NORTH SYDNEY GIRLS HIGH SCHOOL

2009 Year 10 Yearly Examination

Mathematics

Name:_____

Class:

Teacher:_____

Time Allowed: 2 hours + 5 minutes reading time

Directions to Candidates:

- Approved calculators may be used
- Answer Part A, the multiple choice questions, on the answer sheet provided.
- Answer Part B in the spaces provided
- For Part C, *each* question is to be started on a *new page*.
- Attempt every question.
- Show all necessary working. Do not use correction tape or fluid.
- Marks may be deducted for incomplete or poorly arranged work.

At the end of the examination, staple this question paper to the front of your solutions and submit one bundle.

	Α	Μ	D	G	WM	Total
Part A						/20
Part B						/13
Part C						
Qu1	/7	/6				/13
Part C						
Qu2	/6		/7			/13
Part C						
Qu3	/13					/13
Part C						
Qu4			/6	/9		/15
Part C						
Qu5					/13	/13
TOTAL	/26	/6	/13	/9	/13	/100

Part A: Multiple Choice (1 mark each)

Answer on the sheet provided by completely colouring the circle representing your answer. Use pencil only.

- Which of the following is greatest in value: 1. 3^{-1} $\sqrt{0\cdot 1}$ (C) (D) 3.1×10^{-1} (A) **(B)** 33% 2. If 2x + 7 is the largest of three consecutive numbers, the smallest is: (A) 2x + 4(B) 2x + 5 (C) 2x + 1(D) 2x $-(2b^2)^4 =$ 3. (A) $16b^8$ (B) $-8b^6$ (C) $8b^8$ $-16b^{8}$ (D) The surface area of a rectangular prism 12 cm by 10 cm by 8 cm is 4. (B) 200 cm^2 960 cm^2 (C) 592 cm^2 (D) 296 cm^2 (A) The expression $\frac{m}{c} + \frac{r}{c}$ is equivalent to: 5. (A) m+r (B) $\frac{m+r}{2c}$ (C) $\frac{mc+rc}{c}$ (D) $\frac{m+r}{c}$ 6. If x + 1 is an even number then: (A) x+2 is even (B) x is even (C) $\frac{x+1}{2}$ is an integer (D) x + 2 is a multiple of 3 If 1 kilometre is approximately $\frac{5}{8}$ mile, what fraction of a kilometre is half a mile? 7. (A) $\frac{4}{5}$ (B) $\frac{5}{16}$ (C) $\frac{1}{4}$ (D) $1\frac{1}{4}$ 8. Which of the following is *not* linear?
 - (A) y = 3 (B) $y = \frac{1}{x} + 2$ (C) x + 2y 3 = 0 (D) $y = \frac{x}{2} + 5$

- 9. Neema's coin collection appreciates at $3\frac{1}{4}$ % per year. If it is worth \$3600 now, what will it be worth in 2 years time?
 - (A) \$3 369.80 (B) \$3 624 (C) \$3 837.80 (D) \$23 400
- 10. The equation of the line illustrated is:

- (A) y = -2x(B) y = 4x - 2(C) y = 4 - 2x(D) y = 2x + 4
- 11. Which line is parallel to y = 2x 3?

(A)	4x - 2y + 5 = 0	(B)	y = x - 3
(C)	y + 2x - 3 = 0	(D)	$y = \frac{1}{2}x - 3$

- 12. Which of the following equations has the solutions 4 and -3?
 - (A) $x^{2} + x 12 = 0$ (B) $x^{2} - 7x - 12 = 0$ (C) $x^{2} - x - 12 = 0$ (D) $x^{2} + 7x - 12 = 0$
- 13. Consider this solution of the equation $2g^2 + 8g + 1 = 0$. In which line does the first error occur?

$$g = -8 \pm \frac{\sqrt{8^2 - 4 \times 2 \times 1}}{2 \times 2} \qquad \dots \text{ Line 1}$$
$$g = -8 \pm \frac{\sqrt{56}}{4} \qquad \dots \text{ Line 2}$$
$$g = -8 \pm \frac{4\sqrt{14}}{4} \qquad \dots \text{ Line 3}$$
$$g = -8 \pm \sqrt{14} \qquad \dots \text{ Line 4}$$

	(A) I	Line 1	(B)	Line 2	(C)	Line 3	(D)	Line 4
--	-------	--------	-----	--------	-----	--------	-----	--------

15. Two dice are rolled and the sum of the uppermost faces is calculated. What is the probability of obtaining a total of 2 or 3 is:

(A)
$$\frac{1}{12}$$
 (B) $\frac{1}{18}$ (C) $\frac{1}{6}$ (D) $\frac{1}{3}$

16.

