reason.
- ii. Find the equivalent mark for both tests with a new mean of 65 and standard **2** deviation of 12.
- (c) The following frequency distribution shows the height of a large group of people.

The mean \overline{x} is 155 cm and standard deviation is 11.2 cm.

Between what two values would 95% of heights from the mean be found?

 $\mathbf{2}$

1


 $\mathbf{2}$

 $\mathbf{2}$

Question 5 (13 Marks)

Commence a NEW page.

(a) Refer to the following diagram.

i. What is the gradient of the line ℓ_1 ? 1 Show that the equation of the line ℓ_2 passing through (0,3) and perpendicular $\mathbf{2}$ ii. to ℓ_1 is 2x + 3y - 9 = 0. Reproduce the diagram on your own paper, and sketch the line ℓ_2 , showing iii. $\mathbf{2}$ its x intercept. Shade the region bounded by the lines ℓ_1 , ℓ_2 and the x axis. 1 iv. Calculate the area of the shaded region. 1 v. Write down a system of inequalities which defines the shaded region. 3 vi. (b) Find the points of intersection of the curves 3

$$\begin{cases} y = x^2 + 5\\ y = 4x + 50 \end{cases}$$

5

Commence a NEW page. Question 6 (13 Marks) Marks (a) On separate diagrams, sketch the graph of i. $y = x^2 - 1$. $\mathbf{2}$ ii. $y = -\frac{1}{x}$. $\mathbf{2}$ iii. $x^2 + y^2 = 9$. $\mathbf{2}$ iv. $y = 2^x$. $\mathbf{2}$ (b) Explain how, without using a table of values, it is possible to use the graph of $\mathbf{1}$ $y = 2^x$ to assist drawing the graph of $y = 2^x + 2$. 1 r

(c) i. Show that
$$1 - \frac{1}{x+1} = \frac{x}{x+1}$$
. 1

ii. Hence or otherwise, sketch
$$y = \frac{x}{x+1}$$
. 3

Qu	\mathbf{estior}	n 7	(12 Marks)	Comn	nence a NEW page.	Marks
(a)		icemen			Two marbles are drawn without narble drawn is red.	1
	ii.	-	lrawing a probability tree ir is chosen.	, find the	probability that one marble of each	2
(b)	A caj	ptain	and a vice-captain are to	be selecte	ed from a team of 12 players.	2
	Wha	t is th	e probability of 2 particu	lar player	s being chosen?	
(c)	Thre	e dice	are thrown. What is the	probabili	ty of	
	i.	all th	nree numbers are even?			1
	ii.	all th	nree numbers are odd?			1
	iii.	one e	even and two odd number	·s?		2
(d)		ly spei			day in Sunnyville is 0.4. The Zhang e. Find the probability that	1
	ii.	Ther	e will be at least one day	when it v	vill rain.	2

Question 8 (12 Marks)

i.

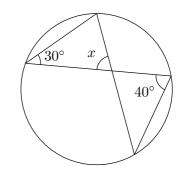
ii.

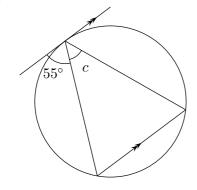
Commence a NEW page.

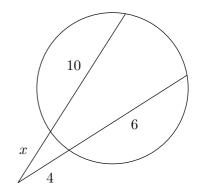
iv.

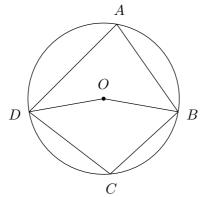
v.

vi.


- (a) Find the value of each pronumeral. No reasons are required.
 - 20° 0

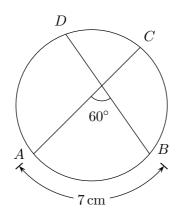

b 110


a


iii.

7

(b) ABCD is a cyclic quadrilateral. O is the centre of the circle.



i. Prove that $\angle DAB + \angle DCB = 180^{\circ}$.

2 2

1

- ii. If $\angle DAB = x$ and $\angle DOB = \angle DCB$, find the value of x.
- (c) If arc AB = 7 cm, which of the following statements is true?

Statement 1: arc DC = 7 cm.

