SYDNEY BOYS HIGH

SCHOOL

MOORE PARK, SURRY HILLS

2007

Year 10 Yearly Examination

Advanced Mathematics

Directions to Candidates:

- Answer all questions in the spaces provided in this question booklet.
- Full marks may not be awarded for careless or badly arranged work.
- Use black or blue pen for written answers, but pencil for diagrams or graphs.
- If additional working space is required, use the spare pages at the end of the booklet. Show clearly which question you are continuing.
- Board approved calculators may be used.

Time allowed: 2 hours.
Examiner: D.McQuillan

Name: \qquad

Your Mathematics Class (Tick the box)			
10 MaA	Mr Boros		
10 MaB	Ms Evans		
10 MaC	Ms Nesbitt		
10 MaD	Mr Kourtesis		
10 MaE	Mr Gainford		
10 MaF	Ms Ward		

Question One (20 marks)		Answer	Marks
A	Factorise $x^{2}+12 x+35$.		1
B	Find the value of a if $a \sqrt{7}=\sqrt{112}$.		1
C	If this spinner is spun, what is the probability that it will point to sector B.		1
D	Find the interest paid on a $\$ 30000$ loan with a flat rate of 9% p.a. for 10 months.		1
E	Solve $\frac{p}{3}-\frac{p}{5}=1$.		1
F	A conical cocktail glass in 8 cm across and 8 cm deep. How many millilitres will it hold? (Correct to nearest millilitre.)		1
G	Two squares have side lengths in a ratio of 5:7 what is the ratio of their areas?		1
H	Write $\left(\frac{2 a}{b^{3}}\right)^{-2}$ without parentheses or negative indices.		1
I	Solve $(x+4)(3 x-6)=0$		1
J	Find the volume of a cylinder with radius 5 cm and height 8 cm to the nearest cubic centimetre.		1

End of Question One

SYDNEY BOYS HIGH SCHOOL
 MOORE PARK, SURRY HILLS

2007
 Year 10 Yearly Examination

Advanced Mathematics

Directions to Candidates:

- Answer all questions in the spaces provided in this question booklet.
- Full marks may not be awarded for careless or badly arranged work.
- Use black or blue pen for written answers, but pencil for diagrams or graphs.
- If additional working space is required, use the spare pages at the end of the booklet. Show clearly which question you are continuing.
- Board approved calculators may be used.

Time allowed: 2 hours.

Examiner: D.McQuillan

Name: \qquad

Your Mathematics Class (Tick the box)			
10 MaA	Mr Boros		
10 MaB	Ms Evans		
10 MaC	Ms Nesbitt		
10 MaD	Mr Kourtesis		
10 MaE	Mr Gainford		
10 MaF	Ms Ward		

D	It is possible to precisely fit an octahedron inside a sphere such that the six vertices all touch the surface of the sphere. If an octahedron was precisely fitted within a sphere of radius 5 cm what would be the volume of the octahedron?		
E	Use the sine rule or otherwise, find the value of x correct to 2 decimal places. F		

G	Which of these graphs represents positively skewed data with deviation? (B) (C) (D)	smaller sta	1
H	Find the point of intersection of the two lines with the following equations. $\begin{aligned} & 4 x+3 y=6 \\ & 3 x+2 y=5 \end{aligned}$		2
I	At Eric's birth his parents decided to invest $\$ 3000$ that they would hold in trust until his $21^{\text {st }}$ birthday. They had a choice of investments; either 7\% p.a. compounded monthly or 7.5\% p.a. compounded yearly. Which is the best investment and by how much? (correct to the nearest cent)		2
J	Where does the parabola $y=x^{2}-9 x-22$ cross the x-axis?		2
K	A container on the road trailer carrying liquefied gas is in the shape of a cylinder 6 m long together with 2 hemispherical ends. The total length is 7.8 m . What is volume in cubic metres?		2

End of Question Two

SYDNEY BOYS HIGH SCHOOL
 MOORE PARK, SURRY HILLS

2007

Year 10 Yearly Examination

Advanced Mathematics

Directions to Candidates:

- Answer all questions in the spaces provided in this question booklet.
- Full marks may not be awarded for careless or badly arranged work.
- Use black or blue pen for written answers, but pencil for diagrams or graphs.
- If additional working space is required, use the spare pages at the end of the booklet. Show clearly which question you are continuing.
- Board approved calculators may be used.

