

# 2008

Year 10

Yearly Examination

# **Mathematics**

#### **General Instructions**

- Working time 90 minutes
- Write using black or blue pen. Pencil maybe used for diagrams.
- Board approved calculators may be used.
- All *necessary* working should be shown in every question if full marks are to be awarded.
- Marks may **NOT** be awarded for messy or badly arranged work.
- If more space is required, clearly write the number of the QUESTION on one of the back pages and answer it there. Indicate that you have done so.
- Clearly indicate your class by placing an **X**, next to your class.
- Answer in simplest exact form unless otherwise instructed.

| Class | Teacher       |  |
|-------|---------------|--|
| 10A   | Mr. Fuller    |  |
| 10B   | Mr. McQuillan |  |
| 10C   | Mr. Choy      |  |
| 10D   | Ms. Ward      |  |
| 10E   | Ms. Nesbitt   |  |
| 10F   | Mr. Boros     |  |

NAME:

Examiner: C.Kourtesis

| Question | Mark |      |
|----------|------|------|
| 1        |      | /20  |
| 2        |      | /16  |
| 3        |      | /15  |
| 4        |      | /16  |
| 5        |      | /15  |
| 6        |      | /18  |
| Total    |      | /100 |

| Questi | on One (20 Marks)                                                     | Answers | Marks |
|--------|-----------------------------------------------------------------------|---------|-------|
| A      | Find 18% of \$640.                                                    |         |       |
| В      | Simplify $\frac{a}{4} + \frac{2a}{3}$                                 |         |       |
| C      | Simplify $\frac{12a-4}{4}$                                            |         |       |
| D      | If $\sqrt{12} + \sqrt{3} = \sqrt{b}$ find the value of b.             |         |       |
| E      | Solve the inequality $5 - 3x < 10$                                    |         |       |
| F      | The volume of a cube is 64cm <sup>3</sup> . What is its surface area? |         |       |
| G      | If $a = -3$ and $b = 5$ , evaluate $ba^2$ .                           |         |       |
| Н      | Express $\sqrt{1.6 \times 10^9}$ in standard (scientific) notation.   |         |       |

| I | Simplify $2(a+b)-(2a-b)$                                                                         |  |
|---|--------------------------------------------------------------------------------------------------|--|
|   |                                                                                                  |  |
|   |                                                                                                  |  |
| J | $\sqrt{3}$                                                                                       |  |
|   | If $\sin \theta = \frac{\sqrt{3}}{2}$ where $0^\circ \le \theta \le 180^\circ$ , find $\theta$ . |  |
|   |                                                                                                  |  |
| V | Every with k as the subject of the                                                               |  |
| ĸ | Express with <i>h</i> as the subject of the $\sqrt{h}$                                           |  |
|   | equation $d = 25\sqrt{\frac{n}{2}}$                                                              |  |
|   | . –                                                                                              |  |
|   |                                                                                                  |  |
| L | On separate diagrams sketch the graphs of:                                                       |  |
|   | (i) $y = x^2$                                                                                    |  |
|   |                                                                                                  |  |
|   |                                                                                                  |  |
|   |                                                                                                  |  |
|   |                                                                                                  |  |
|   |                                                                                                  |  |
|   | (11) 	 xy = 1                                                                                    |  |
|   |                                                                                                  |  |
|   |                                                                                                  |  |
|   |                                                                                                  |  |
|   |                                                                                                  |  |
|   |                                                                                                  |  |
|   | (iii) $x^2 + y^2 = 100$                                                                          |  |
|   |                                                                                                  |  |
|   |                                                                                                  |  |
|   |                                                                                                  |  |
|   |                                                                                                  |  |
|   |                                                                                                  |  |
| М | If $k = \frac{4}{a}$ find $k^{-3}$                                                               |  |
|   | (answer in positive index form)                                                                  |  |
|   |                                                                                                  |  |
|   |                                                                                                  |  |
|   |                                                                                                  |  |

