Section A - Trigonometry (15 Marks) Start a NEW page

1. Find the value of x to 2 decimal places.

2. Alloy (A) sees a Watcher $(W) 18$ metres away at a bearing of 339°. She turns and sees a Strider (S) 13 metres away at a bearing of 249°.

(i) Find $\angle S A W$.
(ii) Find the distance between the Watcher and the Strider to 2 decimal places.
(iii) Find the bearing of the Watcher from the Strider.
3.

(i) Draw a neat sketch of $y=2 \cos \left(\frac{x}{2}\right)$ for $0 \leq x \leq 360^{\circ}$.
(ii) Hence or otherwise, find the number of solutions to the equation:

$$
2 \cos \left(\frac{x}{2}\right)=\sqrt{3} \text { for } 0 \leq x \leq 360^{\circ}
$$

Section B - Number \& Algebra (17 Marks) Start a NEW page

1. Write the following in scientificnotation to 3 significant figures:

$$
\left(\frac{2 \pi}{10000}\right)^{\frac{3}{2}}
$$

2.

(i) Rationalise the denominator of:

$$
\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}
$$

(ii) Hence or otherwise, find the values of a, b and c.

$$
\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}=a \sqrt{b}+c
$$

3. Fully factorise:
(i) $3 x^{2}-12$
(ii) $\quad x^{3}+64$
(iii) $6 x^{2}-25 x+14$
4. Two similar figurines have the following volumes:

Figurine $A=125 \mathrm{~cm}^{3}$
Figurine $B=2744 \mathrm{~cm}^{3}$
If the surface are of Figurine A is $75 \mathrm{~cm}^{2}$.

Calculate the surface area of Figurine B.
5. Fully simplify:
$\frac{\frac{a+b}{b}+\frac{a+b}{a}}{\frac{a}{b}-\frac{b}{a}}$

Section C - Coordinate Geometry \& Locus (8 Marks) Start a NEW page

1. Find the equation of the locus of the point $P(x, y)$ that moves such that it is equidistant from $A(-2,-3)$ and $B(2,5)$.
2. In the diagram below the line ℓ has the equation $2 x+3 y+6=0$. It cuts the x axis at A, the y axis at B and it intersects the line k at C. Line k is perpendicular to line ℓ and cuts the x axis at D.

(i) Find the coordinates of A and B.
(ii) If B is the midpoint of $A C$, find the coordinates of C.
(iii) Hence or otherwise find the equation of k.

Section D - Probability and Finance (7Marks) Start a NEW page

1. Two cards are drawn without replacement from a standard 52 card deck. Calculate the probability that:
(i) They are both are diamonds.
(ii) They are both the same suit.
(iii) One is a picture card and the other is the Ace of Spades.
2. Chuck-a-luck is a European dice game, the rules are as follows:

A player nominates a numberfrom $1-6$ and three dice are thrown:
If their number appears on one die they win one prize.
If their number appears on two dice they win two prizes.
If their number appears on all three dice they win three prizes.
What is the probability that someone playing Chuck-a-luck wins at least 1 prize?
3. The table below shows the monthly payments required to repay a loan of $\$ 1000$ over periods of 1 to 5 years at monthly reducibleinterest rates.

Interest rate p.a.	$\mathbf{1}$ year	$\mathbf{2}$ years	$\mathbf{3}$ years	4 years	5 years
$\mathbf{9 \%}$	87.50	45.68	31.80	24.81	20.76
$\mathbf{9 . 5 \%}$	87.68	45.91	32.03	25.12	21.00
$\mathbf{1 0 \%}$	87.92	46.14	32.27	25.36	21.25
$\mathbf{1 0 . 5 \%}$	88.15	46.38	32.50	25.60	21.49
$\mathbf{1 1 \%}$	88.38	46.61	32.74	25.85	21.74
$\mathbf{1 1 . 5 \%}$	88.62	46.84	32.98	26.09	$\mathbf{2 1 . 9 9}$
$\mathbf{1 2 \%}$	88.85	47.07	33.21	$\mathbf{2 6 . 3 3}$	$\mathbf{2 2 . 2 4}$

(i) What is the total amount that would have to be repaid if $\$ 15000$ is to be borrowed for 3 years at 11\% p.a reducible interest?
(ii) What is the equivalent rate of simple interest?

Section E - Functions and Quadratics (15 Marks) Start a NEW page

1.