•	Г
Age	Frequency
14	5
15	4
16	1
17	6
18	4

The data in the table shows the ages of players in a cricket squad. If a new player aged 16 years joins the team, which of the following will change?

- (A) range
- (B) median
- (C) mean
- (D) mode

17.

The area of $\triangle PQR$ in square centimetres is closest to:

2	(A)	59
	(B)	29
	(C)	27
	(D)	13

18. A car's fuel economy is stated as 13.5 L/100 km. If petrol costs 115.9 c/L, the fuel cost for a journey of 86 km is:

(A) \$7.38 (B) \$7.67 (C) \$13.46 (D) \$18.19

19. 0.000 38 in standard notation is:

(A) $3 \cdot 8 \times 10^{-5}$ (B) 38×10^{-5} (C) $3 \cdot 8 \times 10^{-4}$ (D) $3 \cdot 8 \times 10^{4}$

End of Part A

Part B: Write the answer only in the space provided. (1 mark each)

(a)	Write in expanded form: $(5a + 3)^2$	
(b)	Solve $(x-2)(2x+5) = 0$	
(c)	Factorise: (i) $25x^2-9$	
	(ii) $2x^2 + 7x - 15$	
(d)	Simplify $\sqrt{12} + \sqrt{27}$	
(e)	Write $\frac{2}{\sqrt{3}}$ with a rational denominator	
(f)	Shade the region for which $y \ge 2x + 3$.	y
(g)	Write down in factored form, an equation which can be represented by this graph. y -1 2 x	
(h)	Find the volume of this hemisphere, leaving your answer in terms of π . 6 cm	
(i)	The probability of getting the measles as a teenager is 0.018 . How many of 700 000 teenagers will <i>not</i> be expected to contract measles?	
(j)	At a "25% off" sale, goods were sold for \$36. What was the price of the goods before the sale?	
(k)	The graph of $y = x^3$ is illustrated. On the same axes, draw the graph of $y = (x+2)^3$.	v O x
(1)	Solve the equation $3^{2-x} = 9^x$.	

End of Part B

<u>Part C:</u> Use the examination pad provided. Start each question on a new page. Show all working.

Question 1: (13 marks) (a) Using $u = \sqrt{x} - 1$, solve $(\sqrt{x} - 1)^2 - 8(\sqrt{x} - 1) + 12 = 0$ 3

(b) (i) If k is a positive integer, write down an expression in terms of k which will always generate odd numbers.
(ii) Hence show that n² -1 is a multiple of 8 for all odd values numbers n. 3

3

(c) Find the value of θ correct to the nearest minute.

(d) Sandra delivers mail to remote communities. She flies due east for 15 km and then turns on a bearing of 312° and flies a further 28 km. She then flies directly back to the starting point of the trip.

(i)	Draw a diagram illustrating the trip.	1
(ii)	What was the distance Sandra flew on the final leg of the journey? Give your answer correct to 2 significant figures.	2

NSGHS 2009 Year 10 Yearly Examination

Question 2: (13 marks) Start a new page

(a) Draw a neat sketch of the following, showing the main features. Include any intercepts and asymptotes.

$$y = 3 + \frac{2}{x+1}$$

On the diagram below the graphs of $y = 2x^2 - 4x - 3$ and y = 1 - 2x are drawn. 3 (b) Their points of intersection are labelled *A* and *B*.

Solve a pair of simultaneous equations to find the coordinates of *A* and *B*.

- (c) A child has pulled off the labels from 6 cans on a pantry shelf. Mum knew there were 2 cans of corn, 1 can of beans and 3 cans of soup. She now takes 2 cans from the shelf and opens them.
 - Draw a diagram for the two can selection sequence. Label each branch 1 (i) of the diagram with the appropriate probability.
 - (ii) What is the probability that Mum selects:
 - (α) a can of soup and a can of corn? 2
 - (β) exactly one can of soup? 2
- The graph shows the frequency curves for two sets of test results, A and B. (d) Write a statement comparing the means and standard deviations of both sets of results.

