NORTH SYDNEY GIRLS HIGH SCHOOL

2009 Year 10 Yearly Examination Mathematics

Name: \qquad Class: \qquad
Teacher: \qquad
Time Allowed: $\quad 2$ hours +5 minutes reading time

Directions to Candidates:

- Approved calculators may be used
- Answer Part A, the multiple choice questions, on the answer sheet provided.
- Answer Part B in the spaces provided
- For Part C, each question is to be started on a new page.
- Attempt every question.
- Show all necessary working. Do not use correction tape or fluid.
- Marks may be deducted for incomplete or poorly arranged work.

At the end of the examination, staple this question paper to the front of your solutions and submit one bundle.

	A	M	D	G	WM	Total
Part A						20
Part B						113
Part C Qu1	17	16				113
Part C Qu2	16		17			113
$\begin{gathered} \hline \text { Part C } \\ \text { Qu3 } \end{gathered}$	113					113
$\begin{gathered} \text { Part C } \\ \text { Qu4 } \\ \hline \end{gathered}$			16	19		115
$\begin{gathered} \hline \text { Part C } \\ \text { Qu5 } \\ \hline \end{gathered}$					113	113
TOTAL	126	16	/13	19	113	100

Part A: Multiple Choice (1 mark each)

Answer on the sheet provided by completely colouring the circle representing your answer. Use pencil only.

1. Which of the following is greatest in value:
(A) 3^{-1}
(B) $\sqrt{0 \cdot 1}$
(C) 33%
(D) 3.1×10^{-1}
2. If $2 x+7$ is the largest of three consecutive numbers, the smallest is:
(A) $2 x+4$
(B) $2 x+5$
(C) $2 x+1$
(D) $2 x$
3. $-\left(2 b^{2}\right)^{4}=$
(A) $16 b^{8}$
(B) $\quad-8 b^{6}$
(C) $8 b^{8}$
(D) $\quad-16 b^{8}$
4. The surface area of a rectangular prism 12 cm by 10 cm by 8 cm is
(A) $960 \mathrm{~cm}^{2}$
(B) $200 \mathrm{~cm}^{2}$
(C) $592 \mathrm{~cm}^{2}$
(D) $296 \mathrm{~cm}^{2}$
5. The expression $\frac{m}{c}+\frac{r}{c}$ is equivalent to:
(A) $m+r$
(B) $\frac{m+r}{2 c}$
(C) $\frac{m c+r c}{c}$
(D) $\frac{m+r}{c}$
6. If $x+1$ is an even number then:
(A) $x+2$ is even
(B) $\quad x$ is even
(C) $\frac{x+1}{2}$ is an integer
(D) $x+2$ is a multiple of 3
7. If 1 kilometre is approximately $\frac{5}{8}$ mile, what fraction of a kilometre is half a mile?
(A) $\frac{4}{5}$
(B) $\frac{5}{16}$
(C) $\frac{1}{4}$
(D) $1 \frac{1}{4}$
8. Which of the following is not linear?
(A) $y=3$
(B) $y=\frac{1}{x}+2$
(C) $x+2 y-3=0$
(D) $y=\frac{x}{2}+5$
9. Neema's coin collection appreciates at $3 \frac{1}{4} \%$ per year. If it is worth $\$ 3600$ now, what will it be worth in 2 years time?
(A) $\$ 3369 \cdot 80$
(B) $\$ 3624$
(C) $\$ 3837.80$
(D) $\$ 23400$
10. The equation of the line illustrated is:

(A) $y=-2 x$
(B) $y=4 x-2$
(C) $y=4-2 x$
(D) $y=2 x+4$
11. Which line is parallel to $y=2 x-3$?
(A) $4 x-2 y+5=0$
(B) $y=x-3$
(C) $y+2 x-3=0$
(D) $y=\frac{1}{2} x-3$
12. Which of the following equations has the solutions 4 and -3 ?
(A) $x^{2}+x-12=0$
(B) $x^{2}-7 x-12=0$
(C) $x^{2}-x-12=0$
(D) $x^{2}+7 x-12=0$
13. Consider this solution of the equation $2 g^{2}+8 g+1=0$. In which line does the first error occur?

$$
\begin{align*}
& g=-8 \pm \frac{\sqrt{8^{2}-4 \times 2 \times 1}}{2 \times 2} \\
& g=-8 \pm \frac{\sqrt{56}}{4} \\
& g=-8 \pm \frac{4 \sqrt{14}}{4} \\
& g=-8 \pm \sqrt{14}
\end{align*}
$$

(A) Line 1
(B) Line 2
(C) Line 3
(D) Line 4
14.