Statement 2: The circumference of the circle is 44 cm.

- (A) Statement 1 only.
- (B) Statement 2 only.
- (C) Both Statement 1 and Statement 2.
- (D) Neither Statement 1 or Statement 2.

$\mathbf{Questio}$	n 9 (16 Marks)	Commence a NEW page.	Marks
(a) Stat	e the domain and range of		
i.	$\{(1,2),(2,3),(3,8),(3,9)\}.$		2
ii.	$y = x^2$.		2
(b) i.	Is $(x-3)^2 + y^2 = 16$ the graph	of a relation or function?	1
ii.	Why?		1
(c) Find	the equation of the inverse funct	tion of $y = 3x - 2$.	2
(d) i.	Draw a graph of $y = x^2, x \le 0$.		1
ii.	Draw the inverse function $f^{-1}(x)$	x) on the same graph.	1
iii.	Write the equation of the inverse	se function $f^{-1}(x)$.	2
(e) If F	$f(x) = \frac{1}{x} + \frac{1}{x^2} - \frac{1}{x^3}$, find the following	wing values in simplest form.	
	F(1).		1
ii.	$F\left(\frac{1}{\sqrt{2}}\right).$		2
iii.	$F\left(x^2 ight).$		1
Questio (a) Sim	n 10 (8 Marks) Dify:	Commence a NEW page.	Marks

i.
$$\frac{x^5 y^2}{y^3} \times \frac{xy}{x^6}.$$
 1

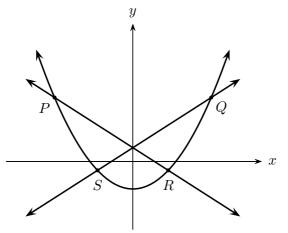
ii. Express without a negative index:
$$\left(\frac{5}{3}\right)^{-2}$$
. 1

(b) Solve
$$8^{x-3} = 16^{3-x}$$
. 2

(c) Express
$$25^n \times 5^{n+3}$$
 as a power of 5. 1

(d) Simplify
$$(x^{-1} + y^{-1})^{-1}$$
 fully, expressing the answer as a fraction. **3**

Exam continues overleaf ...


Question 11 (11 Marks)

Commence a NEW page.

Marks

3

(a) On the number plane given, the graphs of $y = x^2 - 4$, y = 2x + 2 and y = -2x + 2 **2** are shown.

The solutions of $x^2 + 2x - 6 = 0$ are given by the x coordinates of which of the following points P, Q, R or S? Show working.

(b) Solve for x and y if:

$$5^{x+y} = \frac{1}{5}$$
 and $5^{3x+2y} = 1$

(c) A ship sails 50 km from port A to port B on a bearing of 63° , then sails 130 km from port B to port C on a bearing of 296° .

i.	Sketch a diagram representing the above information.	1
ii.	Show that $\angle ABC = 53^{\circ}$.	1
iii.	Find, to the nearest km, the distance of port A from port C .	2
iv.	Find $\angle ACB$ and hence find the bearing of port A from port C.	2

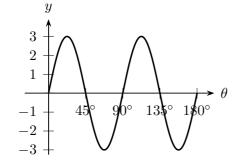
End of paper.

Suggested Solutions

Question 1 (Commences on page 2)

- (a) (2 marks)
 - \checkmark [1] for correct numerical value.
 - \checkmark [1] for sign.

$$\tan 150^\circ = -\frac{1}{\sqrt{3}}$$


- (b) (2 marks)
 - \checkmark [1] for correct substitution of values into cosine rule.
 - \checkmark [1] for correct final answer.

$$\cos \theta = \frac{7^2 + 11^2 - 6^2}{2 \times 7 \times 11} = \frac{67}{77}$$

$$\therefore \theta = 29^{\circ}32'$$

- (c) i. (1 mark)
- a = 3

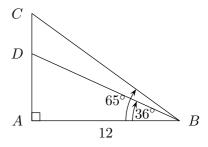
 $T = 90^{\circ}$

- ii. (1 mark)
- iii. (1 mark)

(d) (3 marks)