Question 3: (13 marks) Start a new page

(a) Consider the formula
$$\frac{n+t}{3} = \frac{n-x}{y}$$
.

- (i) Make *n* the subject of the formula.
- (ii) State any restrictions which may apply to the variables.
- (b) The diagram above illustrates the points A(-6,0) and B(2,4). The line *BC* is perpendicular to the line *AB* and the point *C* lies on the *x*-axis.

(i)	Find the gradient of <i>AB</i> .	1
(ii)	Write down the gradient of BC.	1
(iii)	Show that the equation of <i>BC</i> is $2x + y - 8 = 0$.	2
(iv)	Find the coordinates of <i>C</i> .	1
(v)	Find the area of triangle ABC.	2
(vi)	Find the equation of the circle with diameter AC.	2

Page 8

2

Question 4: (15 marks) Start a new page

(a) In a trial, 200 patients chosen at random, were given a blood test for liver disease. Some were suffering from the disease and some were not. The results of the test are shown in the two-way table below. A positive test result indicates that a person has liver disease even if they do not.

Test Results				
Accurate	Not Accurate	Total		
13	3	16		
144	40 (A)	184		
157	43	200		
	Accurate 13 144 157	Test Results Accurate Not Accurate 13 3 144 40 (A) 157 43		

- (i) Explain the meaning of the value labelled **A**.
 - (ii) What percentage of test results are accurate?
 - (iii) How many patients had a negative test result?
 - (iv) What is the probability that a patient with a positive test result, selected 1 at random, actually has liver disease?

(b) The following statistics were obtained from Year 10 Science and English tests.

Subject	Mean	Standard deviation
English	60	6
Science	70	8

What mark in Science would be equivalent to a mark of 72 in English?

- (c) In the diagram $\angle PQR = \angle PSQ$, PQ = 10 units, RS = 15 units and PS = x units.
 - (i) Copy the diagram onto your examination pad.
 - (ii) Prove that ΔPQR is similar to ΔPSQ .
 - (iii) Explain why $\frac{x+15}{10} = \frac{10}{x}$.
 - (iv) Hence find the value of x.
 - (v) If the area of ΔPSQ is k square units, find the area of ΔRSQ in terms of k.

1

1

1

Question 5: (13 marks) Start a new page

(a) (i) Simplify
$$\frac{1}{n} - \frac{1}{n+1}$$
. **1**

$$\frac{1}{1 \times 2} + \frac{1}{2 \times 3} + \frac{1}{3 \times 4} + \dots + \frac{1}{100 \times 101}$$

- (b) Evelyn has been investing her money for 5 years. Initially her investment was earning interest at 9% per annum compounded monthly. From the start of the global financial crisis 18 months ago, her investment began to lose value at 15% per annum each month.
 - (i) If Evelyn initially invested \$*P*, what was the value of her portfolio immediately before the global financial crisis? Give your answer in unsimplified form in terms of *P*.
 - (ii) Evelyn's investment portfolio is now worth \$10 000. What was the amount of her original investment?

(c) The figure shows the net of a pyramid with a rectangular base. In this figure, *PXZYR* is a straight line, PX = 15 cm, RY = 20 cm, AB = 25 cm and BC = 10 cm. Further, AP = PD and BR = RC.

When the net is folded, points P, Q, R and S all meet at T, which lies vertically above the point Z in the horizontal base, as shown below.

- (i) Show that ΔTXY is right-angled.
- (ii) By considering the value of $\sin \angle TXY$ or otherwise, show that *T* is 12 cm above the base.
- (iii) Find the volume of the pyramid.
- (iv) Find the angle that the face *DCT* makes with the base.

End of Paper

2

1

Part A: Multiple choice answer sheet.

Completely colour the circle representing your answer. Use pencil only.

