North Sydney Boys HIGH SCHOOL

2015 YEAR 10 YEARLY EXAMINATION STAGE 5.3 MATHEMATICS

Student Name:

\qquad

Class: \qquad Teacher \qquad

Number of pages used : \qquad (Fill at the end of exam)

General Instructions

- Working time - $\mathbf{1 1 0}$ minutes
- Write using blue or black pen.
- Board approved calculators are allowed.
- All necessary working should be shown in every question.
- Each new Section is to be started on a new page.
- Marks may not be awarded for carelessly or badly arranged work.
(To be used by the exam markers only.)

Section	A	B	C	D	E	F	G	Total	Total
Mark	$\overline{17}$	$\overline{21}$	$\overline{24}$	$\overline{7}$	$\overline{15}$	$\overline{11}$	$\overline{12}$	$\overline{107}$	100
Working out grade					Legibility grade				

Question

1. Evaluate correct to 3 significant figures.

$$
\frac{7.42 \times \sqrt[3]{47.3}}{41.23^{3}-43.1}
$$

2. Rationalise the denominator of

$$
\frac{2-\sqrt{3}}{4+\sqrt{5}}
$$

3. Factorise $49-16 y^{2}$.
4. Solve $4 x^{2}=28 x$.
5. $\$ 108000$ was invested for five years at the rate of 6% p.a. compounded annually.
i) Find the interest earned in five years.
ii) What is the percentage increase of his original investment at the end of five years?
6. Find the vertex of $y=x^{2}-4 x+9$.
7. Find the exact value of $\tan 210^{\circ}$.
8. For three points $A(2,1), B(4,3)$, and $C(\boldsymbol{p}, 0)$, find the value of \boldsymbol{p} so $\triangle A B C$ becomes an isosceles triangle with base $A B$.
9. Find, and describe geometrically, the equation of the locus of point $\boldsymbol{P}(x, y)$ which moves so that its distance from the point $A(7,2)$ is always twice its distance from $B(4,2)$

Section B (21 marks)

Question

Marks

1. Find the exact values of the pronumerals.

1 mark each
2. Find the area of the following triangle correct to 1 decimal place.

3. Sketch the following graph for $-180^{\circ} \leq \theta \leq 180^{\circ}$.

$$
y=2 \cos (3 \theta)
$$

4. Find x° in the given triangle.

5. Graph the following quadratic functions, showing all important features
a) $y=2 x^{2}-18$
b) $y=-x^{2}+7 x-12$
6. Find the value of b, given that $x^{2}-6 x+a=0$ and $x^{2}-a x+b=0$ are perfect squares.
7. Given that $m \propto \frac{1}{\sqrt{n}}$, What is the effect on
a) m when n is multiplied by 4
b) n when m is divided by 3

Section C (24 marks)

Question

1. 2. For a function $f(x)=x^{2}+4 x$, find:
a) $f(a)$
b) $f(2 c+1)$
1. Sketch on separate number planes. Show all important features.
a) $y=3^{x}$
b) $y=2(x-3)^{3}+4$
c) $y=\frac{3}{x+2}$
d) $y=\sqrt{9-(x-3)^{2}}$
2. a) Sketch the function $f(x)=x^{3}+2$.
b) Find the equation of its inverse and sketch it on the same axis showing all important features.
3. Find the value of \boldsymbol{x} and $\boldsymbol{\theta}$.

4. If it takes 5 minutes to fill up the cone with water until it is 4.5 cm deep at a constant rate, find how long would it take to fully fill up the entire cone with water.

Question

1. Calculate the value of the pronumerals. No reasons required.
a)

b)

2. ABCD is a parallelogram. Given $\angle A D C=\theta^{\circ}$. Show $\mathrm{CE}=\mathrm{CB}$.

Question

1. Evaluate the following logarithms
a) $\log _{9} 729$
b) $\log _{1} 1$
2. Evaluate, showing relevant working

$$
\frac{3 \log _{3} 243}{\log _{2} 32}+\frac{5 \log _{3}(\sqrt{3})}{\log _{8} 8}
$$

3. If $\log _{a} 3=0.8$ and $\log _{a} 5=1.2$, evaluate:
a) $\log _{a} \frac{1}{9}$
b) $\log _{a} \sqrt{45}$
4. If $0.5^{a}=0.0625$ and $3^{1+2 b}=243$, find the value of $\log _{\mathrm{b}} \mathrm{a}$.
5. Sketch the following log graphs; showing all important features:
a) $y=2 \log _{2} x$
b) $y=\log _{2}(x-5)$