The diagram shows the graph of the function $y=(x-1)^{2}+d$. If d is an integer, then d is equal to:
(A) -2
(B) -1
(C) 2
(D) 1
15. Two dice are rolled and the sum of the uppermost faces is calculated. What is the probability of obtaining a total of 2 or 3 is:
(A) $\frac{1}{12}$
(B) $\frac{1}{18}$
(C) $\frac{1}{6}$
(D) $\frac{1}{3}$
16.

Age	Frequency
14	5
15	4
16	1
17	6
18	4

The data in the table shows the ages of players in a cricket squad. If a new player aged 16 years joins the team, which of the following will change?
(A) range
(B) median
(C) mean
(D) mode
17.

The area of $\triangle P Q R$ in square centimetres is closest to:
(A) 59
(B) 29
(C) 27
(D) 13
18. A car's fuel economy is stated as $13.5 \mathrm{~L} / 100 \mathrm{~km}$. If petrol costs $115.9 \mathrm{c} / \mathrm{L}$, the fuel cost for a journey of 86 km is:
(A) $\$ 7.38$
(B) $\$ 7.67$
(C) $\$ 13.46$
(D) $\$ 18 \cdot 19$
19. $\quad 0.00038$ in standard notation is:
(A) 3.8×10^{-5}
(B) 38×10^{-5}
(C) 3.8×10^{-4}
(D) 3.8×10^{4}
20.

The value of θ is:
(A) 33°
(B) 65°
(C) 83°
(D) 115°

End of Part A

Part B: Write the answer only in the space provided. (1 mark each)

Part C:

Use the examination pad provided.
Start each question on a new page.
Show all working.
Question 1: (13 marks)
(a) Using $u=\sqrt{x}-1$, solve

$$
(\sqrt{x}-1)^{2}-8(\sqrt{x}-1)+12=0
$$

(b) (i) If k is a positive integer, write down an expression in terms of k which will always generate odd numbers.
(ii) Hence show that $n^{2}-1$ is a multiple of 8 for all odd values numbers n.
(c) Find the value of θ correct to the nearest minute.

(d) Sandra delivers mail to remote communities. She flies due east for 15 km and then turns on a bearing of 312° and flies a further 28 km . She then flies directly back to the starting point of the trip.
(i) Draw a diagram illustrating the trip.
(ii) What was the distance Sandra flew on the final leg of the journey?

Give your answer correct to 2 significant figures.
(a) Draw a neat sketch of the following, showing the main features.

Include any intercepts and asymptotes.

$$
\begin{equation*}
y=3+\frac{2}{x+1} \tag{3}
\end{equation*}
$$

(b) On the diagram below the graphs of $y=2 x^{2}-4 x-3$ and $y=1-2 x$ are drawn.

Their points of intersection are labelled A and B.
Solve a pair of simultaneous equations to find the coordinates of A and B.

(c) A child has pulled off the labels from 6 cans on a pantry shelf.

Mum knew there were 2 cans of corn, 1 can of beans and 3 cans of soup.
She now takes 2 cans from the shelf and opens them.
(i) Draw a diagram for the two can selection sequence. Label each branch of the diagram with the appropriate probability.
(ii) What is the probability that Mum selects:
$(\alpha) \quad$ a can of soup and a can of corn?
(β) exactly one can of soup?
(d) The graph shows the frequency curves for two sets of test results, A and B.

Write a statement comparing the means and standard deviations of both sets of results.

