Section A – Trigonometry (15 Marks) Start a NEW page

1. Find the value of *x* to 2 decimal places.

- 2. $\triangle ABC$ has an area of $30 \, cm^2$. AB = 8 cm and AC = 11 cm. Find the size(s) of $\angle BAC$ to the nearest degree.
 - Alloy (A) sees a Watcher (W) 18 metres away at a bearing of 339°. She turns
 - and sees a Strider (S) 13 metres away at a bearing of 249°.

(i)	Find $\angle SAW$.	1
(ii)	Find the distance between the Watcher and the Strider to 2 decimal places.	2
(iii)	Find the bearing of the Watcher from the Strider.	3

4.

3.

(i) Draw a neat sketch of
$$y = 2\cos(\frac{x}{2})$$
 for $0 \le x \le 360^{\circ}$. **3**

$$2\cos(\frac{x}{2}) = \sqrt{3}$$
 for $0 \le x \le 360^{\circ}$.

3

2

1. Write the following in scientific notation to 3 significant figures:

$$(\frac{2\pi}{10000})^{\frac{3}{2}}$$
 2

2.

(i) Rationalise the denominator of:

$$\frac{\sqrt{3} + \sqrt{2}}{\sqrt{3} - \sqrt{2}}$$

(ii) Hence or otherwise, find the values of *a*, *b* and *c*.

3. Fully factorise:

(i)
$$3x^2 - 12$$
 2

(ii)
$$x^3 + 64$$
 2

(iii)
$$6x^2 - 25x + 14$$
 2

4. Two similar figurines have the following volumes:

Figurine A = 125 cm^3

Figurine $B = 2744 \text{ cm}^3$

If the surface area of Figurine A is 75 cm².

Calculate the surface area of Figurine B. 3

5. Fully simplify:

$$\frac{\frac{a+b}{b} + \frac{a+b}{a}}{\frac{a}{b} - \frac{b}{a}}$$
3

Section C - Coordinate Geometry & Locus (8 Marks) Start a NEW page

1. Find the equation of the locus of the point P(x, y) that moves such that it is equidistant from A(-2, -3) and B(2, 5).

2. In the diagram below the line l has the equation 2x + 3y + 6 = 0. It cuts the x axis at A, the y axis at B and it intersects the line k at C. Line k is perpendicular to line l and cuts the x axis at D.

(i)	Find the coordinates of A and B.	2
(ii)	If B is the midpoint of AC, find the coordinates of C.	1
(iii)	Hence or otherwise find the equation of <i>k</i> .	2
	Section D – Probability and Finance (7 Marks) Start a NEW page	
1.	Two cards are drawn without replacement from a standard 52 card deck. Calculate the probability that:	
(i)	They are both are diamonds.	1
(ii)	They are both the same suit.	1
(iii)	One is a picture card and the other is the Ace of Spades.	1
2.	Chuck-a-luck is a European dice game, the rules are as follows:	
	A player nominates a number from $1-6$ and three dice are thrown:	
	If their number appears on one die they win one prize.	
	If their number appears on two dice they win two prizes.	
	If their number appears on all three dice they win three prizes.	

What is the probability that someone playing Chuck-a-luck wins at least 1 prize? 1

3. The table below shows the monthly payments required to repay a loan of \$1000 over periods of 1 to 5 years at monthly reducible interest rates.

Interest	1 year	2 years	3 years	4 years	5 years
rate p.a.					
9%	87.50	45.68	31.80	24.81	20.76
9.5%	87.68	45.91	32.03	25.12	21.00
10%	87.92	46.14	32.27	25.36	21.25
10.5%	88.15	46.38	32.50	25.60	21.49
11%	88.38	46.61	32.74	25.85	21.74
11.5%	88.62	46.84	32.98	26.09	21.99
12%	88.85	47.07	33.21	26.33	22.24

(i) What is the total amount that would have to be repaid if \$15 000 is to be borrowed for 3 years at 11% p.a reducible interest?