Time allowed: 2 hours.
Examiner: D.McQuillan

Name: \qquad

Your Mathematics Class (Tick the box)			
10 MaA	Mr Boros		
10 MaB	Ms Evans		
10 MaC	Ms Nesbitt		
10 MaD	Mr Kourtesis		
10 MaE	Mr Gainford		
10 MaF	Ms Ward		

Marker Use Only
Question Mark 3 $/ 20$

Question Three (20 marks)		Answer	Marks
A	Given the two points $(-5,3)$ and $\left(5 \frac{1}{2}, 3 \frac{1}{4}\right)$ and the circle $x^{2}+y^{2}=36$ which of the following is true. (I) Both points are inside the circle. (II) Both points are outside the circle. (III) One point is inside and the other is outside the circle. (IV) One point is on the circle and the other is inside.		1
B	In the formula $M=\sqrt{t-3}$, which values can t possibly take?		1
C	Find the value of x correct to 2 decimal places.		2
D	Four cards with the numbers $1,4,5$ and 7 written on them are picked at random and used to form a four digit number. Find the probability that the number is (i) odd? (ii) greater than 5200 ?		2
E	Solve $2 x^{2}-12 x+17=0$. Write your answer in simplified surd form.		2

I	Finola selected 30 students at random from Year 10 at her high school, and asked each of them how many text messages they had sent from a mobile phone within the last day. The results are summarised in the following table. (i) Determine the median number of text messages sent. (ii) Find the inter-quartile range of text messages sent. (iii) Calculate the mean number of text messages sent. (Give your answer correct to two decimal places.) (iv) Calculate the standard deviation. (Give your answer correct to two decimal places.)	4
J	For the parabola $y=x^{2}+2 x+5$. (i) Find the equation of the axis of symmetry. (ii) And hence the minimum y-value of the parabola.	2

End of Question Three

SYDNEY BOYS HIGH SCHOOL
 MOORE PARK, SURRY HILLS

2007

Year 10 Yearly Examination

Advanced Mathematics

Directions to Candidates:

- Answer all questions in the spaces provided in this question booklet.
- Full marks may not be awarded for careless or badly arranged work.
- Use black or blue pen for written answers, but pencil for diagrams or graphs.
- If additional working space is required, use the spare pages at the end of the booklet. Show clearly which question you are continuing.
- Board approved calculators may be used.

Time allowed: 2 hours.
Examiner: D.McQuillan

Name: \qquad

Your Mathematics Class (Tick the box)			
10 MaA	Mr Boros		
10 MaB	Ms Evans		
10 MaC	Ms Nesbitt		
10 MaD	Mr Kourtesis		
10 MaE	Mr Gainford		
10 MaF	Ms Ward		

Question Four (20 marks)		Answer	Marks
A	Two unbiased dice are thrown. Each die has six faces. The faces are numbered $1,2,3,4,5$ and 6 . (i) What is the probability that neither shows a 6 ? (ii) Mark plays a game with these dice. There is no entry fee. When the dice are thrown: - Mark wins $\$ 20$ if both dice show a 6. - He wins $\$ 2$ if there is only one 6 . - He loses $\$ 2$ if neither shows a 6 . How much will he expect to win/lose after playing 10 games?		3
B	For θ between 0° and 180° find all values of θ to the nearest degree such that $\sin \theta=0.342$.		1
C	Solve $3\left(3^{x}\right)^{2}-28\left(3^{x}\right)+9=0$ for x.		2
D	O is the centre of a circle with radius 4 cm . Find the area of the shaded region to the nearest square centimetre.		2

H	To buy the BMW M5 (\$81 200) Ronald makes a 10% deposit and borrows the remainder at an interest rate of 8% p.a.. The interest is calculated monthly and repayments of $\$ 866.66$ are made at the end of the month so that the loan is paid off after 10 years. (i) Calculate the amount still owing at the end of 3 months. (ii) Determine the total amount of interest paid on the entire loan. (iii) What is the equivalent flat rate of interest?		3
I	Given the following figure. (i) Prove that $\triangle \mathrm{ABC}\|\mid \triangle \mathrm{CDE}$. (ii) Hence find the length of AB .		3

End of Question Four

SYDNEY BOYS HIGH
 SCHOOL
 MOORE PARK, SURRY HILLS

2007

Year 10 Yearly Examination

Advanced Mathematics

Directions to Candidates:

- Answer all questions in the spaces provided in this question booklet.
- Full marks may not be awarded for careless or badly arranged work.
- Use black or blue pen for written answers, but pencil for diagrams or graphs.
- If additional working space is required, use the spare pages at the end of the booklet. Show clearly which question you are continuing.
- Board approved calculators may be used.