(a) Consider the formula $\frac{n+t}{3}=\frac{n-x}{y}$.
(i) Make n the subject of the formula.
(ii) State any restrictions which may apply to the variables.
(b) The diagram above illustrates the points $A(-6,0)$ and $B(2,4)$.

The line $B C$ is perpendicular to the line $A B$ and the point C lies on the x-axis.

(i) Find the gradient of $A B$. 1
(ii) Write down the gradient of $B C$.
(iii) Show that the equation of $B C$ is $2 x+y-8=0$.
(iv) Find the coordinates of C.
(v) Find the area of triangle $A B C$.
(vi) Find the equation of the circle with diameter $A C$.
(a) In a trial, 200 patients chosen at random, were given a blood test for liver disease. Some were suffering from the disease and some were not. The results of the test are shown in the two-way table below. A positive test result indicates that a person has liver disease even if they do not.

	Test Results		
	Accurate	Not Accurate	Total
Patients with the disease	13	3	16
Patients without the disease	144	40 (A)	184
Total	157	43	200

(i) Explain the meaning of the value labelled \mathbf{A}.
(ii) What percentage of test results are accurate?
(iii) How many patients had a negative test result?
(iv) What is the probability that a patient with a positive test result, selected at random, actually has liver disease?
(b) The following statistics were obtained from Year 10 Science and English tests.

Subject	Mean	Standard deviation
English	60	6
Science	70	8

What mark in Science would be equivalent to a mark of 72 in English?
(c) In the diagram $\angle P Q R=\angle P S Q, P Q=10$ units, $R S=15$ units and $P S=x$ units.
(i) Copy the diagram onto your examination pad.
(ii) Prove that $\triangle P Q R$ is similar to $\triangle P S Q$.
(iii) Explain why $\frac{x+15}{10}=\frac{10}{x}$.

(iv) Hence find the value of x.
(v) If the area of $\triangle P S Q$ is k square units, find the

3 area of $\triangle R S Q$ in terms of k.
(a) (i) Simplify $\frac{1}{n}-\frac{1}{n+1}$.
(ii) Hence, using the above result, evaluate the following sum

2

$$
\frac{1}{1 \times 2}+\frac{1}{2 \times 3}+\frac{1}{3 \times 4}+\ldots+\frac{1}{100 \times 101}
$$

(b) Evelyn has been investing her money for 5 years. Initially her investment was earning interest at 9% per annum compounded monthly. From the start of the global financial crisis 18 months ago, her investment began to lose value at 15% per annum each month.
(i) If Evelyn initially invested $\$ P$, what was the value of her portfolio immediately before the global financial crisis? Give your answer in unsimplified form in terms of P.
(ii) Evelyn's investment portfolio is now worth $\$ 10000$. What was the amount of her original investment?
(c) The figure shows the net of a pyramid with a rectangular base.
In this figure, $P X Z Y R$ is a straight line, $P X=15 \mathrm{~cm}, R Y=20 \mathrm{~cm}, A B=25 \mathrm{~cm}$ and $B C=10 \mathrm{~cm}$. Further, $A P=P D$ and $B R=R C$.

When the net is folded, points P, Q, R and S all meet at T, which lies vertically above the point Z in the horizontal base, as shown below.

(i) Show that $\triangle T X Y$ is right-angled.
(ii) By considering the value of $\sin \angle T X Y$ or otherwise, show that T is 12 cm above the base.
(iii) Find the volume of the pyramid.

1
(iv) Find the angle that the face $D C T$ makes with the base.

End of Paper

\qquad

Part A: Multiple choice answer sheet.

Completely colour the circle representing your answer. Use pencil only.