Section F (11 marks)

Question

1. Expand and simplify the following polynomial and state the leading coefficient and constant term.

$$
(x+2)(2 x-7)-(2 x+3)(x+5)
$$

2. Find the quotient $\mathrm{Q}(\mathrm{x})$ and remainder $\mathrm{R}(\mathrm{x})$ for the following division

$$
\left(x^{4}-9 x^{3}+22 x^{2}-5 x-25\right) \div(x-5)
$$

3. If $x^{3}-p x+q$ is divisible by both $x-4$ and $x+3$, find the values of p and q.
4. Factor the following polynomial. Sketch the graph, showing all intercepts with the axes.

$$
P(x)=x^{4}-x^{3}-21 x^{2}+45 x
$$

Question

1. Two circles of radii 9 cm and 16 cm touch externally. Calculate the length of the common tangent shown below, giving all reasons for your answer.

2. On a cyclic quadrilateral $\mathrm{ABCD}, \mathrm{AD}=3 \mathrm{~cm}, \mathrm{CD}=7 \mathrm{~cm}$ and $\cos \mathrm{B}=\frac{1}{9}$

a) Show that $\cos D=-\cos B$
b) Find the length of AC
3. 360 metres of fencing is to be used to enclose a rectangular area and divide it into a square and a smaller rectangle. Find the length of the side of the square to get the maximum area of the two areas.

4. If a cubic polynomial satisfies the following conditions,
$P(0)=3$
$P(x+1)=P(x)+x^{2}$
a) Find the value of $P(1)$
b) Find the remainder of the polynomial when it is divided by $x^{2}-3 x+2$.

Section A

1. 0.000383 or 3.83×10^{-4}
2. $\frac{2-\sqrt{3}}{4+\sqrt{5}} \times \frac{4-\sqrt{5}}{4-\sqrt{5}}$

$$
=\frac{8-2 \sqrt{5}-4 \sqrt{3}+\sqrt{15}}{11} \checkmark \checkmark
$$

3. $(7-4 y)(7+4 y)$
4. $4 x^{2}-28 x=0$

$$
4 x(x-7)=0 \quad \therefore x=0 \text { or } x=7 \checkmark
$$

5. a) $\mathrm{P}=108000$

$$
\begin{aligned}
& \mathrm{R}=0.06 \\
& \mathrm{~T}=5
\end{aligned}
$$

$A=108000(1+0.06)^{5}=\$ 36528$ (to the nearest dollar) $\checkmark \checkmark$
b) $\frac{36528}{108000} \times 100=34 \%$
6. $x=-\frac{b}{2 a}=-\frac{-4}{2}=2$

$$
\begin{equation*}
y=4-4(2)+9=5 \tag{2,5}
\end{equation*}
$$

7. $\quad \frac{1}{\sqrt{3}} \checkmark$
8. $\mathrm{AC}=\mathrm{BC}$

$$
\begin{aligned}
\sqrt{(2-p)^{2}+(1-0)^{2}} & =\sqrt{(4-p)^{2}+(3-0)^{2}} \\
4 p=20 \quad \therefore p & =5 \checkmark \checkmark
\end{aligned}
$$

9.

$$
\begin{gathered}
\sqrt{(7-x)^{2}+(2-y)^{2}}=2 \sqrt{(4-x)^{2}+(2-y)^{2}} \\
3 x^{2}-18 x+3 y^{2}-12 y+27=0 \\
(x-3)^{2}+(y-2)^{2}=4 \checkmark \checkmark \checkmark
\end{gathered}
$$

Locus of a circle with centre $(3,2)$ and radius of 2 units.

Section B

1. a) $\frac{7}{2} \checkmark$
b) $5 \sqrt{2}$
2. \quad Area $=\frac{1}{2} a b \sin C$

$$
=\frac{1}{2} \times 4 \times 8 \times \sin (59.6)=13.8 \mathrm{~cm}^{2}
$$

Or $\frac{1}{2} \times 4 \times 7 \times \sin (99)=13.8 \mathrm{~cm}^{2}$
(Or $\left.\frac{1}{2} \times 7 \times 8 \times \sin (21.6)=10.3 \mathrm{~cm}^{2}\right)$
Use of correct equation
Use of correct figures $\checkmark \checkmark$
3.