(ii) What is the equivalent rate of simple interest?

Section E – Functions and Quadratics (15 Marks) Start a NEW page

1

2

1.

(i) For
$$f(x) = \frac{1}{x}$$
, sketch
 $y = f(x - 1)$

showing all relevant features

(ii) For
$$g(x) = 2^x$$
 , sketch
 $y = g(-x) + 1$
3

showing all relevant features

2. Draw a neat sketch of $x^2 - 4x + y^2 - 6y + 9 = 0$, showing all relevant **3** features.

3.

(i)	Solve the equation: $x^2 - 8x + 14 = 0$.	2
(ii)	Show that $y = x^2 - 8x + 14$ has a vertex at (4, -2).	1
(iii)	Hence or otherwise sketch $f(x) = x^2 - 8x + 14$ for $x \ge 4$.	2
(iv)	Given that $f^{-1}(x)$ is the inverse function of $f(x)$, find the point of intersection of $f(x)$ and $f^{-1}(x)$.	2

1. Find the values of the pronumerals in each of the following:

```
REASONS MUST BE GIVEN!
```


AC is the diameter. *BT* is tangent.

(ii)

(i)

AT is a tangent. AT = 6, BC =9 and CT = x

2

2

4

2. *CT* is a tangent to the circle, centre *O*, touching at *P*. Quadrilateral *PABC* is a parallelogram and *CT* is parallel to *AB*.

Full geometrical reasoning must be given for this question

(i)	Let $\angle TPA = x$ and prove that $\angle POB = 2x$	2
(ii)	Find the values of <i>x</i> such that POBC is a cyclic quadrilateral	2

ABCD is a square. The points P, Q, and R line on AB, BC and CD respectively so that AP = BQ = CR

- (i) Prove that $\Delta PBQ \equiv \Delta QCR$
- (ii) Prove that PQ is perpendicular to QR

Section G – Logarithms (14 Marks) Start a NEW page

1.	Evaluate each of the following:	
(i)	log ₂ 64	1
(ii)	$\log_a \sqrt{a}$	1
(iii)	$\log_a \frac{1}{a^2}$	1
2.	If $\log_x 2 = 6.1$ and $\log_x 5 = 2.9$, evaluate each of the following:	
(i)	$\log_x 10$	1
(ii)	$\log_x 2.5$	1
(iii)	$\log_x 50$	1
3.	Solve for <i>x</i> :	
(i)	$4^{x} = 100$	2
(ii)	$\log_a(4x) - \log_a(3) = \log_a(x+4)$	3
л	Draw a neat sketch of $y = \log_2 x$ showing all relevant features	3
ч.		
т.		
	Section H – Polynomials (14 Marks) Start a NEW page	
1.	Section H – Polynomials (14 Marks) Start a NEW page Find the quotient and remainder when $(2x^3 + 4x^2 - x + 5)$ is divided by $(x + 2)$	3
1.	Section H – Polynomials (14 Marks) Start a NEW page Find the quotient and remainder when $(2x^3 + 4x^2 - x + 5)$ is divided by $(x + 2)$ The polynomial $P(x) = 2x^3 + bx^2 - 8x + 5$ has a remainder of 2 when divided by $(x + 3)$,	3
1 . 2 . (i)	Section H – Polynomials (14 Marks) Start a NEW page Find the quotient and remainder when $(2x^3 + 4x^2 - x + 5)$ is divided by (x + 2) The polynomial $P(x) = 2x^3 + bx^2 - 8x + 5$ has a remainder of 2 when divided by $(x + 3)$, Evaluate b	3
1. (i) (ii)	Section H – Polynomials (14 Marks) Start a NEW page Find the quotient and remainder when $(2x^3 + 4x^2 - x + 5)$ is divided by (x + 2) The polynomial $P(x) = 2x^3 + bx^2 - 8x + 5$ has a remainder of 2 when divided by $(x + 3)$, Evaluate b Find the remainder when $P(x)$ is divided by $(x + 2)$.	3 1 1
1. 2. (i) (ii) 3.	Section H – Polynomials (14 Marks) Start a NEW page Find the quotient and remainder when $(2x^3 + 4x^2 - x + 5)$ is divided by (x + 2) The polynomial $P(x) = 2x^3 + bx^2 - 8x + 5$ has a remainder of 2 when divided by $(x + 3)$, Evaluate b Find the remainder when $P(x)$ is divided by $(x + 2)$. Fully factorise $x^3 - 3x^2 - 10x + 24$	3 1 1 3
1 . (i) (ii) 3 . 4 .	Section H – Polynomials (14 Marks) Start a NEW page Find the quotient and remainder when $(2x^3 + 4x^2 - x + 5)$ is divided by (x + 2) The polynomial $P(x) = 2x^3 + bx^2 - 8x + 5$ has a remainder of 2 when divided by $(x + 3)$, Evaluate b Find the remainder when $P(x)$ is divided by $(x + 2)$. Fully factorise $x^3 - 3x^2 - 10x + 24$	3 1 1 3
1. 2. (i) (ii) 3. 4. (i)	Section H – Polynomials (14 Marks) Start a NEW page Find the quotient and remainder when $(2x^3 + 4x^2 - x + 5)$ is divided by (x + 2) The polynomial $P(x) = 2x^3 + bx^2 - 8x + 5$ has a remainder of 2 when divided by $(x + 3)$, Evaluate b Find the remainder when $P(x)$ is divided by $(x + 2)$. Fully factorise $x^3 - 3x^2 - 10x + 24$ Sketch $P(x) = (x + 2)(x - 4)^2$	3 1 1 3 3

