(a) Find the exact value of $\cos 150^{\circ}$

(c) In $\triangle A B C, A B=8.6 \mathrm{~cm}, B C=3.1 \mathrm{~cm}$, and $A C=9.7 \mathrm{~cm}$. Find the size of $\angle A B C$ to the nearest minute.


## NOT TO SCALE

(d) Given $\theta$ is obtuse and $\sin \theta=\frac{1}{5}$, find the exact value of $\tan \theta$.

Question 2 (7 Marks)
Commence a NEW page.

(c)
 The diagram is formed from a hemisphere and a cone. Calculate the volume of the entire object. Give your answer correct to 2 decimal places.

Question 3 (9 Marks)


The triangle $A B C$ has vertices $A(1,5), B(-2,1)$ and $C(5,2)$ as shown.
D lies on AB and has the coordinates of $(0, a)$
(i) Show that the gradient of $A B$ is $\frac{4}{3}$
(ii) Show that $\angle B A C$ is a right angle
(iii) Show that the equation of the line $A B$ is given by $4 x-3 y+11=0$
(iv) Determine the coordinates of $D$.
(v) Given that the length of AB is 5 units, show that $\triangle A B C$ is isosceles
(vi) Find the area of $\triangle A B C$
(a) Solve $x^{2}+4 x-10=0$
(b) It is given that $x^{2}-6 x+13=(x-a)^{2}+b$, by completing the square,
(i) Find the values of $a$ and $b$.
(ii) Hence find the minimum value of $x^{2}-6 x+13$
(c) Sketch the graph of $y=7+5 x-2 x^{2}$ showing all important features.

Question 5 (5 Marks)
Moheb owns five red and seven blue ties. He chooses a tie at random for himself and puts it on. He then chooses another tie at random, from the remaining ties, and gives it to his brother.
(i) What is the probability that Moheb chooses a red tie for himself?
(ii) Copy the tree diagram into your writing booklet.

Complete your tree diagram by writing the correct probability on each branch
Moheb's tie Brother's tie

(iii) Calculate the probability that both of the ties are the same colour.

Question 6 (7 Marks)
Commence a NEW page.
Marks
(a) The ages of nine students in a team were recorded.

| Ages |  |  |
| :---: | :---: | :---: |
| 12 | 11 | 16 |
| 14 | 16 | 15 |
| 14 | 15 | 14 |

(i) What is the standard deviation, correct to two decimal places?
(ii) Briefly explain what is meant by the term standard deviation.
(b) The diagram below shows a stem-and-leaf plot for 22 scores.

| 2 | 3 | 5 | 9 |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 3 | 1 | 4 | 7 | 9 |  |
| 4 | 2 | 4 | 4 | 5 | 7 |
| 5 | 1 | 2 | 4 |  |  |
| 6 | 2 | 3 | 7 |  |  |
| 7 | 5 | 8 | 8 | 8 |  |

(i) What is the mode (s) for this data? $\quad \mathbf{1}$
(ii) What is the median for this data?
(c) In a school, boys and girls were surveyed about the time they usually spend on the internet over a weekend. These results were displayed in box-and-whisker plots as shown below.

(i) Find the interquartile range for boys.
(ii) What percentage of girls usually spend 5 or less hours on the internet over a weekend?
(iii) Jenny said that the graph shows that the same number of boys as girls usually spend between 5 and 6 hours on the internet over a weekend.

Under what circumstances would this statement be true?

Question 7 (6 Marks)
Commence a NEW page.
Jason made a deposit of \$P in an investment account 5 years ago.

Jason's investment earned compound interest at the rate of $4.76 \%$ p.a. paid quarterly over the first 2 years and then increased to $4.84 \%$ p. a paid quarterly for the remaining 3 years.
At the end of the first 2 years, Jason had $\$ 11850$ in his investment account.
(i) Calculate the amount of Jason's initial investment (\$P) to the nearest dollar.
(ii) Calculate the amount (to the nearest dollar) Jason will have in his account at the end of the 5 year period.
(iii) Determine the total amount of interest Jason earned on his investment.
(a) AC is the diameter and $A B=C D$. Find the value of $k$. (Show all working but geometrical reasoning are not required)
(b) Find the value of $x$. (Show all working but geometrical reasoning are not required)


Find the value of $m$ if PT is a tangent to the circle. (Show all working but geometrical reasoning are not required)

Find the value of $m$ if PT is a tangent to the reasoning are not required)
(d) In the diagram, $V, W, X$ and $Y$ lie on a circle, centre $O$.