Correct shape
Correct amplitude $-2 \leq y \leq 2$
Correct period $\mathrm{P}=120^{\circ}$
4. $\frac{7}{\sin (45)}=\frac{\frac{7}{2} \sqrt{6}}{\sin x}$ $\sin x=\frac{\sqrt{3}}{2} \quad x=60^{\circ}$ or $120^{\circ} \checkmark \checkmark \checkmark$
5.
a) Correct shape

Vertex
Intercepts $\checkmark \checkmark$

b) $\quad \mathrm{v}=(3.5,0.25)$
x-intercepts $(3,0),(4,0)$
y-intercept ($0,-12$)

6. $(x-3)^{2} \therefore a=9$

$$
\left(x-\frac{9}{2}\right)^{2} \therefore b=\frac{81}{4} \checkmark \checkmark
$$

7. a) $m=\frac{k}{\sqrt{n}}=\frac{k}{\sqrt{4 n}}=\frac{\mathbf{k}}{2 \sqrt{\mathbf{n}}}$ m is halved $\checkmark \checkmark$
b) $n=\frac{k^{2}}{\left(\frac{1}{3 m}\right)^{2}}=\frac{9 k^{2}}{m^{2}}$
n is multiplied by $9 \checkmark \checkmark$

Section C

1.

a) $f(a)=a^{2}+4 a \checkmark$
b) $f(2 c+1)=(2 c+1)^{2}+4(2 c+1) \checkmark$ $4 c^{2}+12 c+8$
2.
a)

Correct y-intercept (0,1)
Correct shape $\checkmark \checkmark$
b)

Correct intercepts ($\approx \mathbf{1 . 7 4 , 0}$) and ($\mathbf{0},-\mathbf{5 0}$) Correct shape $\checkmark \checkmark \checkmark$
c)

Correct y-intercept (0,1.5)
Correct point on a line and shape Correct asymptote $\checkmark \checkmark \checkmark$
d)

Correct \mathbf{x}-intercepts ($\mathbf{0 , 0}$), ($\mathbf{(6 , 0)}$
Correct shape (3,3)
Correct orientation $\checkmark \checkmark \checkmark$

a) Dotted line

Correct shape
Correct intercepts (0,2), ($\approx-1.26,0$) $\checkmark \checkmark$

b) Solid line

Correct equation $y=\sqrt[3]{x-2}$
Correct shape
Correct intercepts (2,0), (0,-1.26) $\checkmark \checkmark \checkmark$
4.
$\cos \theta=\frac{4^{2}+6^{2}-7^{2}}{2 \times 4 \times 6}$
$\theta=86^{\circ}$ (nearest degrees)
$x^{2}=6^{2}+9^{2}-2 \times 6 \times 9 \times \cos \theta$
$x=10.5 \mathrm{~cm} \checkmark \checkmark$
5.

5 min to fill the 4.5 cm depth.
$V=\frac{4.5}{3} \pi \times 1.5^{2}=1.5^{3} \pi \mathrm{~cm}^{3}$
$3.375 \pi \mathrm{~cm}^{3}$ per $5 \min =0.675 \pi \frac{\mathrm{~cm}^{3}}{\text { min }}$
Volume of the entire cone
$V=\frac{9}{3} \pi \times 3^{2}=3^{3} \pi \mathrm{~cm}^{3}=27 \pi \mathrm{~cm}^{3}$
Time to fill the entire cone
$T=\frac{27 \pi}{0.675 \pi}=40$ minutes $\checkmark \checkmark \checkmark$

Section D

1. a) $x=120^{\circ}$
b) $x=23^{\circ} \checkmark$
c) $x=33^{\circ} \checkmark$
d) $x=81^{\circ} \checkmark$

$$
y=114^{\circ} \checkmark
$$

2.

$\angle A E C=180-\theta^{\circ}$
(Opposite angle of a cyclic quadrilateral)
$\therefore \angle B E C=180-\left(180-\theta^{\circ}\right)=\theta^{\circ}$
(supplementary angle)
$\angle A B C=\theta^{\circ}$
(Opposite angles in a parallelogram)
$\therefore \mathrm{CE}=\mathrm{BC}$ (The angles opposite the equal sides are also equal) $\checkmark \checkmark$

Section E

1.

a) 3
b) undefined
2.

$$
\begin{aligned}
& \frac{3 \times 5 \log _{3} 3}{5 \log _{2} 2}+\frac{\frac{1}{2} \times 5 \log _{3} 3}{1} \\
& =\frac{15}{5}+\frac{5}{2}=\frac{55}{10}=\frac{11}{2} \checkmark \checkmark \checkmark
\end{aligned}
$$

3.