- \checkmark [1] for correct right angle triangle.
- $\checkmark \quad [1] \ \ {\rm for} \ \tan \theta.$
- \checkmark [1] for $\sin \theta$.

$$3 \qquad \qquad x = \sqrt{8}$$


$$1^{2} + x^{2} = 3^{2}$$
$$x^{2} = 8$$
$$x = \sqrt{8}$$
$$. \sin \theta = \frac{\sqrt{8}}{3} \qquad \tan \theta = \sqrt{8}$$

(e) (2 marks)

·

([1] for
$$\frac{AD}{12} = \tan 36^{\circ}$$
.
([1] for $CD = 17.02$ (2 d p)

[1] for
$$CD = 17.02$$
 (2 d.p.)

$$\frac{AC}{12} = \tan 65^{\circ} \Rightarrow AC = 12 \tan 65^{\circ}$$
$$\frac{AD}{12} = \tan 36^{\circ} \Rightarrow AD = 12 \tan 36^{\circ}$$
$$CD = AC - AD = 12 \tan 65^{\circ} - 12 \tan 36^{\circ}$$
$$= 17.02 \ (2 \text{ d.p.})$$

Question 2 (Commences on page 2)

(a) (2 marks)

 $\checkmark \quad \begin{bmatrix} 1 \end{bmatrix} \text{ for } a = 3.$ $\checkmark \quad \begin{bmatrix} 1 \end{bmatrix} \text{ for } m = 11.$

$$(a + \sqrt{2})^2 = a^2 + 2a\sqrt{2} + 2$$
$$\equiv m + 6\sqrt{2}$$

i.e. $a^2 + 2 = m$, 2a = 6

∴
$$a = 3$$

∴ $a^2 + 2 = 3^2 + 2 = m = 11$

- (b) (2 marks)
 - ✓ [1] for $x 1 = \pm 6$. ✓ [1] for x = -5, 7.
 - $(x-1)^2 = 36$ $x-1 = \pm 6$ $x = 1 \pm 6$ $\therefore x = -5, 7$
- (c) i. (1 mark)

$$5\sqrt{12} \times 3\sqrt{3} = 5 \times 2\sqrt{3} \times 3\sqrt{3}$$
$$= 30 \times 3 = 90$$

- ii. (2 marks)
 ✓ [1] for simplifying surds to multiples of √2.
 ✓ [1] for final answer.
 - [1] for initial answer.

$$2\sqrt{8} + 5\sqrt{18} - 3\sqrt{50}$$
$$= 2 \times 2\sqrt{2} + 5 \times 3\sqrt{2} - 3 \times 5\sqrt{2}$$
$$= 4\sqrt{2}$$

(d) (2 marks)

- $\checkmark~[1]$ for correctly substituting into quadratic formula.
- \checkmark [1] for correct final answer.

$$x^{2} - 6x + 6 = 0$$

$$x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

$$= \frac{6 \pm \sqrt{36 - 4 \times 1 \times 6}}{2 \times 1}$$

$$= \frac{6 \pm \sqrt{12}}{2} = \frac{\cancel{b^{3} \pm \cancel{2}\sqrt{3}}}{\cancel{2}}$$

$$= 3 \pm \sqrt{3}$$

(e) (1 mark)

$$\frac{1}{5 - 2\sqrt{6}} \times \frac{5 + 2\sqrt{6}}{5 + 2\sqrt{6}} = \frac{5 + 2\sqrt{6}}{25 - 24}$$
$$= 5 + 2\sqrt{6}$$

- (f) (2 marks)
 - $\checkmark~~[1]$ for correctly converting expression to vertex form/finding axis of symmetry.
 - $\checkmark~~[1]~$ for final answer.


$$x^{2} + 6x + 13 = x^{2} + 6x + 9 - 9 + 13$$

= $(x + 3)^{2} + 4$

Minimum value is 4.

Alternatively find the axis of symmetry via $x = -\frac{b}{2a}$ and substitute back into expression to obtain 4.