Time allowed: 2 hours.

Examiner: D.McQuillan

Name: \qquad

Your Mathematics Class (Tick the box)		
10 MaA	Mr Boros	
10 MaB	Ms Evans	
10 MaC	Ms Nesbitt	
10 MaD	Mr Kourtesis	
10 MaE	Mr Gainford	
10 MaF	Ms Ward	

| Marker Use Only |
| :---: | :---: |
| Question Mark
 5 $/ 20$ |

Question Five (20 marks)		Answer	Marks
A	Use the "completing the square method" to solve $x^{2}-6 x+7=0$. Leave your answer in surd form.		2
B	Find the points of intersection of $y=x^{2}+6 x-21$ $y=15-3 x$		2
C	If the following sector was to be bent into a cone what would be the base radius? Answer in exact form. E		
E			

| J | EF is a tangent. Find the size of
 $\angle \mathrm{ACF}$ giving reasons. | 2 |
| :--- | :--- | :--- | :--- |

End of Question Five

SYDNEY BOYS HIGH
 SCHOOL
 MOORE PARK, SURRY HILLS

2007

Year 10 Yearly Examination

Advanced Mathematics

Directions to Candidates:

- Answer all questions in the spaces provided in this question booklet.
- Full marks may not be awarded for careless or badly arranged work.
- Use black or blue pen for written answers, but pencil for diagrams or graphs.
- If additional working space is required, use the spare pages at the end of the booklet. Show clearly which question you are continuing.
- Board approved calculators may be used.

Time allowed: 2 hours.

Examiner: D.McQuillan

Name: \qquad

Your Mathematics Class (Tick the box)		
10 MaA	Mr Boros	
10 MaB	Ms Evans	
10 MaC	Ms Nesbitt	
10 MaD	Mr Kourtesis	
10 MaE	Mr Gainford	
10 MaF	Ms Ward	

| D | P(3, 4) is a point on the circle
 $x^{2}+y^{2}=25$. Find the length of the
 minor arc PQ correct to three
 significant figures. | |
| :--- | :--- | :--- | :--- |
| E | | |

G	Chris is in a boat at point A , which is 3 k He rows in a straight line from A to a poi along the beach, at $6 \mathrm{~km} / \mathrm{h}$ to point C whi point O .	km from the nearest point O of a straight beach. int B on the beach at $4 \mathrm{~km} / \mathrm{h}$. He then walks ich is 8.5 km along the beach from the	
	(i) Write an expression for the time in terms of x (the distance B is from O) it takes Chris to row to point B.		2
	(ii) If it takes Chris 2 hours to reach point C from point A , find all possible values of x (that is distances that B could be from O).		3