| Quest | ion Two (16 Marks)                                                                                                                                                                                                                            | Answer | Marks |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------|
| A     | 9<br>$33^{\circ}$ $65^{\circ}$<br>Find the value of <i>x</i> , correct to 2 decimal places                                                                                                                                                    |        |       |
| В     | x<br>9<br>60°<br>7<br>Use the Cosine Rule to find the value of x.<br>(Leave your answer in Surd form)                                                                                                                                         |        |       |
| С     | Ronald has a jar containing 120 jelly beans.<br>Each jelly bean is either red, yellow or<br>black. The ratio of red to yellow to black is<br>4 : 5 : 3.<br>Ronald chooses a jelly bean at random.<br>Find the probability it is:<br>(i) Black |        |       |
|       | (ii) Not Yellow                                                                                                                                                                                                                               |        |       |

| D | The graph of $y = 4 - kx^2$ passes through the |                                              |  |  |  |
|---|------------------------------------------------|----------------------------------------------|--|--|--|
|   | point (-5,                                     | 2). Find the value of k.                     |  |  |  |
|   |                                                |                                              |  |  |  |
| E | Consider                                       | the polygons:                                |  |  |  |
|   |                                                | ~7                                           |  |  |  |
|   | a                                              | $\sim$                                       |  |  |  |
|   | 3cm                                            |                                              |  |  |  |
|   |                                                | 13cm/ ~~                                     |  |  |  |
|   |                                                |                                              |  |  |  |
|   | (1)                                            | Find the certific of the transmission        |  |  |  |
|   | (1)                                            | Find the ratio of their areas.               |  |  |  |
|   |                                                |                                              |  |  |  |
|   | (ii)                                           | If the area of the smaller                   |  |  |  |
|   | ()                                             | polygon is 30cm <sup>2</sup> , find the area |  |  |  |
|   |                                                | of the larger.                               |  |  |  |
|   |                                                |                                              |  |  |  |
| F | The equa                                       | tion of a parabola is given by               |  |  |  |
|   | $y = x^2 - 2$                                  | 4x + 3                                       |  |  |  |
|   | (i)                                            | Find the x and y intercepts.                 |  |  |  |
|   |                                                |                                              |  |  |  |
|   |                                                |                                              |  |  |  |
|   |                                                |                                              |  |  |  |
|   |                                                |                                              |  |  |  |
|   | (ii)                                           | Find the coordinates of the                  |  |  |  |
|   |                                                | vertex.                                      |  |  |  |
|   |                                                |                                              |  |  |  |
|   |                                                |                                              |  |  |  |
|   |                                                |                                              |  |  |  |
|   | (iii)                                          | Hence, sketch the graph of the               |  |  |  |
|   |                                                | parabola.                                    |  |  |  |
|   |                                                |                                              |  |  |  |
|   |                                                |                                              |  |  |  |
|   |                                                |                                              |  |  |  |

| Questio | on Three (15 Marks)                                               | Answers | Marks |
|---------|-------------------------------------------------------------------|---------|-------|
| А       | Find the value of $\boldsymbol{\theta}$ in each case. You are not |         |       |
|         | required to give reasons. O is the centre of                      |         |       |
|         | the circle:                                                       |         |       |
|         | (i)<br>θ<br>84°                                                   |         |       |
|         | (ii)<br>(ii)<br>135°                                              |         |       |
|         |                                                                   |         |       |
|         | PT is a tangent at B                                              |         |       |
|         | (iv)<br>$\theta$ $\theta$ $50^{\circ}$ $60^{\circ}$ $T$           |         |       |
|         | PT is a tangent at B                                              |         |       |