Question 3 (Commences on page 3)

- (a) (2 marks)
 - \checkmark [1] for finding the missing perpendicular height (h = 6)
 - [1] for final answer. \checkmark

$$h^{2} + 8^{2} = 10^{2}$$
$$\therefore h = 6$$
$$V = \frac{1}{3} \times Ah$$
$$= \frac{1}{3} \times 16^{2} \times 6$$
$$= 512 \,\mathrm{cm}^{3}$$

- (b) (3 marks)
 - \checkmark [1] for correct outer surface area.
 - \checkmark [1] for correct inner surface area.
 - \checkmark [1] for final answer.

$$SA_{\text{outer}} = 2\pi r^2 + 2\pi rh$$
$$= 2\pi r (r+h)$$
$$= 2 \times \pi \times 5(5+20)$$
$$= 250\pi$$

The "inner" surface area contains four rectangles, but subtracts the areas of the squares at the front and back

$$SA_{\text{inner}} = 4 \times (20 \times 3) - 2 \times 3^2$$

= 240 - 18 = 222
 $\therefore SA_{\text{total}} = 250\pi - 222 \approx 1\,007.4\,\text{cm}^2$

- (c) (2 marks)
 - \checkmark [1] for total amount at the end of 5 years. (b) i. (2 marks)
 - \checkmark [1] for correct amount of interest.

$$A = P(1+r)^n$$

= 3 000 × 1.06⁵ = 4 014.68
$$I = A - P = \$1 014.68$$

(d) (1 mark)

(

$$1.1x = $605
\div 1.1 = $1.1
x = \frac{605}{1.1} = $550.$$

e) i.
$$(1 \text{ mark})$$

$$A_{\triangle ABC}: A_{\triangle EFG} = 3^2: 2^2 = 9: 4$$
ii. (1 mark)

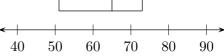
$$V_P: V_Q = 3^3: 2^3 = 27: 8$$

- iii. (2 marks)
 - for correctly setting up \checkmark [1] equation.
 - \checkmark [1] for final answer.

$$\frac{V_P}{V_Q} = \frac{V_P}{2\,000} = \frac{27}{8}$$

. $V_P = \frac{2\,000 \times 27}{8} = 6\,750\,\mathrm{m}^3$

Question 4 (Commences on page 4)


(a) i. (1 mark)

$$\tilde{x} = 65$$

ii. (2 marks) \checkmark [1] for correct values of Q_1 and Q_3 . \checkmark [1] for final answer.

$$IQR = 73 - 51 = 22$$

iii. (2 marks) \checkmark [1] for correct median sketched. \checkmark [1] for correct maximum sketched. 89 41 516573

- - Performed better in test 2.

4

- Student's score in Test 1 is only 0.5σ above μ . Score in test 2 is 1σ above μ i.e. 0.5σ above the mean compared to test 1.
- ii. (2 marks)
 - \checkmark [1] for each correct value of the scaled result.

$$z = \frac{x - \mu}{\sigma}$$

$$z_1 = \frac{60 - 55}{10} | z_2 = \frac{78 - 70}{8}$$

$$= 0.5 | = 1$$

Rescale to $\mu = 65$ and $\sigma = 12$:

$$z = \frac{x_1 - \mu}{\sigma} \qquad z = \frac{x_2 - \mu}{\sigma} \\ 0.5 = \frac{x_1 - 65}{12} \qquad 1 = \frac{x_2 - 65}{12} \\ 6 = x_1 - 65 \qquad 12 = x_2 - 65 \\ \therefore x_1 = 71 \qquad \therefore x_2 = 77 \end{cases}$$

(Alternatively, $z_1 = 0.5$ and $z_2 = 1$. Hence $x_1 = \mu + 0.5\sigma = 71$ and $x_2 = \mu + 1\sigma = 77$)

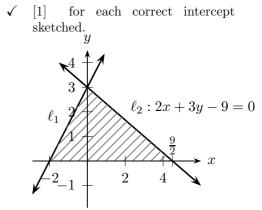
(c) (2 marks) \checkmark [1] for each correct value.

$$\begin{array}{c|c} x_L = \mu - 2\sigma & x_U = \mu + 2\sigma \\ = 155 - 2(11.2) & = 155 + 2(11.2) \\ = 132.6 & = 177.4 \end{array}$$

Question 5 (Commences on page 5)