ZW is a tangent to the circle at $W$.

$$
\angle Y V W=65^{\circ}
$$

$\angle X W Z=x^{\circ}$

Find the size of $\angle O Y X$ in terms of $\boldsymbol{x}$. Showing all geometric reasoning.


Question 9 (10 Marks) Commence a NEW page.
(a) Two parachutists, X and Y , jump from two separate aircrafts at different times.

The graph shows how their height above the ground changes over a period of time.

(i) Which parachutist jumped first? 1
(ii) Which parachutist did not open his parachute immediately after jumping? Explain your answer clearly.
(b) On separate number planes sketch the graph of
(i)

$$
y=2 \cos \frac{1}{2} \theta \quad-180^{\circ} \leq \theta \leq 180^{\circ}
$$

(ii) $\quad(x-2)^{2}+(y+3)^{2}=4$
(iii) $y=2^{-(x-1)}$
(a) A solid cube has a square hole cut through horizontally and a circular hole cut through vertically.

Both holes are cut centrally in the appropriate faces.

The dimensions of the cube and the hole are shown in the diagram.


Calculate the volume remaining after the holes have been cut (to two decimal place).
(b) A box of chocolate has 6 chocolates: 3 milk, 2 white and 1 dark. Three friends, Alex, Ben and Chris will take two chocolates each at random, with Alex choosing first, then Ben, then Chris. What is the probability that each person receives a milk chocolate?
(c) A man observes the top of a distant peak with an angle of elevation of $24^{\circ}$ from a point A. After advancing a distance of 2 kilometres up a path inclined at $8^{\circ}$ to the horizontal directly towards the peak, he arrives at point B. He finds the angle of elevation from point B to the peak is now $28^{\circ}$.
(i) Sketch a diagram to represent the above information
(ii) Find the height of the peak above point A .

Yeair 10 Yearly Solutions 2013

## Question 1 <br> N.B Rounding in quertions is to make marking easier.

a) $\cos 150^{\circ}=-\cos 30^{\circ}$
[1] Identity negative
[i] Correct exact
value

$$
=-\frac{\sqrt{3}}{2}
$$

b) $\quad$ Area $=\frac{1}{2} a b \sin c$

$$
\begin{aligned}
& =\frac{1}{2} \times 8.7 \times 9.8 \times \sin 112^{\circ} \\
& =39.5 \mathrm{~cm}^{2} \quad\left(t_{0} 1 . d\right)
\end{aligned}
$$

c)

$$
\begin{aligned}
\cos B & =\frac{8.6^{2}+3.1^{2}-9.7^{2}}{2 \times 8.6 \times 3.1} \quad[i] \\
& =-0.197 \\
\therefore L A B C & =101^{\circ} 23^{\prime} \quad[i]
\end{aligned}
$$

d) $\quad \theta$ is in 2nd quadrunt

$$
\begin{equation*}
\therefore \tan \theta \text { is negative } \tag{i}
\end{equation*}
$$



$$
\begin{equation*}
\therefore \quad \tan \theta=-\frac{1}{2 \sqrt{6}} \tag{1}
\end{equation*}
$$

## Question 2

a) 18:27 $\equiv 2: 3$
volure is in rotio $2^{3}: 3^{3}$

$$
8: 27
$$

$\therefore$ cost of larger buttle is

$$
\begin{equation*}
\$ 1.10 \times \frac{27}{8} \tag{1}
\end{equation*}
$$

$=\$ 3.71$
b) $S A=2 \times\left(\frac{1}{2} \times(5+9) \times 3\right)+(3+9+5+5)$
b) $S A=2 \times \underbrace{\left(\frac{1}{2} \times(5+9) \times 3\right)}_{\substack{\text { Trupezivm } \\ \text { fuces }}}+\underbrace{(3+9+5+5)}_{\text {perimete- } \times} \times 8$

$$
\begin{aligned}
& =42+176 \\
& =218 \mathrm{~cm}^{2}
\end{aligned}
$$

c) $V_{\text {Tutal }}=V_{\text {nemisphere }}+V_{\text {cone }}$

$$
[i]
$$

$$
\text { - } 1 \text { for no units. }
$$

$$
\begin{aligned}
& =\frac{1}{2} \times \frac{4}{3} \times \pi \times 7^{3}+\frac{1}{3} \times \pi \times 7^{2} \times 12 \\
& =\frac{1274}{3} \pi \\
& =1334.13 \mathrm{~cm}^{3} \\
& \quad[1]
\end{aligned}
$$