1. (A) (B) (C) (D)
2. (A) (B) (C) (D)
3. (A) (B) (C) (D)
4. (A) (B) (C) (D)
5. (A) (B) (C) (D)
6. (A) (B) (C) (D)
7. (A) (B) (C) (D)
8. (A) (B) (C) (D)
9. (A) (B) (C) (D)
10. (A) (B) (C) (D)
11. (A) (B) (C) (D)
12. (A) (B) (C) (D)
13. (A) (B) (C) (D)
14. (A) (B) (C) (D)
15. (A) (B) (C) (D)
16. (A) (B) (C) (D)
17. (A) (B) (C) (D)
18. (A) (B) (C) (D)

10 (A) (B) (C) (D)
20. (A) (B) (C) (D)

2009 Year 10 Yearly Examination Mathematics

Name: \qquad Solutions

Part A:

1. (A) (B) C (D)
2. (A) (B) (C) (D)
3. (A) (B) (C) (D)
4. (A) (B) (D)
5. (A) (B) C) D
6. (A) (B) C (D)
7. (A) (B) (D)
8. (A) B (C) (D)
9. (A) (B) C (D)

10 (A) (B) (C) (D)
11. (A) (B) (D)
12. (A) (B) (C)
13. (A) (B) (C) (D)
14. (A) (B) (C)
15. (A) (B) (C) (D)
16. (A) (B) (C) (D)
17. (A) (B) (C)
18. (A) (B) (C)
19. (A) (B) (C) (D)
20. (A) (B) (C)

Part B: Write the answer only in the space provided. (1 mark each)

(a)	Write in expanded form: $(5 a+3)^{2}$	$25 a^{2}+30 a+9$
(b)	Solve $(x-2)(2 x+5)=0$	$x=2,-2 \cdot 5$
(c)	Factorise: (i) $25 x^{2}-9$	$(5 x-3)(5 x+3)$
	(ii) $2 x^{2}+7 x-15$	$(2 x-3)(x+5)$
(d)	Simplify $\sqrt{12}+\sqrt{27}$	$5 \sqrt{3}$
(e)	Write $\frac{2}{\sqrt{3}}$ with a rational denominator	$\frac{2 \sqrt{3}}{3}$
(f)	Shade the region for which $y \geq 2 x+3$.	
	Write down in factored form, an equation which can be represented by this graph.	$y=(x+1)(x-2)^{2}$
(h)	Find the volume of this hemisphere, leaving your answer in terms of π.	$18 \pi \mathrm{~cm}^{3}$
(i)	The probability of getting the measles as a teenager is 0.018 . How many of 700000 teenagers will not be expected to contract measles?	687400
(j)	At a " 25% off" sale, goods were sold for $\$ 36$. What was the price of the goods before the sale?	\$48
(k)	The graph of $y=x^{3}$ is illustrated. On the same axes, draw the graph of $y=(x+2)^{3}$.	
(1)	Solve the equation $3^{2-x}=9^{x}$.	$x=\frac{2}{3}$

Part C:

Question 1:
(a) $\quad(\sqrt{x}-1)^{2}-8(\sqrt{x}-1)+12=0 \quad$ using $u=\sqrt{x}-1$

$$
\begin{aligned}
u^{2}-8 u+12 & =0 \\
(u-2)(u-6) & =0 \\
u & =2,6
\end{aligned}
$$

$\therefore \sqrt{x}-1=2 \quad$ or $\quad \sqrt{x}-1=6$

$$
\sqrt{x}=3 \quad \sqrt{x}=7
$$

$\therefore \quad x=9$ or 49
(b) (i) $\quad n=2 k+1 \quad$ or $\quad n=2 k-1$
(ii) $\quad n^{2}-1=(2 k+1)^{2}-1 \quad$ if n is odd

$$
\begin{aligned}
& =4 k^{2}+4 k+1-1 \\
& =4 k^{2}+4 k \\
& =4 k(k+1)
\end{aligned}
$$

Now either k or $k+1$ will be even
\therefore let $k(k+1)=2 m$ for some integer m
$\therefore n^{2}-1=4 k(k+1)$
$=4(2 m)$
$=8 \mathrm{~m}$
Which is a multiple of 8 .
(c) $\frac{\sin \theta}{17}=\frac{\sin 40^{\circ}}{13} \quad$ by the sin rule

$$
\begin{aligned}
\sin \theta & =\frac{17 \sin 40^{\circ}}{13} \\
& =0 \cdot 8405 \ldots \\
\theta & =57 \cdot 200 \ldots{ }^{\circ} \text { or } 122 \cdot 7998 \ldots{ }^{\circ} \\
& =57^{\circ} 122^{\prime} \text { or } 122^{\circ} 48^{\prime} \quad \text { to the nearest minute }
\end{aligned}
$$