1.	ABCD	11.	A B C D
2.	A B C D	12.	A B C D
3.	A B C D	13.	A B C D
4.	(A) (B) (C) (D)	14.	ABCD
5.	$(\underline{A} \oplus \underline{\mathbb{C}} \oplus \underline{\mathbb{D}})$	15.	ABCD
6.	A B C D	16.	ABCD
7.	(A) (B) (C) (D)	17.	ABCD
8.	A B C D	18.	ABCD
9.	A B C D	19.	ABCD
10	(A) (B) (C) (D)	20.	ABCD

2009 Year 10 Yearly Examination

Mathematics

Name: Solutions

Part A:

(a)	Write in expanded form: $(5a + 3)^2$	$25a^2 + 30a + 9$
(b)	Solve $(x-2)(2x+5) = 0$	$x = 2, -2 \cdot 5$
(c)	Factorise: (i) $25x^2-9$	(5x-3)(5x+3)
	(ii) $2x^2 + 7x - 15$	(2x-3)(x+5)
(d)	Simplify $\sqrt{12} + \sqrt{27}$	5\sqrt{3}
(e)	Write $\frac{2}{\sqrt{3}}$ with a rational denominator	$\frac{2\sqrt{3}}{3}$
(f)	Shade the region for which $y \ge 2x + 3$.	x
(g)	Write down in factored form, an equation which can be represented by this graph. y -1 2 x	$y = (x+1)(x-2)^2$
(h)	Find the volume of this hemisphere, \uparrow leaving your answer in terms of π . 6 cm	$18\pi \mathrm{cm}^3$
(i)	The probability of getting the measles as a teenager is 0.018 . How many of 700 000 teenagers will <i>not</i> be expected to contract measles?	687 400
(j)	At a "25% off" sale, goods were sold for \$36. What was the price of the goods before the sale?	\$48
(k)	The graph of $y = x^3$ is illustrated. On the same axes, draw the graph of $y = (x+2)^3$.	y -2 0 x
(1)	Solve the equation $3^{2-x} = 9^x$.	$x = \frac{2}{3}$

Part B: Write the answer only in the space provided. (1 mark each)

End of Part B

Part C:
Question 1:
(a)
$$(\sqrt{x}-1)^2 - 8(\sqrt{x}-1) + 12 = 0$$
 using $u = \sqrt{x} - 1$
 $u^2 - 8u + 12 = 0$
 $(u-2)(u-6) = 0$
 $u = 2, 6$
 $\therefore \sqrt{x} - 1 = 2$ or $\sqrt{x} - 1 = 6$
 $\sqrt{x} = 3$ $\sqrt{x} = 7$
 \therefore $x = 9$ or 49
(b) (i) $n = 2k + 1$ or $n = 2k - 1$
(ii) $n^2 - 1 = (2k + 1)^2 - 1$ if n is odd
 $= 4k^2 + 4k + 1 - 1$
 $= 4k^2 + 4k$
 $= 4k(k + 1)$
Now either k or $k + 1$ will be even
 \therefore let $k(k + 1) = 2m$ for some integer m
 $\therefore n^2 - 1 = 4k(k + 1)$
 $= 4(2m)$
 $= 8m$
Which is a multiple of 8.

(ii)
$$\angle ABC = 312^{\circ} - 270^{\circ} = 42^{\circ}$$

 $AC^{2} = 15^{2} + 28^{2} - 2 \times 15 \times 28 \times \cos 42^{\circ}$
 $= 384 \cdot 758...$
 $AC = \sqrt{384 \cdot 758...}$
 $= 19 \cdot 615...$
 \therefore she flew 20 km (to 2 sig fig)

Question 2:

(d) A has a lower mean than B and B has a greater standard deviation than A.

Question 3:

(a) (i)
$$\frac{n+t}{3} = \frac{n-x}{y}$$
$$y(n+t) = 3(n-x)$$
$$yn + yt = 3n - 3x$$
$$yn - 3n = -3x - yt$$
$$n(y-3) = -3x - yt$$
$$n = \frac{-3x - yt}{y - 3}$$
$$n = \frac{3x + yt}{3 - y}$$

(ii)
$$y \neq 0; y \neq 3$$

(b) (i)
$$m_{AB} = \frac{4-0}{2-(-6)}$$

 $= \frac{1}{2}$

(ii)
$$m_{BC} = -2$$

(iii)
$$y-4 = -2(x-2)$$

 $y = -2x+8$
 $\therefore 2x + y - 8 = 0$

(iv) At C,
$$y = 0$$
: $2x - 8 = 0$
 $x = 4$
 $\therefore C = (4, 0)$

(v)
$$AC = 10$$
 and is the base; *B* is 4 above the *x*-axis
 $A = \frac{1}{2}(10)(4)$
 $= 20$

$$\therefore$$
 Area $\triangle ABC$ is 20 unit²

(vi)
$$AC = 10 \therefore r = 5$$

 $M_{AC} = (-1, 0)$
 \therefore equation of the circle is $(x+1)^2 + y^2 = 25$

Question 4: (15 marks) Start a new page

Marks

(a) (i) **A** is the numb

A is the number of patients for whom the test indicated that they had liver disease when they really did not.

