NORTH SYDNEY GIRLS HIGH SCHOOL

Year 10 Yearly Examination 2006 Mathematics

Name: \qquad
Teacher: \qquad
Time Allowed: $\quad 1$ _ hours + 5 minutes reading time

Instructions:

- Answer Part A, the multiple choice questions, on the answer sheet provided.
- Answer Part B on the paper provided.
- Start each part on a new page.
- Attempt every question.
- Show all necessary working.
- Marks may be deducted for incomplete or poorly arranged work.
- Write on one side of the page only.
- Do not use correcting tape or liquid paper.
- Diagrams are not drawn to scale.

At the end of the examination, staple this question paper to the front of your solutions and hand in one bundle.

Part A: 30 Marks			
A1 (9)	A2(17)	A3(2)	A4(2)
Question 1: 19 Marks			
Question 2: 12 Marks			
Question 3: 14 Marks			
Question 4: 12 Marks			
Question 5: 13 Marks			
Total: 100 Marks			

Part A

Answer all the questions on the answer sheet provided. All questions are 1 mark.

1. The number 0.03075 written correct to three significant figures.
A. 0.03
B. 0.031
C. 0.0307
D. 0.0308
2. $\frac{a}{4}+\frac{2 a}{3}=$
A. $\frac{3 a}{12}$
B. $\frac{3 a}{7}$
C. $\frac{11 a}{12}$
D. $\frac{2 a^{2}}{12}$
3. Evaluate $\frac{1}{2 \cdot 5^{2}-1 \cdot 3^{2}}$ correct to four decimal places.
A. 0.2193
B. 0.5917
C. 0.6944
D. 4.56
4. The exact value of $\sqrt{128}$ in simplest form is:
A. $8 \sqrt{2}$
B. $2 \sqrt{32}$
C. 11.313708
D. 64
5. $a \%$ of $\$ b$ is:
A. $\$ a b$
B. $\$ \frac{a+b}{100}$
C. $\$ 100 a b$
D. $\$ \frac{a b}{100}$
6. A car purchased for $\$ 18000$ depreciates at the rate of 24% per annum. How many years will it take for its value fall below $\$ 10000$?
A. 6
B. 5
C. 4
D. 3
7. In an election there were only two candidates. The winner won by 120 votes and received 60% of the votes cast. How many people voted?
A. 7200
B. 1200
C. 600
D. None of these
8. $(2+\sqrt{3})^{2}=$
A. $4+3$
B. $5+2 \sqrt{3}$
C. $7+2 \sqrt{3}$
D. $7+4 \sqrt{3}$
9. With a rational denominator $\frac{1}{3-\sqrt{7}}$ is:
A. $\frac{3-\sqrt{7}}{2}$
B. $\frac{3+\sqrt{7}}{2}$
C. $\frac{3+\sqrt{7}}{-4}$
D. $\frac{3+\sqrt{7}}{16}$
10. One of the factors of $6 x^{2}+x-15$ is:
A. $3 x+5$
B. $3 x-5$
C. $5-3 x$
D. $-3 x-5$
11. If $3 n^{2}=9$ then $n=$?
A. $-\sqrt{3}$
B. $\sqrt{3}$
C. $\pm \sqrt{3}$
D. ± 3
12. If $a={ }_{_} 1$ and $b=2$, then the value of $a^{b}-b^{a}$ is:
A. $\frac{1}{2}$
B. $1 \frac{1}{2}$
C. 3
D. $-1 \frac{1}{2}$
13. $3 a^{2}-(3 a)^{2}=$
A. 0
B. $-3 a^{2}$
C. $-6 a^{2}$
D. $12 a^{2}$
14. If $3 x^{2}-7 x-1=0$ then $x=$?
A. $\frac{-7 \pm \sqrt{37}}{6}$
B. $\frac{-7 \pm \sqrt{61}}{6}$
C. $\frac{7 \pm \sqrt{37}}{6}$
D. $\frac{7 \pm \sqrt{61}}{6}$
15. Which expression is equivalent to $\left(\frac{1}{x}\right)^{-\frac{1}{2}}$?
A. \sqrt{x}
B. $\frac{1}{\sqrt{x}}$
C. $-\sqrt{x}$
D. $-\frac{1}{\sqrt{x}}$
16. Which one of the following is not equal to $16 a^{6}$?
A. $\left(4 a^{3}\right)^{2}$
B. $48 a^{7} \div 3 a$
C. $8 a^{6}+8 a^{6}$
D. $2 a^{3} \times 8 a^{2}$
17. Change the subject of the formula $V=\frac{4}{3} \pi r^{3}$ to r.
A. $\sqrt[3]{\frac{4 V}{3 \pi}}$
B. $\sqrt[3]{\frac{3 V}{4 \pi}}$
C. $\sqrt[3]{\frac{3 \pi V}{4}}$
D. $\left(\frac{3 V}{4 \pi}\right)^{3}$
18. When $3 x-y=6$ and $3 y-x=6$ are solved simultaneously, $x=$?
A. 0
B. 1
C. 3
D. 6
19. The minimum value of $(x-3)^{2}+8$ is:
A. 8
B. 0
C. -3
D. 5
20. What is the equation of the following line?