Question One (20 marks)		Answer	Marks
A	Factorise $x^{2}+12 x+35$.	$(x+7)(x+5)$	1
B	Find the value of a if $a \sqrt{7}=\sqrt{112}$.	$\begin{gathered} \sqrt{112}=\sqrt{16 \times 7}=4 \sqrt{7} \\ a=4 \end{gathered}$	1
C	If this spinner is spun, what is the probability that it will point to sector B.	$\begin{aligned} & 360-80-55-75=150 \\ & \frac{150}{360}=\frac{5}{12} \\ & P=5 / 12,0.416 \end{aligned}$	1
D	Find the interest paid on a $\$ 30000$ loan with a flat rate of 9% p.a. for 10 months.	$\begin{aligned} & I=30000 \times \frac{9}{12} \times 10 \\ & I=2250 \end{aligned}$	1
E	Solve $\frac{p}{3}-\frac{p}{5}=1$.	$\begin{aligned} \frac{5 p-3 p}{15} & =1 \\ 2 p & =15 \quad p=\frac{15}{2}=7.5 \end{aligned}$	1
F	A conical cocktail glass in 8 cm across and 8 cm deep. How many millilitres will it hold? (Correct to nearest millilitre.)	$\begin{aligned} V & =\frac{1}{2} \pi r^{2} h \\ & =\frac{1}{3} \pi \times 4^{2} \times 8 \\ & =134 \cdot(\mathrm{~mL}) \end{aligned}$	1
G	Two squares have side lengths in a ratio of $5: 7$ what is the ratio of their areas?	25:49.	1
H	Write $\left(\frac{2 a}{b^{3}}\right)^{-2}$ without parentheses or negative indices.	$\frac{b^{b}}{4 a^{2}}$	1
I	Solve $(x+4)(3 x-6)=0$	$\begin{aligned} & x=4 \\ & x=-2 \end{aligned}$	1
J	Find the volume of a cylinder with radius 5 cm and height 8 cm to the nearest cubic centimetre.	$\begin{aligned} V & =\pi r^{2} h \\ & =\pi \times 5^{2} \times 8 \\ & =628 \mathrm{~cm}^{3} \end{aligned}$	1

It is possible to precisely fit an
octahedron inside a sphere such that the
six vertices all touch the surface of the
sphere If an octahedron was precisely
fitted within a sphere of radius 5 cm
what would be the volume of the
octahedron?

Fight

End of Question Two

End of Question Three

QUESTION 4

(11)
(iii)
$I(i)$

$$
\begin{array}{r}
-\$ 73080 \\
=\$ 30919.20 \\
\frac{30919.20 \times 100}{73080 \times 10} \\
=4.2320
\end{array}
$$

$\therefore \triangle A B C \| O C D E$
(Sides in prop.tincluded angles equal)
(ii)
after 1 YR 64960 9 years

End Month 1
Amount after deposit $\$ 73080$

$$
\begin{array}{r}
73080 \times \frac{154}{450}-866.66 \\
\$ 72700
\end{array}
$$

End Month 2

$$
\begin{aligned}
72700 \times \frac{151}{150} & -866.66 \\
& =\$ 72318.55
\end{aligned}
$$

Fred Month 3

$$
\begin{aligned}
& 72318.55 \times \frac{151}{150}=866.66 \\
& =\$ 71934
\end{aligned}
$$

Interest $=866.66 \times 120$

$$
\begin{aligned}
& \angle A C B=\angle D C E(\text { vent op } \angle s) \\
& A C=\frac{B C}{C D} \text { (given) }
\end{aligned}
$$

$$
\because \triangle A B C \| O C D E
$$

(ii) $175 \times 16 \%=28$ stud.

F

$$
\begin{aligned}
& 4 \times \sqrt{2.75}+4 \\
& =10.63 \mathrm{~cm}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{A B}{8}=\frac{16}{1} \\
& A B=10 \frac{2}{3} \mathrm{~cm}
\end{aligned}
$$

Question Five (20 marks)		Answer	Marks
A	Use the "completing the square method" to solve $x^{2}-6 x+7=0$. Leave your answer in surd form. $\begin{aligned} x^{2}-6 x & =-7 \\ x^{2}-6 x+9 & =-7+9 \\ (x-3)^{2} & =2 \end{aligned}$	$\begin{aligned} & x-3= \pm \sqrt{2} \\ & x=3 \pm \sqrt{2} \end{aligned}$ - 1 for no \pm	2
B	Find the points of intersection of $\begin{aligned} & y=x^{2}+6 x-21 \\ & y=15-3 x \end{aligned}$	$\begin{aligned} & x^{2}+6 x-21=15-3 x \\ & x^{2}+9 x-36=0 \\ & (x-3)(x+12)=0 \\ & \therefore x=3,-12 \\ & \therefore y=6,51 \end{aligned}$	2
C	If the following sector was to be bent into a cone what would be the base radius? Answer in exact form.	$\begin{aligned} C & =\frac{2 \pi r}{4} \\ & =\frac{20 \pi}{4} \\ & =5 \pi \\ 5 \pi & =2 \pi r \\ r & =5 \pi / 2 \pi \quad r=5 / 2 \end{aligned}$	2
D	Two similar solids have volumes $105.6 \mathrm{~cm}^{3}$ and $1650 \mathrm{~cm}^{3}$. If the smaller solid has a surface area of $83.8 \mathrm{~cm}^{2}$, what is the surface area of the larger solid? $\begin{aligned} & a^{3}: b^{3} \\ & a^{2}: b^{2} \end{aligned}$	V $: V$ 83.8 $=(\sqrt[3]{105.6})^{2} \times$ 105.6 $: 1650$ x $=3.75089355$ $S A$ $: S A$ $S A b i g$ $=(\sqrt[3]{1650})^{2}$ 83.8 S (1/2) $=523.75 \mathrm{~cm}$	2 $1 / 2$ x (1)
E	The three legs of a triangular sailing course are $700 \mathrm{~m}, 1000 \mathrm{~m}$ and 1400 m . Find the largest angle (correct to the nearest degree) through which the boats must turn when completing two laps of the course.	$\begin{aligned} \cos \theta & =\frac{700^{2}+1000^{2}-1400^{2}}{2 \times 700 \times 1000} \\ & =\frac{-470000}{1400000} \\ \theta & =109.6159791 \\ & =110^{\circ} \text { Cnearest degrese } \end{aligned}$	2 (1)