a) $\log _{a} 3^{-2}=-2 \log _{a} 3=-2 \times 0.8=-1.6$
b) $\log _{a} 45^{1 / 2}=\frac{1}{2}\left(\log _{a} 9+\log _{a} 5\right)$

$$
\begin{aligned}
& =\frac{1}{2}\left(2 \log _{a} 3+\log _{\mathrm{a}} 5\right) \\
& =0.5(2 \times 0.8+1.2)=1.4
\end{aligned}
$$

4.

$$
\begin{aligned}
& \left(\frac{5}{10}\right)^{a}=\frac{625}{10000} \\
& a=4 \\
& 3^{1+2 b}=243=3^{5} \\
& 2 b+1=5 \quad \therefore b=2 \\
& \log _{2} 4=2 \quad \checkmark \checkmark
\end{aligned}
$$

5.

a)

Correct shape and point on the line e.g(2,2)

Correct intercepts $(1,0) \checkmark \checkmark$
b)

Correct shape and point on the line e.g(7,1)

Correct intercepts (6,0)
Correct asymptote $(x=5) \checkmark \checkmark \checkmark$

Section F

1. $-16 x-29$

Leading coefficient $-16 \checkmark$ Constant term -29 \checkmark
2.
$x^{4}-9 x^{3}+22 x^{2}-5 x-25=\left(x^{3}-4 x^{2}+2 x+\right.$ $+0$
Showing long division
Quotient $=x^{3}-4 x^{2}+2 x+5$
Remainder $=0 \checkmark \checkmark \checkmark$
3. $P(4)=0 \quad P(-3)=0$
$P(4)=64-4 p+q=0$
$P(-3)=-27+3 p+q=0$

```
\(91-7 \mathrm{p}=0\)
\(\mathrm{p}=13\)
\(\mathrm{q}=-12 \checkmark \checkmark \checkmark\)
```

4. Using factor theorem to find

$$
P(x)=x^{4}-x^{3}-21 x^{2}+45 x=x(x-3)^{2}(x+5)
$$

Correct shape

Intercepts $\checkmark \checkmark$

Section G

1.

Show that tangent to a circle is perpendicular to the radius at the point of contact for two circles.

Construct a line that is parallel to the line of centres.

Use Pythagoras' theorem to find the length of the common tangent. (24 cm) \checkmark
2.
a)
$\angle D=180-\angle B$
(The opposite angles of a cyclic quadrilateral are supplementary)

$$
\therefore \cos D=\cos (180-B)=-\cos B \checkmark
$$

b)

$$
\begin{aligned}
& A C=\sqrt{3^{2}+7^{2}-2 \times 3 \times 7 \times(-\cos B)} \\
& A C=\sqrt{3^{2}+7^{2}-2 \times 3 \times 7 \times-\frac{1}{9}} \\
& =7.92 \mathrm{~cm}(2 d . p) \checkmark \checkmark
\end{aligned}
$$

3.

$$
\begin{aligned}
& \text { Perimeter }=\mathbf{3 6 0}=\mathbf{5 s}+\mathbf{2 x} \\
& x=\frac{360-5 x}{2}=180-\frac{5 x}{2}
\end{aligned}
$$

$$
\text { Area }=s^{2}+s x=s^{2}+s\left(180-\frac{5 x}{2}\right)
$$

$$
=s^{2}+180 s-\frac{5 x^{2}}{2}=\frac{-3 x^{2}}{2}+180 s
$$

Maximum area at the vertex of the parabola

$$
s=-\frac{b}{2 a}=-\frac{180}{2 \times-\frac{3}{2}}=60 \checkmark \checkmark \checkmark
$$

\therefore the area is maximum when side of the square is 60 m .
4.
a)
$\mathbf{P}(\mathbf{1})=\mathbf{P}(\mathbf{0}+\mathbf{1})=\mathbf{P}(\mathbf{0})+\mathbf{0}^{2}=3+0=3 \quad \checkmark$
b)
$x^{2}-3 x+2=(x-2)(x-1)$
Find $P(2)$
$\mathbf{P}(\mathbf{2})=\mathbf{P}(\mathbf{1}+\mathbf{1})=\mathbf{P}(\mathbf{1})+\mathbf{1}^{2}=4$
$P(x)=(x-2)(x-1) Q(x)+a x+b$
Remainder is linear as the divisor is a quadratic function.

Use remainder theorem to find the remainder $\mathbf{a} x+b$
$\mathbf{P}(\mathbf{1})=\mathbf{a}+b=\mathbf{3}$
$\mathbf{P}(\mathbf{2})=\mathbf{2 a}+b=\mathbf{4}$
$a=1$
$b=2$
\therefore remainder is $x+2$, when the polynomial is divided by $x^{2}-3 x+2$

