

SYDNEY BOYS HIGH SCHOOL MOORE PARK, SURRY HILLS

2008

Year 10

Yearly Examination

Mathematics

General Instructions

- Working time - 90 minutes
- Write using black or blue pen. Pencil maybe used for diagrams.
- Board approved calculators may be used.
- All necessary working should be shown in every question if full marks are to be awarded.
- Marks may NOT be awarded for messy or badly arranged work.
- If more space is required, clearly write the number of the QUESTION on one of the back pages and answer it there. Indicate that you have done so.
- Clearly indicate your class by placing an \mathbf{X}, next to your class.
- Answer in simplest exact form unless otherwise instructed.

Class	Teacher	
10A	Mr. Fuller	
10B	Mr. McQuillan	
10C	Mr. Choy	
10D	Ms. Ward	
10 E	Ms. Nesbitt	
10 F	Mr. Boros	

NAME:

Examiner: C.Kourtesis

Question	Mark	
1		$/ 20$
2		$/ 16$
3		$/ 15$
4		$/ 16$
5		$/ 15$
6		$/ 18$
Total		$/ 100$

Question One (20 Marks)	Answers	Marks	
A	Find 18% of $\$ 640$.		
B	Simplify $\frac{a}{4}+\frac{2 a}{3}$		
C	Simplify $\frac{12 a-4}{4}$		
D	If $\sqrt{12}+\sqrt{3}=\sqrt{b}$ find the value of b.		
E	Solve the inequality $5-3 x<10$		
G			
F	Th $a=-3$ and $b=5$, evaluate $b a^{2}$. Surface area?		

Question Two (16 Marks)	Answer	Marks	
A			
Find the value of x, correct to 2 decimal			
places			

| Question Three (15 Marks) | Answers | Marks |
| :---: | :---: | :---: | :---: |
| AFind the value of θ in each case. You are not
 required to give reasons. O is the centre of
 the circle: | | |
| (i) | | |

| B | In 1954 a total of 6527mm of rain fell at
 Sprinkling Tarn and this set a UK record for
 annual rainfall. The tarn has a surface area
 of 23450 m^{2}. How many litres of water fell
 on Sprinkling Tarn in 1954? | |
| :---: | :--- | :--- | :--- |
| C | Factorise $A^{2}-(B+C)^{2}$ | |

Question Four (16 Marks)		Answers	Marks
A	 OP is a radius of the circle. PN is a tangent. (i) Calculate the gradient of OP. (ii) Show that the equation of PN is $3 x+5 y-34=0$. (iii) Find the coordinates of N . (iv) Write down the equation of the circle.		
B	A 20 cm by 5 cm by 6 cm block of lead is melted and cast into identical spherical fishing sinkers each of radius 1 cm . How many (whole) sinkers can be made?		

Question Six (18 Marks)		Answers	Marks
A	Two straight roads $P Q$ and $P R$ are inclined to each other at 58°. Two bike riders begin simultaneously from P and travel along the roads at $18 \mathrm{~km} / \mathrm{h}$ and $24 \mathrm{~km} / \mathrm{h}$ respectively. After t hours they are 80km apart in a direct line. i) Show that $t=\frac{80}{\sqrt{\left(900-864 \cos 58^{\circ}\right)}}$ ii) Find the value of t (correct to 2 decimal places)		
B	Two regular polygons have N and $(\mathrm{N}-5)$ number of sides. The number of degrees of each of their angles differ by 1 . (i) Show that $N^{2}-5 N-1800=0$ (ii) Find the possible value(s) of N .		

C	Consider the triangle $A B C$. i) Given the fact that $\operatorname{Sin} 2 \theta=2 \operatorname{Sin} \theta \operatorname{Cos} \theta$, use the sine rule to show that $\cos \theta=\frac{b}{2 a}$ ii) Hence prove that: $b^{2}=a(a+c)$ where $a \neq c$.		
D	$A B C D$ is a cyclic quadrilateral. $B A$ and $C D$ are both produced and intersect at E. $B C$ and $A D$ produced intersect at F . The circles EAD, FCD intersect at G as well as at D. Prove that the points E, G and F are collinear.		

Use this space if you wish to REWRITE any answers.

Clearly indicate the SECTION and the QUESTION number.

Section	Question	

Year 10 Yearly 2008
(1) $2 x+2 b-2 a+b=3 b$ (1) Duestion 1
A) $\$ / / 5 \cdot 20^{\circ}$
(B) $\frac{3 a+8 a}{12}=\frac{11 a}{12}$
3)

$$
\begin{equation*}
\frac{*(3 a-1)}{k}=3 a-1 \tag{1}
\end{equation*}
$$

D) $\sqrt{12}=2 \sqrt{3}$

$$
\begin{aligned}
2 \sqrt{3}+\sqrt{3} & =3 \sqrt{3} \\
& =\sqrt{27}
\end{aligned}
$$

$$
\begin{equation*}
b=27 \tag{2}
\end{equation*}
$$

(L)
ϵ

$$
\begin{align*}
5-3 x & <10 \\
-3 x & <5 \\
x & >-\frac{5}{3} \tag{1}
\end{align*}
$$

F

$$
\begin{align*}
& S A=6 x^{2} \\
& V=x^{3}=64 \\
& x=4 \\
& S A=6 \times 4^{2}=96 \mathrm{~cm}^{2} \tag{}
\end{align*}
$$

(1) $5 \times(-3)^{2}=5 \times 9=45$
(1) (im)