| В | In 1954<br>Sprinkl<br>annual<br>of 234<br>on Spr | 4 a total<br>ing Tarr<br>rainfall<br>50m². H<br>inkling T | of 6527mm of<br>and this set a<br>. The tarn has a<br>ow many litres<br>Tarn in 1954?                | rain fell at<br>UK record for<br>a surface area<br>of water fell         |                            |      |
|---|--------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------|------|
|   |                                                  |                                                           |                                                                                                      |                                                                          |                            |      |
| С | Factori                                          | se $A^2$ –                                                | $(B+C)^2$                                                                                            |                                                                          |                            |      |
| D | P<br>In the o<br>The po<br>Q. The<br>(i)         | 38kr<br>diagram<br>int R is 3<br>bearing<br>Wh<br>Wh      | n<br>, the point Q is<br>38km from P ar<br>3 of R from Q is<br>at is the size of<br>at is the bearin | 20km<br>Q<br>due east of P.<br>ad 20km from<br>325°.<br>$E \angle PQR$ ? |                            |      |
| E |                                                  |                                                           |                                                                                                      |                                                                          |                            | <br> |
|   |                                                  | Test                                                      | Kim's Mark                                                                                           | Class Mean                                                               | Class Standard Deviation   |      |
|   |                                                  | A<br>D                                                    | /Y<br>70                                                                                             | 60                                                                       | 20                         |      |
|   |                                                  | Indio                                                     | cate, giving rea                                                                                     | sons, in which                                                           | test Kim performed better. |      |

| Quest | ion Four (1                                      | 6 Marks)                                                                                                                        | Answers | Marks |
|-------|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|---------|-------|
| A     |                                                  | P (3, 5)                                                                                                                        |         |       |
|       | OP is a rac                                      | dius of the circle. PN is a tangent.                                                                                            |         |       |
|       | (i)                                              | Calculate the gradient of OP.                                                                                                   |         |       |
|       | (ii)                                             | Show that the equation of PN is $3x + 5y - 34 = 0$ .                                                                            |         |       |
|       | (iii)                                            | Find the coordinates of N.                                                                                                      |         |       |
|       | (iv)                                             | Write down the equation of the circle.                                                                                          |         |       |
| В     | A 20cm by<br>melted an<br>fishing sin<br>How man | y 5cm by 6cm block of lead is<br>nd cast into identical spherical<br>kers each of radius 1cm.<br>y (whole) sinkers can be made? |         |       |

| C | The two triangles have equal areas and the four lengths are equal. What is the value of x? |  |
|---|--------------------------------------------------------------------------------------------|--|
| D | The equation of a circle is                                                                |  |
| D | $x^2 + y^2 - 2x + y = 0$ .                                                                 |  |
|   |                                                                                            |  |
|   | (i) Express this in the form:                                                              |  |
|   | $(x-a)^2 + (y-b)^2 = r^2$                                                                  |  |
|   | (ii) Write down the coordinates of                                                         |  |
|   | the centre and the length of the<br>diameter                                               |  |
|   | ulameter.                                                                                  |  |
|   |                                                                                            |  |
|   |                                                                                            |  |
|   |                                                                                            |  |
|   |                                                                                            |  |
|   |                                                                                            |  |
|   |                                                                                            |  |
|   |                                                                                            |  |
|   |                                                                                            |  |
|   |                                                                                            |  |