(iii) Hence or otherwise solve $(x + 2)(x - 4)^2 \ge 0$ 1

	Section C
1	$P\Delta = PB$
1.	$\sqrt{(x+2)^2 + (x+2)^2} = \sqrt{(x-2)^2 + (x-5)^2}$
	$\sqrt{(x+2)} + (y+3) = \sqrt{(x-2)} + (y-5)$
	$\chi + 4x + 4 + \chi + 6y + 9 = \chi - 4x + 4 + \chi - 10y + 25$ 8x + 16y - 16 = 0
	x + 2y - 2 = 0
	x · 2, 2 · 0
2.	
(i)	A = (-3, 0)
	B = (0, -2)
(ii)	C = (3, -4)
(:::)	
(111)	2x + 3y + 6 = 0
	3y = -2x - 6 $y = -\frac{2}{7}x - 2$
	$y = -\frac{3}{3}x - 2$
	$\therefore \qquad m_1 = -\frac{1}{3}$
	$\therefore \qquad m_2 = \frac{3}{2}$
	$y - y_1 = m(x - x_1)$
	$y + 4 = \frac{3}{2}(x - 3)$
	2y + 8 = 3x - 9
	3x - 2y - 17 = 0

	Section D
1.	13 12 1
(i)	$\frac{1}{52} \times \frac{1}{51} = \frac{1}{17}$
(ii)	$1 \times \frac{12}{51} = \frac{4}{17}$
(iii)	$\frac{1}{52} \times \frac{12}{51} + \frac{12}{52} \times \frac{1}{51} = \frac{2}{221}$
2	$1 - \left(\frac{5}{6}\right)^3 = \frac{91}{216}$
3.	
(i)	$15 \times 32.74 \times 12 \times 3 = \17679.60
(ii)	I = A - P
	= 17679.60 - 15000
	= 2679.60
	I = Prn
	$r = \frac{l}{Pn}$
	$=\frac{2679.60}{15000 \times 3}$
	= 0.0594666
	= 5.95%