(i) For $f(x)=\frac{1}{x}$, sketch
$y=f(x-1)$
showing all relevant features
(ii) For $g(x)=2^{x}$, sketch

$$
y=g(-x)+1
$$

showing all relevant features
2. Draw a neat sketch of $x^{2}-4 x+y^{2}-6 y+9=0$, showing all relevant
features.
3.
(i) Solve the equation: $x^{2}-8 x+14=0$.
(ii) Show that $y=x^{2}-8 x+14$ has a vertex at $(4,-2)$.

2

1

1. Find the values of the pronumerals in each of the following:

REASONSMUST BE GIVEN!

(i)

$A C$ is the diameter. $B T$ is tangent.
(ii)

$A T$ is a tangent. $A T=6, B C=9$ and $C T=x$
(iii)

2. $C T$ is a tangent to the circle, centre O, touching at P. Quadrilateral $P A B C$ is a parallelogram and $C T$ is parallel to $A B$.

Full geometrical reasoning must be given for this question
(i) Let $\angle T P A=x$ and prove that $\angle P O B=2 x$
(ii) Find the values of x such that POBC is a cyclic quadrilateral
3.

ABCD is a square. The points P, Q, and R line on $A B, B C$ and $C D$ respectively so that $A P=B Q=C R$
(i) Prove that $\triangle P B Q \equiv \triangle Q C R$
(ii) Prove that $P Q$ is perpendicular to $Q R$

1. Evaluate each of the following:
(i) $\log _{2} 64 \quad 1$
(ii) $\log _{a} \sqrt{a} \quad 1$
(iii) $\log _{a} \frac{1}{a^{2}}$

1
2. If $\log _{x} 2=6.1$ and $\log _{x} 5=2.9$, evaluate each of the following:
(i) $\quad \log _{x} 10$

1
(ii) $\quad \log _{x} 2.5$
(iii) $\log _{x} 50$
3. Solve for x :
(i) $4^{x}=100$

2
(ii) $\log _{a}(4 x)-\log _{a}(3)=\log _{a}(x+4)$ 3
4. Draw a neat sketch of $y=\log _{3} x$ showing all relevant features.

3

Section H - Polynomials (14Marks) Start a NEW page

1. Find the quotient and remainder when $\left(2 x^{3}+4 x^{2}-x+5\right)$ is divided by $(x+2)$

3
2. The polynomial $P(x)=2 x^{3}+b x^{2}-8 x+5$ has a remainder of 2 when divided by $(x+3)$,
(i) Evaluate b
(ii) Find the remainder when $P(x)$ is divided by $(x+2)$.
3. Fully factorise $x^{3}-3 x^{2}-10 x+24$
4.
(i) Sketch $P(x)=(x+2)(x-4)^{2}$
(ii) On a separate set of axes sketch $y=-2 P(x)$
(iii) Hence or otherwise solve $(x+2)(x-4)^{2} \geq 0$

Section A

	Section A
1.	$\begin{aligned} x^{2} & =3.04^{2}+5.32^{2}-2 \times 3.04 \times 5.32 \times \cos 122^{\circ} \\ \therefore x & =7.39 \mathrm{~cm} \end{aligned}$
2.	$\begin{aligned} A & =\frac{1}{2} a b \sin C \\ 30 & =\frac{1}{2} \times 8 \times 11 \times \sin \angle B A C \\ \sin \angle B A C & =\frac{30}{\frac{1}{2} \times 8 \times 11} \\ \therefore \quad \angle B A C & =43^{\circ} \text { or } 137^{\circ} \end{aligned}$
3. (i) (ii) (iii)	90° $\begin{aligned} W S^{2} & =18^{2}+13^{2} \\ \therefore W S & =22.20 m \end{aligned}$ $\begin{aligned} \tan \angle W S A & =\frac{18}{13} \\ \therefore \quad \angle W S A & =54^{\circ} \\ \therefore \text { bearing } & =90^{\circ}-\left(54^{\circ}+21^{\circ}\right) \\ & =015^{\circ} \mathrm{T} \end{aligned}$
4. (i) (ii)	