A. $y=-2 x-1$
B. $y=-\frac{1}{2} x-1$
C. $y=-\frac{1}{2} x-2$
D. $y=-2 x-2$
21. In the diagram the length $P Q$ is:

A. $\sqrt{389} \mathrm{~cm}$
B. 18 cm
C. 21 cm
D. 25 cm
22. If $\sin x^{\circ}=\cos 29^{\circ}$ and $0<x<90$ the value of x is:
A. 29
B. 61
C. 0.8746
D. 0.4848
23. Which one of the lines, described by the equations below, cuts the graph of $y=x^{2}$ at two distinct points?
A. $x=0$
B. $y=7$
C. $x=_4$
D. $y=_4$
24. One side of a square, of length $x \mathrm{~cm}$, is lengthened by 4 cm and the adjacent side is decreased by 1 cm . The area of the resulting rectangle exceeds the area of the original square by $14 \mathrm{~cm}^{2}$. An algebraic expression which could be solved to find the length of the square?
A. $(x+4)(x-1)=14$
B. $x^{2}-(x+4)(x-1)=14$
C. $x^{2}+14=(x+4)(x-1)$
D. $(x+4)(x-1)=14-x^{2}$
25. Which one of the following sketches could represent the graph of the function

$$
y=x^{2}+x-6 ?
$$

A.

C.

B.

D.

26. The circle shown has equation:

A. $x^{2}+(y-5)^{2}=9$
B. $(x-5)^{2}+y^{2}=9$
C. $(x-5)^{2}+y^{2}=36$
D. $x^{2}+(y-5)^{2}=36$
27. In three of the following figures, the ratio of adjacent sides is always 1:1. In which of the following is this not true?
A. Parallelogra
B. Regular
C. Equilateral
D. Rhombus m
Pentagon
Triangle
28. The area of the triangle is given by the expression

A. $\frac{1}{2} \times 4 \times 7$
B. $\frac{1}{2} \times 7 \times 4 \times \sin 25^{\circ}$
C. $\frac{1}{2} \times 4 \times 9 \times \sin 25^{\circ}$
D. $\frac{1}{2} \times 7 \times 9 \times \sin 25^{\circ}$
29. The mean for the following set of scores is:

Score	Frequency
6	3
7	3
8	4
9	4
10	6

A. 9
B. 8
C. 8.35
D. 8.5
30. The median for the set of scores in question 29 is:
A. 8
B. 9
C. 8.5
D. 10

Part B - Answer these questions on the paper provided Question 1 [19 Marks]

a) Find an expression for $3 y^{2}+5 y$ if $y=a t^{2}$. $\quad \mathbf{1}$
b) Factorise fully $x^{4}-16$.
c) Change the subject of the formula $x=\frac{\sqrt{a+2}}{3}$ to a.
d) By using a suitable substitution, solve $3^{2 x}+2\left(3^{x}\right)-15=0$. 3
e) Given that $x=\sqrt{2}-1$ express $x-\frac{1}{x}$ as a surd with a rational denominator.
f) Sketch the curve $y=x^{3}+2$
g) For the curves $y=2 x$ and $y=x^{2}-2 x$
i) Sketch both graphs on the same axes showing the important features
ii) Hence, or otherwise, find the coordinates of the point(s) of intersection between the curve and the line.