		(1) (1)	
F	Sketch the graphs of $y=x^{3}$ and $y=\frac{1}{2} x^{3}$ on the same axes.		2
G	Sketch the graphs of the equations $y=3^{x}$ and $y=3^{-x}$ on the same axis.		2
H	Find all possible values of θ correct to the nearest minute.	$\begin{align*} \frac{\sin 42}{12} & =\frac{\sin \theta}{16} \tag{1}\\ \sin \theta & =\frac{16 \sin 42}{12} \\ \theta & =\frac{63^{\circ}}{12} 09^{\prime}, 116^{\circ} 51^{\prime} \text { (112) } \tag{1/2} \end{align*}$	2
I	Find the radii of two spheres if the difference of their radii is 25 mm and the difference of their surface areas is $\begin{aligned} & 10000 \pi \mathrm{~mm}^{2} . \\ & r: R \\ & r+25=R \\ & 4 \pi r^{2}+10000 \pi=4 \pi(r+25)^{2} \\ & 4 \pi\left(r^{2}+2500\right)=4 \pi(r+25)^{2} \end{aligned}$	$\begin{aligned} r^{2}+2500 & =r^{2}+50 r+625 \\ 2500 & =50 r+625 \\ 50 r & =1875 \\ r & =37.5 \mathrm{~mm} \text { (1/2) } \end{aligned}$ $\therefore \quad R=62.5 \mathrm{~mm} \text { (1/2) }$	2

End of Question Five

Year 102007 Yearly exam. Question ot
(A)

$\frac{1}{3}$
we are ont interested if the 1 st or the $2^{\text {nd }}$ child is a boy given / boy already.
(1)
(

$$
\begin{gather*}
\frac{1}{R_{T}}=\frac{1}{R_{1}}+\frac{1}{R_{2}} \\
\frac{1}{R_{T}}=\frac{R_{2}+R_{1}}{R_{1} R_{2}} \\
R_{1} R_{2}=R_{T} R_{2}+R_{T} R_{1} \\
R_{1} R_{2}-R_{T} R_{2}=R_{T} R_{1} \\
R_{2}\left(R_{1}-R_{T}\right)=R_{T} R_{1} \tag{2}\\
R_{2}=\frac{R_{T} R_{1}}{\left(R_{1}-R_{T}\right)}
\end{gather*}
$$

(c) (i) frequency totals 200

$$
\begin{array}{r}
\text { RIF } \begin{aligned}
& \frac{19}{100}=0.19 \\
& \frac{62}{200}=\frac{31}{100}=0.31 \\
& \frac{90}{200}=\frac{9}{20}=0.45 \\
& \frac{10}{200}=\frac{1}{20}=0.05 \\
& \sum r f=1.00
\end{aligned}
\end{array}
$$

(C) (ii) $\frac{100}{200}=\frac{1}{2}$ each tyre.