	Section F
1.	
(i)	$x = \frac{360 - 128^{\circ}}{2}$ (angle sum of a revolution and angle at the
	cirumference half the angle at the centre)
	= 116°
(ii)	$x = 62^{\circ}$ (alternate segment theorem)
	$ ightarrow ABC = 90^{\circ}$ (angle in a semi circle)
	$\angle ACB = 180^{\circ} - 90^{\circ} - 62^{\circ}$ (angle sum of $\triangle ABC$)
	= 28°
	\therefore y = 28° (angles standing on the same arc)
()	
(111)	$x(x + 9) = 6^2$ (product of tangent and secant)
	$x^2 + 9x = 36$
	$x^2 + 9x - 36 = 0$
	(x+9)(x-3) = 0
	x = -9 or x = 3
	$\therefore \qquad x = 3 (as x > 0)$
2.	
(i)	$\angle BAP = \angle TPA$ (alternate angles, AB CT)
	= <i>x</i>
	$\angle POB = 2x$ (angle at the centre twice angle at the circumference)
(ii)	$\angle POB = \angle BAP$ (opposite angles of parallelogram are equal)
	= <i>x</i>
	$\angle POB + \angle PCB = 180^{\circ}$ (opposite angles of cyclic
	quadrilateral are supplentary)
	$x + 2x = 180^{\circ}$
	$3x = 180^{\circ}$
	$x = 60^{\circ}$

3. AB = CB (sides of square) (i) AP = BQ (given) $\therefore AB - AP = CB - BQ$ (1)BP = QC*.*. in $\Delta PBQ \& \Delta QCR$ BQ = CR (given) BP = QC (from (1)) $\angle PBQ = \angle QCR$ (vertices of a square are all equal) $\therefore \ \Delta PBQ \equiv \Delta QCR (SAS)$ let $\angle BPQ = x$ (ii) $\angle BQP = 180^{\circ} - 90^{\circ} - x$ (angle sum of right angled triangle) *.*. $= 90^{\circ} - x$ $\angle CQR = \angle BPQ$ (matching sides in congruent triangles) = *x* $\angle BQP + \angle PQR + \angle CQR = 180^{\circ}$ (angle sum of a straight line) $90^{\circ} - \chi + \angle PQR + \chi = 180^{\circ}$ $\angle PQR = 180^{\circ} - 90^{\circ}$ = 90° ∴ PQ ⊥ QR

	Section G
1.	
(i)	6
(ii)	$\frac{1}{2}$
(iii)	-2
2.	
(i)	9
(ii)	-3.2
(;;;)	11.9
2	4 ^X 100
5.	4 = 100
(i)	$\log(4^{-}) = \log(100)$
	$x \log(4) = \log(100)$
	$x = \frac{\log(100)}{\log(4)}$
	= 3.32(2 d n)
(ii)	$\log_a(4x) - \log_a(3) = \log_a(x + 4)$
	$\log_{a}\left(\frac{4x}{3}\right) = \log_{a}(x+4)$
	$\frac{4x}{x} = x + 4$
	3
	4x = 3x + 12
4.	x = 12 y
	2 - ((3,1))
	1-
	-1 -1 -1 -1 -1 -1 -1 -1
	2
	-3 +

	Section H
1.	$ \frac{2x^{2} + 0x - 1}{x + 2)2x^{3} + 4x^{2} - x + 5} = \frac{2x^{3} + 4x^{2} - x + 5}{2x^{3} + 4x^{2}} = \frac{0x^{2} - x}{0x^{2} - 0x} = \frac{0x^{2} - 0x}{-x - 2} = \frac{-x + 5}{-x - 2} = \frac{-x - 2}{-x - 2} = \frac{-x - 2}{-$
2.	
(i)	$2(-3)^{3} + b(-3)^{2} - 8(-3) + 5 = 2$ -54 + 9b + 24 + 5 = 2 9b = 27 b = 3
(ii)	$P(-2) = 2(-2)^{3} + 3(-2)^{2} - 8(-2) + 5$ = 17
3.	$x^{3} - 3x^{2} - 10x + 24 = (x+3)(x-2)(x-4)$
4. (i)	$\begin{array}{c} & & & y \\ & & & & \\ & & & \\ &$