| Quest | tion Five (1  | 5 Marks)                                                          | Answers | Marks |
|-------|---------------|-------------------------------------------------------------------|---------|-------|
| Α     | On separa     | te diagrams sketch the graphs of                                  |         |       |
|       | the follow    | ing, indicating the x and y intercepts                            |         |       |
|       | in each case: |                                                                   |         |       |
|       |               |                                                                   |         |       |
|       | (i)           | v = (x+3)(x-1)(x-4)                                               |         |       |
|       | (.,           | y = (x + y)(x - 1)(x - 1)                                         |         |       |
|       |               |                                                                   |         |       |
|       |               |                                                                   |         |       |
|       |               |                                                                   |         |       |
|       |               |                                                                   |         |       |
|       |               |                                                                   |         |       |
|       | (ii)          | $y = (x+1)^2(x-3)$                                                |         |       |
|       |               |                                                                   |         |       |
|       |               |                                                                   |         |       |
|       |               |                                                                   |         |       |
|       |               |                                                                   |         |       |
|       |               |                                                                   |         |       |
|       |               |                                                                   |         |       |
|       | (;;;;)        | $y = 1 (r + 1)^4$                                                 |         |       |
|       | (111)         | y = 1 - (x - 1)                                                   |         |       |
|       |               |                                                                   |         |       |
|       |               |                                                                   |         |       |
|       |               |                                                                   |         |       |
|       |               |                                                                   |         |       |
|       |               |                                                                   |         |       |
| В     | O is the ce   | entre of both circles with radii 1cm                              |         |       |
|       | and 4cm.      |                                                                   |         |       |
|       | /             | B                                                                 |         |       |
|       |               | $\rightarrow$                                                     |         |       |
|       |               |                                                                   |         |       |
|       |               | A                                                                 |         |       |
|       |               |                                                                   |         |       |
|       |               | $x^{\circ}$ C                                                     |         |       |
|       |               | $\begin{pmatrix} O & 1 \end{pmatrix} D & 3 \end{pmatrix}^{\circ}$ |         |       |
|       |               |                                                                   |         |       |
|       |               |                                                                   |         |       |
|       |               |                                                                   |         |       |
|       |               |                                                                   |         |       |
|       |               |                                                                   |         |       |
|       |               |                                                                   |         |       |
|       | (i)           | Show that the shaded are A is                                     |         |       |
|       |               | given by $A = \pi X$                                              |         |       |
|       |               | $\frac{24}{24}$                                                   |         |       |
|       |               |                                                                   |         |       |
|       | (ii)          | If the shaded area is one sixth of                                |         |       |
|       |               | the area of the outer circle find the                             |         |       |
|       |               | value of x                                                        |         |       |
| l     |               |                                                                   |         |       |



| Quest | ion Six (18 Marks)                                                                                                                                                                                                                           | Answers | Marks |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------|
| A     | 18km/h<br>18km/h<br>58°<br>24km/h<br>R                                                                                                                                                                                                       |         |       |
|       | Two straight roads PQ and PR are inclined to<br>each other at 58°. Two bike riders begin<br>simultaneously from P and travel along the<br>roads at 18km/h and 24km/h respectively.<br>After t hours they are 80km apart in a direct<br>line. |         |       |
|       | i) Show that $t = \frac{80}{\sqrt{(900 - 864 \cos 58^\circ)}}$                                                                                                                                                                               |         |       |
|       | ii) Find the value of t (correct to 2<br>decimal places)                                                                                                                                                                                     |         |       |
| В     | Two regular polygons have N and (N – 5)<br>number of sides. The number of degrees of<br>each of their angles differ by 1.                                                                                                                    |         |       |
|       | (i) Show that $N^2 - 5N - 1800 = 0$                                                                                                                                                                                                          |         |       |
|       | (ii) Find the possible value(s) of N.                                                                                                                                                                                                        |         |       |



## Use this space if you wish to **REWRITE** any answers.

## Clearly *indicate* the **SECTION** and the **QUESTION** number.

| Section | Question |  |
|---------|----------|--|
|         |          |  |
|         |          |  |
|         |          |  |
|         |          |  |
|         |          |  |
|         |          |  |
|         |          |  |
|         |          |  |
|         |          |  |
|         |          |  |
|         |          |  |
|         |          |  |
|         |          |  |
|         |          |  |
|         |          |  |
|         |          |  |
|         |          |  |
|         |          |  |
|         |          |  |
|         |          |  |
|         |          |  |
|         |          |  |
|         |          |  |
|         |          |  |
|         |          |  |
|         |          |  |
|         |          |  |
|         |          |  |
|         |          |  |
|         |          |  |
|         |          |  |
|         |          |  |
|         |          |  |
|         |          |  |
|         |          |  |