(ii) % accurate
$$=\frac{157}{200} \times 100\%$$

= 78.5%

- (iii) Patients with a negative test result = 3 + 144 = 147
- (iv) Patients with a positive test result = 13 + 40 = 53

 $P(\text{positive test result with the disease}) = \frac{13}{53}$

- (b) In English, 72 = 60 + 2 × 6 That is, the English mark is 2 standard deviations above the mean
 ∴ The equivalent mark in Science is 70 + 2 × 8 = 86
- (c) (i)
 - (ii) In ΔPQR and ΔPSQ 1. $\angle PQR = \angle PSQ$ (given) 2. $\angle P$ is common $\therefore \Delta PQR \parallel \Delta PSQ$ (equiangular)

(iii)
$$\frac{PQ}{PS} = \frac{QR}{SQ} = \frac{PR}{PQ}$$
 (corresponding sides of similar triangles)
 $\therefore \frac{10}{x} = \frac{x+15}{10}$
i.e. $\frac{x+15}{10} = \frac{10}{x}$ as required

(iv)
$$100 = x^{2} + 15x$$

 $x^{2} + 15x - 100 = 0$
 $(x + 20)(x - 5) = 0$
 $x = -20$ or 5
But $x > 0$ $\therefore x = 5$

(v) Area of $\Delta PSQ = k$ square units Ratio of sides of ΔPQR : sides of $\Delta PSQ = 10 : 5$ = 2 : 1 \therefore Ratio of area of ΔPQR : area of $\Delta PSQ = 4 : 1$ \therefore area of $\Delta PQR = 4k$ By subtraction, area of $\Delta PSQ = 3k$ square units

Question 5:

(a) (i)
$$\frac{1}{n} - \frac{1}{n+1} = \frac{n+1-n}{n(n+1)}$$

 $= \frac{1}{n(n+1)}$
(ii) $\frac{1}{1\times 2} + \frac{1}{2\times 3} + \frac{1}{3\times 4} + \dots + \frac{1}{100\times 101}$
 $= \left(\frac{1}{1} - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) + \dots + \left(\frac{1}{99} - \frac{1}{100}\right) + \left(\frac{1}{100} - \frac{1}{101}\right)$
 $= 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{1}{99} - \frac{1}{100} + \frac{1}{100} - \frac{1}{101}$
 $= 1 - \frac{1}{101}$
 $= \frac{100}{101}$

(b) (i) Months investing before the crisis = 60 - 18 = 429% pa = 0.75% per month Value before crisis = $P(1+0.75\%)^{42}$ = $P(1.0075)^{42}$

(ii) 15% pa = 1.25% per month
Value after crisis =
$$P(1.0075)^{42} (1-1.25\%)^{18}$$

 $\therefore P(1.0075)^{42} (0.9875)^{18} = 10000$
 $P = \frac{10000}{(1.0075)^{42} (0.9875)^{18}}$
= 9163.045...
Evelyn's original investment was approximately \$9 163.

(c)

(i)

PX = 15, XY = AB = 25, YR = 20 $15^{2} + 20^{2} = 625$ $= 25^{2}$

 $\therefore \Delta TXY$ is right-angled by the converse of Pythagoras theorem

In
$$\Delta XZT$$
: $\sin \angle TXZ = \frac{TZ}{15}$
 $TZ = 15 \sin \angle TXZ$
 $= 15 \times \frac{4}{5}$
 $= 12$
 \therefore T is 12 cm above the base.

(iii) $V = \frac{1}{3}Ah$ $V = \frac{1}{3} \times 12 \times 10 \times 25$ = 1000 ∴ the volume of the pyramid is 1000 cm³

- (iv) The angle that the face *DCT* makes with the base is $\angle TMZ$ ΔTMZ is right-angled at *Z* and ZM = XD = 5 also TZ = 12
 - $\therefore \tan \angle TMZ = \frac{12}{5}$ $\therefore \quad \angle TMZ = 67^{\circ}23' \qquad \text{correct to the nearest minute}$

End of Solutions