## Question ${ }^{3}$

N.B be careful of "fudging" here
i) $m_{A B}=\frac{5-1}{(1-(-2))}$
[.]
$=\frac{4}{3}$
ii) $m_{A C}=\frac{5-2}{1-5}$

$$
\begin{equation*}
=\frac{3}{-4} \tag{1}
\end{equation*}
$$

$$
m_{A B} \times m_{A C}=\frac{4}{3} \times-\frac{3}{4}
$$

$$
\begin{equation*}
=-1 \tag{1}
\end{equation*}
$$

$\therefore A B \perp A C$
$\therefore \angle B A C$ is a right angie
iii)

$$
\begin{align*}
& y-5=\frac{4}{3}(x-1) \quad[1]  \tag{1}\\
& 3 y-15=4 x-4 \quad[1] \quad \text { rearranging } \\
& 4 x-3 y+11=0
\end{align*}
$$

iv) when $x=0$
$-3 y+11=0$

$$
\begin{aligned}
3 y & =11 \\
y & =\frac{11}{3}
\end{aligned}
$$

$$
\begin{equation*}
\therefore D\left(0, \frac{11}{3}\right) \tag{1}
\end{equation*}
$$

v)

$$
\begin{aligned}
& A C= \sqrt{(5-2)^{2}+(1-5)^{2}} \\
&= \sqrt{9+16} \\
&= \sqrt{25} \\
&= 5 \\
& \therefore \quad A C=A B
\end{aligned}
$$

$\triangle A B C$ is isosceles
vi) Area $=\frac{1}{2} \times 5 \times 5$

$$
=\frac{25}{2} \text { units }{ }^{2}
$$

## Question 4.

0) $x^{2}+4 x-10=0$
[1] tor
correct
$x^{2}+4 x=10$
method

$$
\begin{align*}
x^{2}+4 x+4 & =14 \\
(x+2)^{2} & =14 \\
x+2 & = \pm \sqrt{14} \\
x & =-2 \pm \sqrt{14}
\end{align*}
$$

b) (i) $x^{2}-6 x+13$

$$
\begin{align*}
& =\left(x^{2}-6 x+9\right)+4 \\
& =(x-3)^{2}+4 \tag{1}
\end{align*}
$$

$$
\begin{equation*}
\therefore a=3 \quad b=4 \tag{1}
\end{equation*}
$$

(i) minimum is 4 .
c)

$$
\begin{aligned}
y & =7+5 x-2 x \\
& =(7-2 x)(1+x)
\end{aligned}
$$

$$
\begin{array}{lll}
x \text { int: } y=0 \Rightarrow x=\frac{7}{2} \quad x=-1 & {[2]} \\
y \text { int: } x=0 \Rightarrow y=7 & -1 \text { for } \\
\text { vecinex at } x=-\frac{5}{4} & y=10 \cdot 125 \text { incorrect }
\end{array}
$$



## Question 5

i) $\frac{5}{12} \quad[i]$
ii)

iii) $P(R R)+P(B B)$
$=\frac{5}{12} \times \frac{4}{11}+\frac{7}{12} \times \frac{6}{11}$
$=\frac{20+42}{132}$
$=\frac{62}{132}$
$=\frac{31}{66}$

## Question 6

$$
\begin{gathered}
\max \\
1 / 2 \text { it only } \\
1 \text { colour tie } \\
/ 5
\end{gathered}
$$

a) i) 1.59
ii) Standard deviation is a
measure of spread around
the mean. (Root of the
variance)
[1]
Key words: sp read, mean
b) i) 78

## [1]

ii) $\frac{45+47}{2}$

$$
=46 \quad[17
$$

c) i) $I Q R=Q_{3}-Q_{1}$

$$
\begin{align*}
& =6-2 \\
& =4 \tag{1}
\end{align*}
$$

iii) Same number of boys as girls

## Question

i) $A=P(1+r)^{n}$

$$
\begin{array}{rlr}
A=\$ 11850 & r & =\frac{4.76}{4} \\
& =1.19 & n=4 \times 2  \tag{1}\\
& =8
\end{array}
$$

$$
\begin{equation*}
11850=p(1.0119)^{8} \tag{1}
\end{equation*}
$$

$\therefore P=\frac{11850}{1.0119}$

$$
\begin{equation*}
=\$ 10780 \tag{i}
\end{equation*}
$$

ii) $\begin{array}{rlrl}P=\$ 11850 & r & =484 \div 4 & n\end{array}=3 \times 4$.