Tear 10 Yearly 2008 Duestion 1 A) \$115.20 (  $\underline{\hat{B}} = \frac{3a + 8a}{12} = \frac{1/a}{10}$ 5) <del>X.(3a-1)</del> = 3a-1 ()  $D)\sqrt{12} = 2\sqrt{3}$  $2\sqrt{3} + \sqrt{3} = 3\sqrt{3}$ = \sqrt{27} 6=27 2 E) 5-3x<10 -3x < 5 $x > -\frac{5}{3}$  $\widehat{E}S\overline{H}=6\alpha^2$  $V=\chi^3=64$  $\chi = 4$  2 SA= 6x4 = 96 cm<sup>2</sup> (2)  $\begin{array}{c} (f) \\ (f) \\$ 

D 2a+2b-2a+b = 3b (1)  $\Im \stackrel{s}{+} \stackrel{h}{+} \Theta = 60^{\circ}, 120^{\circ}$  $d = 25 \frac{h}{2}$ か= 「五  $\frac{d^2}{625} = \frac{h}{22}$  $h = \frac{2d^2}{625}$  $\frac{1}{10} \frac{1}{(0,0)} x y = x^{2}$ (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (11) $(\widehat{M}) \quad k^{-3} = \frac{1}{k^3} = \frac{1}{\frac{4^3}{4^3}} = 1 + \frac{1}{4^3} = \frac{1}{4^3}$  $=1 \times \frac{a}{64} = \frac{a}{64}$ 

Question Two (16 Marks) ⊳ ω places Find the value of x, correct to 2 decimal Find the probability it is: 4:5:3. black. The ratio of red to yellow to black is Each jelly bean is either red, yellow or (Leave your answer in Surd form) Use the Cosine Rule to find the value of x. Ronald chooses a jelly bean at random. Ronald has a jar containing 120 jelly beans. ശ Ξ Ξ ω 60° 30 Black Not Yellow ទ្រូ Answer P(B) = 200 = 4 Sin 33 120 Jelly bears 12 parts Red 4 × 120 = 40 Yell or 52 × 120 = 30 Black 312 × 120 = 30 73 - 57 2= 7 2+ 9- 2×7+9 6060 א י X = 5.408 U DL = S, HIU Zdcept Sin 65 951733 Siz 65 Marks ¢

т ш σ Consider the polygons: point (-5, 2). Find the value of k. The equation of a parabola is given by  $y = x^2 - 4x + 3$ The graph of  $y = 4 - kx^2$  passes through the Зcm ≣ Ξ Ξ Ξ Ξ If the area of the smaller Hence, sketch the graph of the Find the coordinates of the Find the x and y intercepts. polygon is 30cm<sup>2</sup>, find the area parabola. vertex. of the larger. Find the ratio of their areas. 13cm y = 0 (x-3[x-1) =0 x=1,3 (1,0) (3,0) (X inkropk) Langer area = 30×169 25K= 2 K= 2: Verten X= 2 y=-1 x=0 y=3 (0,3)(, zatio of areas - 9-169 2 1 4 1 9:169 υ × × × × " 263 " " y inte ×

and the second second

Marks Question Three (15 Marks) Answers Find the value of  $\theta$  in each case. You are not А required to give reasons. O is the centre of the circle: (i) θ  $\theta = 42^{\circ}$ 0 . 84° (ii) θ Ø=135° 1350 В Т Ρ (iii) 46°  $\theta = 44^{\circ}$ PT is a tangent at B (iv) θ  $\theta = 60^{\circ}$ ′60° 50° Ρ В Т PT is a tangent at B

ŗ

В In 1954 a total of 6527mm of rain fell at Sprinkling Tarn and this set a UK record for 153,058,150L. annual rainfall. The tarn has a surface area of 23450m<sup>2</sup>. How many litres of water fell on Sprinkling Tarn in 1954? (A-(B+C))(A+B+C) Factorise  $A^2 - (B+C)^2$ С = (A-B-C)(A+B+C) D R 38km 20km 3250 In the diagram, the point Q is due east of P. The point R is 38km from P and 20km from Q. The bearing of R from Q is 325°. 550 What is the size of  $\angle PQR$ ? (i)  $SINP = \frac{20 SIN559}{38} = 25°32'$ R fram P = 90 - 25°32' = 64°28' What is the bearing of R from P? (ii) Ε Test Kim's Mark **Class Mean Class Standard Deviation** 79 20 А 60 70 10 В 60 Indicate, giving reasons, in which test Kim performed better. Test A, kim is 19 away from mean and almost 1 standard deviation Test B, kim is 10 away & exactly 1 standard deviation Did better in TESTB as his standard deviation