	Section B
1.	1.57×10^{-5}
2.	$\begin{aligned} \frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}} \times \frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}+\sqrt{2}} & =\frac{(\sqrt{3}+\sqrt{2})^{2}}{3-2} \\ & =3+2 \sqrt{6}+2 \\ & =2 \sqrt{6}+5 \\ a=2, b=6, c & =5 \end{aligned}$
$3 .$ (i)	$\begin{aligned} 3 x^{2}-12 & =3\left(x^{2}-4\right) \\ & =3(x-2)(x+2) \end{aligned}$
(ii) (iii)	$\begin{aligned} & x^{3}+64=(x+4)\left(x^{2}-4 x+16\right) \\ & 6 x^{2}-25 x+14=(3 x-2)(2 x-7) \end{aligned}$
4.	Volumes 125:2744 SIdes 5: 14 Areas 25 : 196 $\begin{aligned} \frac{25}{196} & =\frac{75}{x} \\ 25 x & =14700 \\ \therefore \quad x & =588 \mathrm{~cm}^{2} \end{aligned}$
5.	$\begin{aligned} \frac{\frac{a+b}{b}+\frac{a+b}{a}}{\frac{a}{b}-\frac{b}{a}} & =\frac{\frac{a^{2}+a b+b a+b^{2}}{2 k}}{\frac{a^{2}-b^{2}}{d k}} \\ & =\frac{(a+b)^{2}}{(a-b)(a+b)} \\ & =\frac{a+b}{a-b} \end{aligned}$

1.

$$
\sqrt{(x+2)^{2}+(y+3)^{2}}=\sqrt{(x-2)^{2}+(y-5)^{2}}
$$

$$
x^{2}+4 x+44+\left|k^{2}+6 y+9=\left|\left.\right|^{2}-4 x+4+| |^{2}-10 y+25\right.\right.
$$

$$
8 x+16 y-16=0
$$

$$
x+2 y-2=0
$$

2.

(i) $\quad A=(-3,0)$
(ii) $\quad \begin{aligned} & B=(0,-2) \\ & C=(3,-4)\end{aligned}$
(iii)

$$
\begin{aligned}
2 x+3 y+6 & =0 \\
3 y & =-2 x-6 \\
y & =-\frac{2}{3} x-2 \\
\therefore \quad m_{1} & =-\frac{2}{3} \\
\therefore \quad m_{2} & =\frac{3}{2} \\
y-y_{1} & =m\left(x-x_{1}\right) \\
y+4 & =\frac{3}{2}(x-3) \\
2 y+8 & =3 x-9 \\
3 x-2 y-17 & =0
\end{aligned}
$$

1.	$\frac{13}{52} \times \frac{12}{51}=\frac{1}{17}$

(ii) $1 \times \frac{12}{51}=\frac{4}{17}$
(iii) $\frac{1}{52} \times \frac{12}{51}+\frac{12}{52} \times \frac{1}{51}=\frac{2}{221}$
$1-\left(\frac{5}{6}\right)^{3}=\frac{91}{216}$
3.
(i)
$15 \times 32.74 \times 12 \times 3=\$ 17679.60$
(ii) $\quad I=A-P$
$=17679.60-15000$
$=2679.60$
$I=P r n$
$r=\frac{I}{P n}$
$=\frac{2679.60}{15000 \times 3}$
$=0.0594666 \ldots$
= 5.95%
(i).
(i)

$$
\begin{aligned}
& x^{2}-8 x+14=0 \\
& \begin{aligned}
x^{2}-8 x & =-14 \\
x^{2}-8 x+16 & =-14+16
\end{aligned} \\
& (x-4)^{2}=2 \\
& x-4= \pm \sqrt{2} \\
& x=4 \pm \sqrt{2} \\
& -\frac{b}{2 a}=\frac{8}{2} \\
& =4 \\
& 4^{2}-8 \times 4+14=-2 \\
& \therefore \text { vertex is (4,-2) }
\end{aligned}
$$

$$
\begin{aligned}
x^{2}-8 x+14 & =x \\
x^{2}-9 x+14 & =0 \\
(x-7)(x-2) & =0 \\
\therefore \quad x & =7 \text { (as } x=2 \text { is outside the domain) }
\end{aligned}
$$