(a) i. (1 mark)

$$m_1 = \frac{3}{2}$$


ii. (2 marks)

$$m_{\perp} = -\frac{2}{3} \tag{b}$$

Passes through (0,3). Hence b = 3.

$$\therefore y_{\times 3} = \underbrace{-\frac{2}{3}x + 3}_{\times 3}$$
$$3y = -2x + 9$$
$$2x + 3y - 9 = 0$$

iii. (2 marks)

- iv. (1 mark) See shading.
- v. (1 mark)

$$A = \frac{1}{2}bh$$
$$= \frac{1}{2} \times \frac{13}{2} \times 3 = \frac{39}{4}$$

- vi. (3 marks)
 - \checkmark [1] for each correct inequality.

$$\ell_1: \underbrace{y}_{\times 2} = \underbrace{\frac{3}{2}x + 3}_{\times 2}$$
$$\therefore 2y = 3x + 6$$
$$3x - 2y + 6 = 0$$

The inequalities defining the shaded region is

$$y \ge 0$$

$$2x + 3y - 9 \le 0 \quad \left(y \le -\frac{2}{3}x + 3\right)$$

$$3x - 2y + 6 \ge 0 \quad \left(y \le \frac{3}{2}x + 3\right)$$

(3 marks)

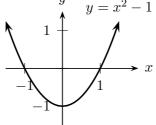
- \checkmark [1] for equating both equations.
- \checkmark [1] for correct x values.
- \checkmark [1] for correct points of intersection.

$$\begin{cases} y = x^2 + 5 & (A) \\ y = 4x + 50 & (B) \end{cases}$$

Equating both equations

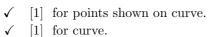
$$x^{2} + 5 = 4x + 50$$
$$x^{2} - 4x - 45 = 0$$
$$(x - 9)(x + 5) = 0$$
$$x = 9, -5$$

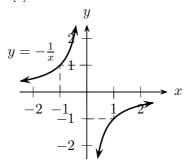
Substitute into (A)


$$y = 81 + 5 = 86$$

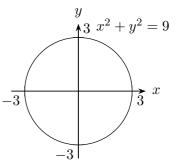
 $y = 25 + 5 = 30$

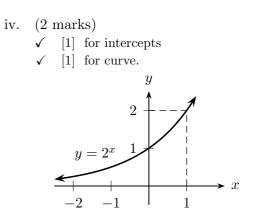
The pts of intersection are (9, 86) and (-5, 30).


Question 6 (Commences on page 6)

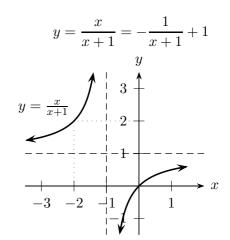

(a) i. (2 marks)

$$\checkmark$$
 [1] for intercepts.
 \checkmark [1] for curve.
 y $y = x - x^2 - 1$




ii. (2 marks)

- iii. (2 marks)
 - \checkmark [1] for intercepts.
 - ✓ [1] for curve.

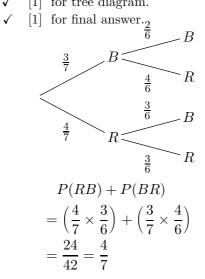


(b) (1 mark) By shifting 2 units up.

(c) i. (1 mark)

$$1 - \frac{1}{x+1} = \frac{x+1}{x+1} - \frac{1}{x+1} = \frac{x}{x+1}$$

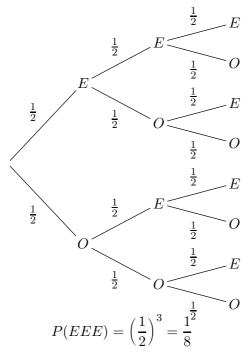
- ii. (3 marks)
 - \checkmark [1] for intercepts.
 - \checkmark [1] for curve.
 - \checkmark [1] for asymptotes.



Question 7 (Commences on page 6)

(a) i. (1 mark)

$$P(R) = \frac{4}{7}$$


- (2 marks)ii.
 - \checkmark [1] for tree diagram.