(d) (i)

(ii) $\angle A B C=312^{\circ}-270^{\circ}=42^{\circ}$ $A C^{2}=15^{2}+28^{2}-2 \times 15 \times 28 \times \cos 42^{\circ}$ $=384.758 \ldots$
$A C=\sqrt{384 \cdot 758 \ldots}$

$$
=19 \cdot 615 \ldots
$$

\therefore she flew 20 km (to 2 sig fig)

Question 2:

(a)

$$
y=3+\frac{2}{x+1}
$$

(b)

$$
\begin{align*}
& y=2 x^{2}-4 x-3 \tag{1}\\
& y=1-2 x \\
& \text { Sub (1) into (2): } 2 x^{2}-4 x-3=1-2 x \\
& 2 x^{2}-2 x-4=0 \\
& x^{2}-x-2=0 \\
& (x-2)(x+1)=0 \\
& x=2,-1
\end{align*}
$$

Sub into (2): $\quad x=2: \quad y=1-2(2)=-3$
$x=-1: y=1-2(-1)=3$
$\therefore A=(-1,3) \quad$ and $\quad B=(2,-3)$
(c) (i)

(ii)

$$
\begin{array}{rlrl}
(\alpha) \quad P(C S) & =\frac{2}{6} \times \frac{3}{5}+\frac{3}{6} \times \frac{2}{5} & (\beta) \quad & P(\text { exactly } 1 S) \\
& =\frac{2}{5} & & =\frac{2}{6} \times \frac{3}{5}+\frac{1}{6} \times \frac{3}{5}+\frac{3}{6} \times \frac{2}{5}+\frac{3}{6} \times \frac{1}{5} \\
& =\frac{3}{5}
\end{array}
$$

(d) $\quad A$ has a lower mean than B and B has a greater standard deviation than A.

Question 3:

(a) (i) $\quad \frac{n+t}{3}=\frac{n-x}{y}$

$$
\begin{aligned}
y(n+t) & =3(n-x) \\
y n+y t & =3 n-3 x \\
y n-3 n & =-3 x-y t \\
n(y-3) & =-3 x-y t \\
n & =\frac{-3 x-y t}{y-3} \\
n & =\frac{3 x+y t}{3-y}
\end{aligned}
$$

(ii) $\quad y \neq 0 ; y \neq 3$
(b) (i) $\quad m_{A B}=\frac{4-0}{2-(-6)}$

$$
=\frac{1}{2}
$$

(ii) $m_{B C}=-2$
(iii) $y-4=-2(x-2)$

$$
y=-2 x+8
$$

$$
\therefore 2 x+y-8=0
$$

(iv) At $C, y=0: 2 x-8=0$

$$
x=4
$$

$\therefore C=(4,0)$
(v) $\quad A C=10$ and is the base; B is 4 above the x-axis

$$
\begin{aligned}
A & =\frac{1}{2}(10)(4) \\
& =20
\end{aligned}
$$

\therefore Area $\triangle A B C$ is 20 unit 2
(vi) $\quad A C=10 \therefore r=5$
$M_{A C}=(-1,0)$
\therefore equation of the circle is $(x+1)^{2}+y^{2}=25$
(a) (i) \mathbf{A} is the number of patients for whom the test indicated that they had liver disease when they really did not.
(ii) $\quad \%$ accurate $=\frac{157}{200} \times 100 \%$

$$
=78.5 \%
$$

(iii) Patients with a negative test result $=3+144=147$
(iv) Patients with a positive test result $=13+40=53$
$P($ positive test result with the disease $)=\frac{13}{53}$
(b) In English, $72=60+2 \times 6$

That is, the English mark is 2 standard deviations above the mean
\therefore The equivalent mark in Science is $70+2 \times 8=86$
(c) (i)
(ii) In $\triangle P Q R$ and $\triangle P S Q$