\therefore they intersect at $(7,7)$

	Section F	
1. (i)	$\begin{aligned} & x=\frac{360-128^{\circ}}{2} \text { (angle sum of a revolution and angle at the } \\ & \text { cirumference half the angle at the centre) } \end{aligned}$	
(ii)	$\begin{aligned} x & =62^{\circ} \text { (alternate segment theorem) } \\ \angle A B C & =90^{\circ} \text { (angle in a semi circle) } \\ \angle A C B & =180^{\circ}-90^{\circ}-62^{\circ} \text { (angle sum of } \triangle A B C \text {) } \\ & =28^{\circ} \\ \therefore \quad y & =28^{\circ} \text { (angles standing on the same arc) } \end{aligned}$	
(iii)	$\begin{array}{rlrl} x(x+9) & =6^{2} \text { (product of tangent and secant) } \\ x^{2}+9 x & =36 \\ x^{2}+9 x-36 & =0 \\ (x+9)(x-3) & =0 \\ x & =-9 \text { or } x=3 \\ \therefore \quad & x & =3(\operatorname{as} x>0) \end{array}$	
2.		
(i)	$\begin{aligned} \angle B A P & =\angle T P A \text { (alternate angles, } A B \\| C T) \\ & =x \end{aligned}$ $\angle P O B=2 x$ (angle at the centre twice angle at the circumference)	
(ii)	$\left.\begin{array}{rl} \angle P O B & =\angle B A P \text { (opposite angles of parallelogram } \\ \text { are equal) } \end{array}\right] \begin{aligned} & \angle P O B+\angle P C B=180^{\circ} \text { (opposite angles of cyclic } \\ & \quad \text { quadrilateral are supplentary) } \\ & x+2 x=180^{\circ} \\ & 3 x=180^{\circ} \\ & x=60^{\circ} \end{aligned}$	

```
    \(A B=C B\) (sides of square)
    \(A P=B Q\) (given)
\(\therefore A B-A P=C B-B Q\)
\(\therefore \quad B P=Q C\)
in \(\triangle P B Q\) \& \(\triangle Q C R\)
\(B Q=C R\) (given)
\(B P=Q C(\) from 1\()\)
\(\angle P B Q=\angle Q C R\) (vertices of a square are all equal)
\(\therefore \quad \triangle P B Q \equiv \triangle Q C R(\mathrm{SAS})\)
```

(ii)
let $\angle B P Q=x$
$\therefore \quad \angle B Q P=180^{\circ}-90^{\circ}-x$ (angle sum of right angled triangle)
$=90^{\circ}-x$
$\angle C Q R=\angle B P Q$ (matching sides in congruent triangles)
$=x$
$\angle B Q P+\angle P Q R+\angle C Q R=180^{\circ}$ (angle sum of a straight line)
$90^{\circ}-x+\angle P Q R+x=180^{\circ}$
$\angle P Q R=180^{\circ}-90^{\circ}$
$=90^{\circ}$
$\therefore \mathrm{PQ} \perp \mathrm{QR}$
1.
(i) 6
(ii) $\frac{1}{2}$
(iii) -2
2.
(i) 9
(ii) -3.2
(iii) 11.9
3.

$$
4^{x}=100
$$

(i) $\quad \log \left(4^{x}\right)=\log (100)$
$x \log (4)=\log (100)$

$$
x=\frac{\log (100)}{\log (4)}
$$

$$
=3.32 \text { (2 d.p.) }
$$

(ii) $\quad \log _{a}(4 x)-\log _{a}(3)=\log _{a}(x+4)$

$$
\log _{a}\left(\frac{4 x}{3}\right)=\log _{a}(x+4)
$$

$$
\frac{4 x}{3}=x+4
$$

$$
4 x=3 x+12
$$

$$
x=12
$$

4.

1.

$$
\begin{array}{r}
2 x^{2}+0 x-1 \\
2+2 x^{3}+4 x^{2}-x+5 \\
2 x^{3}+4 x^{2} \\
0 x^{2}-x \\
0 x^{2}-0 x \\
------- \\
-x+5 \\
-x-2 \\
-------- \\
7
\end{array}
$$

\therefore quotient $=2 x^{2}-1$
remainder $=7$
2.
(i) $\quad 2(-3)^{3}+b(-3)^{2}-8(-3)+5=2$
$-54+9 b+24+5=2$

$$
\begin{aligned}
9 b & =27 \\
b & =3
\end{aligned}
$$

(ii) $\quad P(-2)=2(-2)^{3}+3(-2)^{2}-8(-2)+5$
$=17$
3. $x^{3}-3 x^{2}-10 x+24=(x+3)(x-2)(x-4)$
4.
(i)