- (b) (2 marks)
 - \checkmark [1] for correct expression.
 - \checkmark [1] for correct final answer.

$$\frac{1}{12} \times \frac{1}{11} = \frac{1}{132}$$

(c) i. (1 mark)

ii. (1 mark)

$$P(OOO) = \left(\frac{1}{2}\right)^3 = \frac{1}{8}$$

iii. (2 marks)

$$P(1E, 2O) = 3 \times \left(\frac{1}{2}\right)^3 = \frac{3}{8}$$

i. (1 mark)

(d)

$$P(\text{all days sunny}) = \left(\frac{3}{5}\right)^3 = \frac{27}{125}$$

ii. (2 marks) \checkmark [1] for using the complement. \checkmark [1] for final answer.

$$P(\text{at least 1 rainy day}) = 1 - P(\text{no rain})$$
$$= 1 - \frac{27}{125}$$
98

125

Question 8 (Commences on page 7)

(a) i. (1 mark)

$$a = 70^{\circ}$$

ii. (1 mark)
 $b = 70^{\circ}$
iii. (1 mark)
 $c = 70^{\circ}$
iv. (1 mark)
 $x = 6$
v. (1 mark)
 $x = 110^{\circ}$
vi. (2 marks)
 $x(x + 10) = 4 \times 10^{\circ}$

$$x(x + 10) = 4 \times 10$$

$$x^{2} + 10x = 40$$

$$x^{2} + 10x - 40 = 0$$

$$x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$$

$$= \frac{-10 \pm \sqrt{100 + 160}}{2}$$

$$= -5 \pm \sqrt{65}$$

As x is a length, the negative solution of x is invalid.

$$\therefore x = -5 + \sqrt{65} \approx 3.06 \ (2 \text{ d.p.})$$

(b) i.
$$(2 \text{ marks})$$

- ✓ [0] for stating the theorem for opposite ∠ in cyclic quad.
- ✓ [1] for using ∠ at the centre is double the ∠ at circumference.
- \checkmark [1] for final successful proof.
- Let $\angle DAB = x$.
- $\therefore \angle DOB = 2x$ (angle at the centre is double the angle at the circumference subtended by the same arc)
- \therefore reflex $\angle DOB = 360^{\circ} 2x$ (d)
- $\therefore \angle DCB = \frac{1}{2}(360 2x)$ = $180^\circ - x$

(angle at the centre is double the angle at the circumference subtended by the same arc)

$$\therefore \angle DAB + \angle DCB$$
$$= x + (180^{\circ} - x)$$
$$= 180^{\circ}$$

ii. (2 marks)

$$\checkmark \quad [1] \quad \text{for } \angle DOB = 2x.$$

- $\checkmark \quad [1] \text{ for } x = 60^{\circ}.$
- $\angle DAB = x.$
- $\angle DCB = 180^\circ x.$
- $\therefore \angle DOB = 2x.$
- $\angle DCB = \angle DOB$:

 $180^{\circ} - x = 2x$ $3x = 180^{\circ}$ $\therefore x = 60^{\circ}$

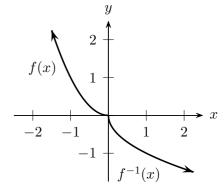
(c) (1 mark) - (D)

Question 9 (Commences on page 9)

(a) i.
$$(2 \text{ marks})$$

$$D = \{1, 2, 3\} \qquad R = \{2, 3, 8, 9\}$$

ii. (2 marks)


$$D=\{x:x\in\mathbb{R}\}\qquad R=\{y:y\geq 0\}$$

- (b) i. (1 mark) relation.
 - ii. (1 mark)More than one y value per x value.