1. $\angle P Q R=\angle P S Q$ (given)
2. $\angle P$ is common
$\therefore \triangle P Q R||\mid \triangle P S Q \quad$ (equiangular)

(iii) $\frac{P Q}{P S}=\frac{Q R}{S Q}=\frac{P R}{P Q} \quad$ (corresponding sides of similar triangles)
$\therefore \frac{10}{x}=\frac{x+15}{10}$
i.e. $\frac{x+15}{10}=\frac{10}{x}$ as required
(iv) $100=x^{2}+15 x$
$x^{2}+15 x-100=0$
$(x+20)(x-5)=0$
$x=-20$ or 5
But $x>0 \therefore x=5$
(v) Area of $\triangle P S Q=k$ square units

Ratio of sides of $\triangle P Q R$: sides of $\triangle P S Q=10: 5$

$$
=2: 1
$$

\therefore Ratio of area of $\triangle P Q R$: area of $\triangle P S Q=4: 1$
\therefore area of $\triangle P Q R=4 k$
By subtraction, area of $\triangle P S Q=3 k$ square units

Question 5:

(a)
(i) $\frac{1}{n}-\frac{1}{n+1}=\frac{n+1-n}{n(n+1)}$

$$
=\frac{1}{n(n+1)}
$$

(ii) $\frac{1}{1 \times 2}+\frac{1}{2 \times 3}+\frac{1}{3 \times 4}+\ldots+\frac{1}{100 \times 101}$
$=\left(\frac{1}{1}-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+\ldots+\left(\frac{1}{99}-\frac{1}{100}\right)+\left(\frac{1}{100}-\frac{1}{101}\right)$
$=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\ldots+\frac{1}{99}-\frac{1}{100}+\frac{1}{100}-\frac{1}{101}$
$=1-\frac{1}{101}$
$=\frac{100}{101}$
(b) (i) Months investing before the crisis $=60-18=42$
$9 \% \mathrm{pa}=0.75 \%$ per month
Value before crisis $=P(1+0.75 \%)^{42}$

$$
=P(1 \cdot 0075)^{42}
$$

(ii) $15 \% \mathrm{pa}=1.25 \%$ per month

Value after crisis $=P(1 \cdot 0075)^{42}(1-1 \cdot 25 \%)^{18}$

$$
\begin{aligned}
& \therefore P(1.0075)^{42}(0.9875)^{18}=10000 \\
& P=\frac{10000}{(1.0075)^{42}(0.9875)^{18}} \\
&=9163.045 \ldots
\end{aligned}
$$

Evelyn's original investment was approximately \$9 163.
(c) (i) $P X=15, X Y=A B=25, Y R=20$

$$
\begin{aligned}
15^{2}+20^{2} & =625 \\
& =25^{2}
\end{aligned}
$$

$\therefore \triangle T X Y$ is right-angled by the converse of Pythagoras theorem
(ii)

$\sin \angle T X Y=\frac{20}{25}=\frac{4}{5}$ in $\triangle X Y T$

In $\triangle X Z T: \sin \angle T X Z=\frac{T Z}{15}$

$$
\begin{aligned}
T Z & =15 \sin \angle T X Z \\
& =15 \times \frac{4}{5} \\
& =12
\end{aligned}
$$

$\therefore T$ is 12 cm above the base.
(iii) $\quad V=\frac{1}{3} A h$

$$
\begin{aligned}
V & =\frac{1}{3} \times 12 \times 10 \times 25 \\
& =1000
\end{aligned}
$$

\therefore the volume of the pyramid is $1000 \mathrm{~cm}^{3}$

(iv) The angle that the face $D C T$ makes with the base is $\angle T M Z$
$\triangle T M Z$ is right-angled at Z and $Z M=X D=5$ also $T Z=12$
$\therefore \tan \angle T M Z=\frac{12}{5}$
$\therefore \quad \angle T M Z=67^{\circ} 23^{\prime} \quad$ correct to the nearest minute

End of Solutions