$$
\left(\frac{1}{2}\right)^{4}=\frac{1}{16}
$$

$$
\begin{aligned}
& (\tilde{E} \text { let } a=\text { small part } \\
& b=\text { big part } \\
& \frac{a}{b}=\frac{b}{a+b}
\end{aligned}
$$

(D)

$$
\begin{array}{r}
\operatorname{Let} a=1, \frac{1}{b}=\frac{b}{1+b} \\
1+b=b^{2} \\
b^{2}-b-1=0
\end{array}
$$

quad formula

$$
\begin{aligned}
b & =\frac{1 \pm \sqrt{1-4 x / x^{-1}}}{2 \times 1} \\
& =\frac{1 \pm \sqrt{5}}{2}
\end{aligned}
$$

take positive, ratio is
arcumperence $c=2 \pi r=10 \pi$
semi circle croumference $=5 \pi$

$$
\begin{aligned}
& \frac{5 \pi}{180}=\frac{x}{126^{\circ} 52^{\prime}} \\
& x=\frac{5 \pi \times 126^{\prime} 52^{\prime}}{180} \\
& \\
& \vdots 11.0712 \ldots \\
& \\
&
\end{aligned}=11.1 \text { unis (3SF). }
$$

(3)

$$
\begin{aligned}
& \text { OR/ } \frac{a}{b}=\frac{b}{a+b} \\
& a^{2}+a b=b^{2} \\
& a^{2}+a b-b^{2}=0 \\
& a=\frac{-b \pm \sqrt{b^{2}+4 b^{2}}}{2} \\
& S=\frac{-b \pm \sqrt{5}}{2 b} \\
& =\frac{-1 \pm \sqrt{5}}{2}
\end{aligned}
$$

So $\frac{\sqrt{5}-1}{2}$ or $\frac{\sqrt{5}+1}{2}$
because $(\sqrt{5}-1) \times\left(\frac{2}{\sqrt{5}+1}\right)=5-1=1$ reuprocals.
(F)

$A B \| C O$
Prove $\hat{A D C}=3 \hat{A B C}$
$O B=O C$ radii
let $\hat{A B C}=\alpha \cdot$ (at arcumference)., stands on arc. $A C$.
$\therefore \hat{A D C}=2 \alpha$ (at centre), stands on arr $A C$.
$\hat{B C O}=\alpha$ attemaite angles $A B / / C O$.
Now $A \hat{D C}=\alpha+2 \alpha$. $\begin{aligned} & \text { (extensor angle }=\text { sum of } \\ & \text { remote interior angles) } 2\end{aligned}$

$$
=3 \alpha .
$$

$$
\begin{equation*}
\therefore \hat{A D C}=3 \times \hat{A B C} . \tag{3}
\end{equation*}
$$

(\dot{G}

lows from A to B at $4 \mathrm{~km} / \mathrm{h}$.
Walls from B to C at $b \mathrm{~km} / \mathrm{h}$.
(i) $A B=\sqrt{x^{2}+9}$

$$
\begin{aligned}
& \text { speed }=\frac{\text { distance }}{\text { time }} \\
& \text { fine }=\frac{\text { distance }}{\text { speed }}=\frac{\sqrt{x^{2}+9}}{4} \text { hour. }
\end{aligned}
$$

(G) (ii) 2 hous to reach C from A.

$$
\frac{\sqrt{x^{2}+9}}{4}+\frac{(8.5-x)}{6}=\frac{2}{1}
$$

$x 12$

$$
\begin{align*}
& 3 \sqrt{x^{2}+9}+2(8 \cdot 5-x)=24 \\
& 3 \cdot \sqrt{x^{2}+9}+17-2 x-24=0 \\
& 3 \cdot \sqrt{x^{2}+9}-2 x-7=0 \\
& 3 \cdot \sqrt{x^{2}+9}=(2 x+7) \\
& 9\left(x^{2}+9\right)=(2 x+7)^{2} \\
& 9 x^{2}+81=4 x^{2}+28 x+49 \\
& 5 x^{2}-28 x+32=0 \\
& x=\frac{28 \pm \sqrt{784-4 \times 5 \times 32}}{10} \\
& =\frac{28 \pm 12}{10} \\
& =\frac{28+12}{10} \text { or } \frac{28-12}{10} \mathrm{~km} \tag{3}\\
& x=4 \text { or } 1.6
\end{align*}
$$