- (c) (2 marks)
 - $\checkmark \quad [1] \text{ for interchanging } x \text{ and } y.$
 - \checkmark [1] for correct final answer.

$$y = 3x - 2$$
$$x = 3y - 2$$
$$x + 2 = 3y$$
$$\therefore y = \frac{x + 2}{3}$$

i.
$$(1 \text{ mark})$$

- ii. (1 mark) see above.
 - (2 marks) \checkmark [1] for $x = y^2$. \checkmark [1] for $y = -\sqrt{x}$.

$$y = x^2$$
 $x \le 0$

Interchanging variables,

$$x = y^2 \qquad y \le 0$$
$$\therefore y = -\sqrt{x}$$

(e) i. (1 mark)

iii.

$$F(x) = \frac{1}{x} + \frac{1}{x^2} - \frac{1}{x^3}$$
$$F(1) = 1 + 1 - 1 = 1$$

ii. (2 marks)

$$F\left(\frac{1}{\sqrt{2}}\right) = \sqrt{2} + 2 - 2\sqrt{2}$$
$$= 2 - \sqrt{2}$$

$$F(x^{2}) = \frac{1}{x^{2}} + \frac{1}{x^{4}} - \frac{1}{x^{6}}$$
$$= \frac{x^{4} + x^{2} - 1}{x^{6}}$$

Question 10 (Commences on page 9)

(a) i. (1 mark)

$$\frac{x^5y^2}{y^3} \times \frac{xy}{x^6} = 1$$

ii. (1 mark)

$$\left(\frac{5}{3}\right)^{-2} = \frac{9}{25}$$

(b) (2 marks)

 \checkmark [1] for obtaining 3x - 9 = 12 - 4x.

✓ [1] for final answer.

$$8^{x-3} = 16^{3-x}$$

$$2^{3x-9} = 2^{12-4x}$$

$$3x - 9 = 12 - 4x$$

$$7x = 21$$

$$x = 3$$

(c) (1 mark)

$$25^n \times 5^{n+3} = 5^{2n} \times 5^{n+3} = 5^{3n+3}$$

(d) (3 marks)

- \checkmark [1] for removing negative indices within the parentheses.
- \checkmark [1] for forming common denominator.
- \checkmark [1] for final answer.

$$(x^{-1} + y^{-1})^{-1} = \left(\frac{1}{x} + \frac{1}{y}\right)^{-1}$$
$$= \left(\frac{x+y}{xy}\right)^{-1} = \frac{xy}{x+y}$$

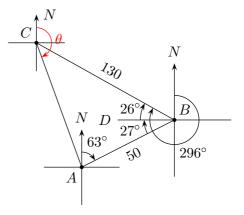
Question 11 (Commences on page 10)

(a) (2 marks)

$$\begin{cases} y = x^2 - 4 \\ y = -2x + 2 \\ x^2 - 4 = -2x + 2 \\ x^2 + 2x - 6 = 0 \end{cases}$$

Hence P and R are give the correct solutions.

(b) (3 marks)


 \checkmark [1] for converting to 5^{-1} and 5^{0} .

 $\checkmark~~[2]~$ for solving simultaneous equations correctly.

$$\begin{cases} 5^{x+y} = \frac{1}{5} = 5^{-1} \\ 5^{3x+2y} = 5^{0} \end{cases} \Rightarrow \begin{cases} x+y = -1 & (1) \\ 2x+2y = -2 & (1a) \\ 3x+2y = 0 & (2) \end{cases}$$

(2) - (1a)

$$\therefore x = 2$$
 $y = -3$

ii. (1 mark)

•
$$\angle ABD = 90^{\circ} - 63^{\circ} = 27^{\circ}$$

(\angle sum of $\triangle ABD$)

•
$$\angle CBD = 296^{\circ} - 270^{\circ} = 26^{\circ}$$

$$\angle ABC = \angle ABD + \angle CBD$$
$$= 27^{\circ} + 26^{\circ} = 53^{\circ}$$

iii. (2 marks)

 \checkmark [1] for applying the cosine rule.

 \checkmark [1] for final answer.

$$AC^{2} = 50^{2} + 130^{2} - 2(50)(130) \cos 53^{\circ}$$

= 11 576.40 · · · ·
$$AC = 108 \,\mathrm{km}$$

iv. (2 marks)

$$\cos \angle ACB = \frac{130^2 + AC^2 - 50^2}{2 \times 130 \times AC} = 0.9285 \cdots$$
$$\therefore \angle ACB = 21.78^\circ$$

Hence the bearing of A from C (shown as θ) is $180^{\circ} - (360^{\circ} - 296^{\circ}) + \angle ACB = 138^{\circ}$