Question 2 [12 Marks] Start a new page

a) This box and whisker plot summarises the results of a class test out of 25 .

i) What is the median score on the test? $\quad \mathbf{2}$
ii) What is the lower quartile? $\quad \mathbf{1}$
iii) What is the interquartile range? $\quad \mathbf{2}$
iv) What percentage of students scored more than 18 ? $\quad \mathbf{1}$
b) For a class of 20 students, two tests were given. In the Latin test, the mean was 69.5% and the standard deviation was $14 \cdot 2$. In the French test, the percentage marks were:
$59, \quad 75, \quad 61, \quad 52, \quad 60, \quad 51, \quad 71, \quad 66, \quad 68, \quad 72$,
$53, \quad 39, \quad 59, \quad 45, \quad 61, \quad 79, \quad 63, \quad 48, \quad 59, \quad 46$
i) Calculate, for French, the mean and standard deviation correct to one decimal place.
ii) In Latin, a student's result lies within one standard deviation from the mean. Between which two scores could the result lie?
iii) Which is the better score, a score of 70 in French or a score of 80 in Latin? Justify your answer.
a) The diagram shows that the bearing of a lighthouse L from a ship $S, 20 \mathrm{~km}$ away, is 040°. The ship travels east at a speed of $24 \mathrm{~km} / \mathrm{h}$ for 45 minutes to the point T.
i) Show that $S T=18 \mathrm{~km}$

1
ii) Find the distance of L from T

b) In the following diagram, find $\angle B C A$.

c) Draw a suitable graph or diagram to explain why $\cos x+2=0$ has no solutions.
d)

i) Use the two right-angled triangles to write down two different equations involving x and y. [Write your final expressions with y as the subject].
ii) By solving the equations simultaneously, show that

$$
x=\frac{7}{\tan 60^{\circ}-\tan 30^{\circ}}
$$

iii) Hence find the exact value of x.
a) The volumes of two similar square pyramids are $640 \mathrm{~cm}^{3}$ and $80 \mathrm{~cm}^{3}$. Find the ratio of the surface area of the larger pyramid to that of the smaller pyramid.
b) In the diagram shown, $\angle A D E=\angle A C B$.
i) Prove $\triangle A B C||\mid \triangle A E D \quad 3$
ii) Hence, find x, with reasons.

c) A closed cylinder with radius r and height h will hold a volume of $250 \pi \mathrm{~cm}^{3 .}$

Show that the surface area is given by the equation $S=2 \pi r^{2}+\frac{500 \pi}{r}$

Question 5 [13 Marks] Start a new page

a) For the circle with equation $x^{2}+y^{2}+6 x-8 y=0$
i) Find the centre of the circle.
ii) Show that the origin is on the circle.
iii) If the origin is one end of a diameter of the circle, find the coordinates of the other end point.
b) A home guttering company makes metal gutters from material which is 36 cm wide. The gutter is open at the top and it has a rectangular cross section.

y
i) Show that $y=36-2 x$
ii) Show that the area $A \mathrm{~cm}^{2}$, of the rectangular cross section is given by $A=36 x-2 x^{2}$
iii) Find the value of x for which A is a maximum value, state why this is a maximum value.
iv) Find the maximum area.
c) If $y=\sqrt{\frac{x}{1-x}}+\sqrt{\frac{1-x}{x}}$ then find the simplest expression for y^{2}.