| Δ |                                                    | -                                                                                                                                                                                                        |                                                                                                                                                                                                                          |            |
|---|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
|   |                                                    | P (3, 5)<br>0<br>N<br>(11)                                                                                                                                                                               | $(i') m_{op} = 573,$<br>$m_{PN} = -3/5,$<br>$y - y = -\frac{3}{5}(x - 3),$<br>5y - 25 = -3x + 9,<br>z = -3x + 5y - 34 = 0,                                                                                               | , <b>`</b> |
|   | OP is a rad<br>(i)<br>(ii)<br>(iii)<br>(iv)        | dius of the circle. PN is a tangent.<br>Calculate the gradient of OP.<br>Show that the equation of PN is<br>3x + 5y + 24 = 0.<br>Find the coordinates of N.<br>Write down the equation of the<br>circle. | (iii) When $y = 0$<br>$\chi = \frac{34}{3}$<br>$N\left(\frac{34}{3}, 0\right)$<br>$\left(\begin{array}{c} 0 \ p \end{array}\right) = \sqrt{9+25}$<br>$= 3 \ \text{sf}$<br>(IV)<br>$\therefore \ \chi^{2} + y^{2} = 34$ . |            |
| В | A 20cm by<br>melted and<br>fishing sin<br>How many | 5cm by 6cm block of lead is<br>d cast into identical spherical<br>kers each of radius 1cm.<br>(whole) sinkers can be made?                                                                               | $V = 20 \times 30$<br>= 600'<br>$V = \frac{4}{3} \pi r^{3} = \frac{4\pi}{3}$<br>= 143 WE                                                                                                                                 | ,<br>,     |

ţ

C  
C  
The two triangles have equal areas and the  
four lengths are equal. What is the value of  

$$x^2$$
  
 $\frac{1}{2}\sqrt{n^2} \int_{1} \ln 2\pi = \frac{1}{2}\pi^2 \int_{1} \ln \pi$   
 $\int_{1} \ln 2\pi = \int_{1} \ln \chi$   
 $i = \chi = 60^{\circ}$   
 $i$   
The equation of a circle is  
 $x^2 + y^2 - 2x + y = 0$ .  
(i) Express this in the form:  
 $(x-a)^2 + (y-b)^2 = r^2$   
(ii) Write down the coordinates of  
the centre and the length of the  
diameter.  
 $(\chi^2 - 2\pi + i) + (\chi^2 + \chi + \frac{1}{4}) = \frac{5}{4}$   
 $(\chi - L)^2 + (\chi + \frac{1}{2})^2 = \frac{5}{4}$   
 $i = (\chi - L)^2 + (\chi + \frac{1}{2})^2 = \frac{5}{4}$   
 $i = (\chi - L)^2$   
 $\chi = \sqrt{5}$   
 $\chi = \sqrt{5}$ 



С Z Q/ LPQR=70° Т R Ρ The largest circle which it is possible to draw inside triangle PQR touches the triangle at S, T and U. If  $\angle STU = 55^{\circ}$ , find the size of  $\angle PQR$ . (Do Not Give Reasons). D 3 1:2. lengths 1:8 volumes.  $-6\,\mathrm{cm}$ 24mL. 1.e. 21mL more.  $3\,\mathrm{cm}$ A medicine glass in the shape of a cone has a height of 6cm. 3mL of liquid fills the cone to a height of 3cm. How many more mL of liquid is required to fill the cone to a height of 6cm?

Question Six (18 Marks)AnswersMarksA
$$18t$$
 $0$ (i) $80^{+}$ :  $(18t)^{+}/(2ut)^{+} \cdot 2(18t)^{2}/(2ut) - 2(18t)^{2}/(2ut$ 

ς.