$$
\begin{align*}
A & =11850(1.0121)^{12}  \tag{i}\\
& =\$ 13690 \tag{i}
\end{align*}
$$

iii) Interest earned $=\$ 13690-\$ 10780$

$$
\begin{equation*}
=\$ 2910 \tag{1}
\end{equation*}
$$

## Question 8

a) $\angle A O C=180^{\circ}$

$$
\begin{align*}
\angle A O B & =\angle C O D=70^{\circ}  \tag{1}\\
\therefore K & =180-70-70 \\
& =40 \tag{1}
\end{align*}
$$

b) $x(x+5)=4 \times 6 \quad[1]$

$$
x^{2}+5 x=24
$$

$$
x^{2}+5 x-24=0
$$

$$
(x+8)(x-3)=0
$$

$$
x=3 \text { or } x=-8
$$

$$
\therefore \quad x=3
$$

$$
\text { Since } \quad x>0
$$

[1] for negation
d) $\angle$ YoW $=130^{\circ}$ (angle it centre is

$$
\begin{aligned}
& \text { twice angle at } \\
& \text { circumference standing } \\
& \text { on same arc yo) [1] }
\end{aligned}
$$

$\angle Y X W=115^{\circ}$ (opposite angles in
cyclic quadrilateral

$$
X W \vee Y \text { are }
$$

supplementary;

LOW $x=90-x$ (radius meets tangent at $90^{\circ}$, and LOWX is adjacent to $\langle x w z$ )

$$
\begin{aligned}
\angle O Y X= & 360-(130+115+90-x) \\
= & \quad[\text { angle sum of } \\
& \text { quadrilateral is } \\
& \text { equal to } \left.360^{\circ}\right]
\end{aligned}
$$

- [1] mark tor incorrect reasoning up to 2 marks. ike. no reasoning maximum monk ob tainabie is $2 / 4$ up to marker on detail of reasonings.


## Question 9

a) is $x$
[1]
ii) $x$, he has a steeper
gradient at the start indicating
freetall, after some time,
he opens his parachute which
is indicated by a change in gradient.
[1] , Ear $X$
[1] it they show understanding of rates of change / gradients.
bi) $y=2 \cos \frac{1}{2} \theta$
$\begin{array}{ll}\text { amplitude }=2 . & {[i]} \\ \text { period }=720^{\circ} & {[1]}\end{array}$

ii)
[1] correct centre
[1] correct radius
iii)


NB
-1 mark for each mistake on graphs.

## Question 10

$$
\text { a) } V=20^{3}-\underbrace{\text { cylinders }}_{\begin{array}{c}
\text { rectangular } \\
\text { prism }
\end{array} \underbrace{\left(10^{2} \times 20\right)}_{\text {+he two 2xtan }}} \text { [i] }-\underbrace{2 \times\left(\pi \times 4^{2} \times 5\right)}_{\text {cion }}
$$

$$
\begin{equation*}
\div 5447.35 \mathrm{~cm}^{3}(\text { to } 2 d) \tag{1}
\end{equation*}
$$

b) $P\left(1\right.$ milk chocolate $=2\left(\frac{3}{6} \times \frac{3}{5}\right) \times$ enoch)
$2\left(\frac{2}{4} \times \frac{2}{3}\right) \times$
$2\left(\frac{1}{2} \times \frac{1}{1}\right)$
$=\frac{2}{5}$
$=40 \%$
212 for connect answer
$1 / 2$ it recognise dependary and are multiplication principle.
C)

ii)

$$
\begin{aligned}
& \angle A B P=160^{\circ} \\
& \therefore \angle A P B=4^{\circ} \\
& \frac{B P}{\sin 16^{\circ}}=\frac{2}{\sin 4^{\circ}} \\
& \therefore B P=7.9 \mathrm{~km} \\
& \frac{A P}{\sin 160^{\circ}}=\frac{2}{\sin 4^{\circ}} \\
& \therefore A P=\frac{2 \sin 160^{\circ}}{\sin 4^{\circ}} \\
& \therefore 9.81 \\
&=9.81 \times \sin 24^{\circ} \\
&=3.99 \mathrm{~km}
\end{aligned}
$$

$$
[1]
$$

$$
[1]
$$

[1]