Year 10 Yearly Examination 2006.
Solutions:
Part B.

a) 1) median $=20$
ii, lower quartile $=18$
iii) inter quartile range $=3$
iv) 75%
i) mean $(\bar{x})=59.4$.
standerd deviation $(6)=10.4$
ii) highest soore $=69.5+14.2$
owest $=83.7$
lowest slore $=69.5-14.2$

$$
=55.3
$$

sore lies betwean 55.3 and 83.7
ii) A score of 70 in French
is more then 1 standard
deviation aboo the mean
(1.02 to $2 d p$). A score of
80 in Latin is. less than
one standerd deviations arove
The meas $(0.74$ to $2 d p)$. Franch is seore of 70 in Franch is better as it was achieved by fewer people.

$$
\angle B C A=61^{\circ} 28^{\prime} \text { or } 1188^{\circ} 32^{\prime}
$$

(to the mearest minute).

$$
\text { test: } 118^{\circ} 32^{\prime}+47^{\circ}=165^{\circ} 32^{\prime}
$$

$$
<180^{\circ}
$$

$$
\therefore \text { botn solutions are possible. }
$$

$$
\begin{aligned}
& \text { a)i) } 5=\frac{D}{T} \\
& Z_{4}=\frac{5 T}{0.75} \\
& \therefore S T=18 \\
& \text { ii) } \angle L S T=50^{\circ} \\
& L T^{2}=20^{2}+18^{2}-2(20)(18) \cos 500 \\
& =261.19 \quad(20)(18) \cos 500^{\circ} \\
& L T=16.16 \text {. } \\
& \text { LT is } 16 \mathrm{~km} \text { to the nearast } \mathrm{km} \\
& \text { b) } \frac{\sin \angle B C A}{5.73}=\frac{\sin 477^{\circ}}{4.77} \\
& \sin \angle B C A=\frac{5.73 \sin 47^{\circ}}{4.77}
\end{aligned}
$$

$$
\begin{aligned}
& \text { ii) As the coefficient of } x^{2} \\
& \text { is regative, a raximum } \\
& \text { value will occus at the } \\
& \text { vertex. } \\
& \text { Axis of symmatry oceurs if } \\
& x=\frac{36}{4} \\
& x=9 \\
& \text { maximum occurs wizen } \\
& x=a \text {. } \\
& \text { v) If } x=a \text {. } \\
& A=36(9)-2(9)= \\
& =162 \\
& \text { - maximum area is } 162 \mathrm{~cm}^{2} \\
& y=\sqrt{\frac{x}{1-x}}+\sqrt{\frac{1-x}{x}} \\
& \begin{aligned}
y^{2} & =\frac{x}{1-x}+\frac{1-x}{x}+2 \sqrt{\frac{(x)(1-x)}{(1-x)(x)}} \\
& =x^{2}+(1-x)^{2}+2 x(1-x)
\end{aligned} \\
& =\frac{x^{2}+(1-x)^{2}+2 x(1-x)}{x(1-x)} \\
& =\frac{x^{2}+1+x^{2}-2 x+2 x-2 x^{2}}{x-x^{2}} \\
& =\frac{1}{x-x^{2}}
\end{aligned}
$$

Name: SoLUTIONS
Teacher: \square Class: \qquad

Part A: Multiple choice answer sheet. Completely colour the circle representing your answer. Completely colo
Use pencil only.
(A)

1. (A) (B) (C)
2. (A) (B) (D)
(D)
3. (B) (C) (D)
4. (B) ©
5. (A) (B) (C)
6. (A) (B) (C)
7. (A) (B)
8. (A) (B) (C)
9. (A) © (D)
(A_{2}) $\begin{aligned} & \text { 10. (B) (C) (D) } \\ & 11 .\end{aligned}$
10. (B) (C) (D)
11. (A) (B) (D)
12. (A) (B) (C)
13. (B) (C) (D)
14. (A) (B) (C)
15. (A) (C) (D)
16. (A) (B) (D)
17. (B) (C) (D)
18. (A) (C)
19. (A) (B) (D)
20. (A) (C) (D)
21. (A) (C) (D)
22. (A) (B)
23. (A) (B) (C)
(A3) $\begin{aligned} & \text { 26. (A) (B) (D) } \\ & 27 . \text { (B) } \\ & 27\end{aligned}$
(A4) 29. (A) (B) (B) ©
24. (A) (B) (D)