用

$$
\begin{aligned}
& x y=42 \\
& \text { or }\left(16 \times 10^{8}\right)^{\frac{1}{2}} \\
&=4 \times 10^{4}
\end{aligned}
$$

(1) $=4 \times 10^{4}$ etc.
(ii)

(iii)

$$
k^{-3}=\frac{1}{k^{3}}=\frac{1}{\frac{4^{3}}{a^{3}}}=1 \div \frac{44}{a^{3}}
$$

$$
=1 \times \frac{a^{3}}{64}=\frac{a^{3} a^{2}}{b 4}
$$

$$
\begin{align*}
& \alpha=25 \cdot \sqrt{\frac{\pi}{2}} \tag{1}\\
& \frac{d}{25}=\sqrt{\frac{h}{2}} \tag{1}\\
& \frac{d^{2}}{625}=\frac{h}{2} \\
& h=2 \alpha^{2} \text { (2) } \\
& \text { (L) io }
\end{align*}
$$

3		 －ε ：s：\downarrow ＊sueaq র্｜lo！OZt su！u！ezuos de！e sey pleuoy	\bigcirc
－	$\begin{array}{r} \angle g n=x \\ 09 \cos b \times L x_{2}-b t_{2} L==_{2} \end{array}$	（mot pans u！дəмsue ano人 әлеәт） 	g
	$\begin{aligned} \text { 1doppratis } & =x \\ \text { o8atis } & =x \\ \frac{\text { squis }}{\varepsilon \varepsilon \operatorname{sis} b} & =x \\ \frac{\text { squis }}{b} & =\frac{\varepsilon \varepsilon v i s}{x} \end{aligned}$	sooeld 	\forall
s\％dew	damsuy	（sydew 9t）OMı ${ }^{\text {uo }}$	

| Question Three (15 Marks) | Answers | Marks |
| :--- | :--- | :--- | :--- |
| A | | |
| Find the value of θ in each case. You are not | | |
| required to give reasons. 0 is the centre of | | |
| the circle: | | |

Que	tion Four (16 Marks)	Answers \quad Marks
A	 OP is a radius of the circle. PN is a tangent. (i) Calculate the gradient of OP. (ii) Show that the equation of PN is $3 x+5 y-34=0$. (iii) Find the coordinates of N . (iv) Write down the equation of the circle.	$\begin{aligned} &(i) m_{0 p}=5 / 3 \\ & m_{p N}=-3 / 5 \\ & y-5=-\frac{3}{5}(x-3) \\ & 5 y-25=-3 x+9 \\ & \therefore 3 x+5 y-34=0 \end{aligned}$ (iii) w hen $y=0$ $\begin{gathered} x=\frac{34}{3} \\ \therefore N\left(\frac{34}{3} 0\right) \\ \|0 p\|=\sqrt{9+25} \\ =3 \\ (1 v) \\ \therefore x^{2}+y^{2}=34 . \end{gathered}$
B	A 20 cm by 5 cm by 6 cm block of lead is melted and cast into identical spherical fishing sinkers each of radius 1 cm . How many (whole) sinkers can be made?	$\begin{aligned} V & =20 \times 30 \\ & =600^{\circ} \\ V & =\frac{4}{3} \pi r^{3}=\frac{4 \pi}{3} \\ & =143 \text { Whol } \end{aligned}$

C	The two triangles have equal areas and the four lengths are equal. What is the value of x ? $\begin{aligned} & \frac{1}{2} / x^{2} \sin 2 x=\frac{1}{2} x^{2} \sin x \\ & \sin 2 x=\sin x \\ & \therefore x=60^{\circ} \end{aligned}$
D	The equation of a circle is $x^{2}+y^{2}-2 x+y=0$. (i) Express this in the form: $(x-a)^{2}+(y-b)^{2}=r^{2}$ (ii) Write down the coordinates of the centre and the length of the diameter. $\begin{gathered} \left(x^{2}-2 x+1\right)+\left(y^{2}+y+\frac{4}{4}\right)=\frac{5}{4} \\ (x-2)^{2}+\left(y+\frac{1}{2}\right)^{2}=\frac{5}{4} \\ \therefore \quad C=\left(2,-\frac{1}{2}\right) \\ r=\frac{\sqrt{5}}{2} \therefore \text { diameter }=\sqrt{5} \end{gathered}$

Que	on Five (15 Marks)	Answers	Marks
A	On separate diagrams sketch the graphs of the following, indicating the x and y intercepts in each case: (i) $y=(x+3)(x-1)(x-4)$ (ii) $\quad y=(x+1)^{2}(x-3)$ (iii) $\quad y=1-(x-1)^{4}$		2
B	O is the centre of both circles with radii 1 cm and 4 cm . (i) Show that the shaded are A is given by $A=\frac{\pi x}{24}$ (ii) If the shaded area is one sixth of the area of the outer circle find the value of x	$\begin{aligned} & \frac{x}{360}\left(4^{2} \pi-1^{2} \pi\right) \\ & =\frac{x}{360}(15 \pi) \\ & =\frac{\pi x}{24} \end{aligned}$ $\text { (ii) } \begin{aligned} 6 \times \frac{\pi x}{24} & =16 \pi \\ x & =64^{\circ} \end{aligned}$	1

	tion Six (18 Marks)	Answers	Marks
A	Two straight roads PQ and PR are inclined to each other at 58°. Two bike riders begin simultaneously from P and travel along the (ii) roads at $18 \mathrm{~km} / \mathrm{h}$ and $24 \mathrm{~km} / \mathrm{h}$ respectively. After t hours they are 80 km apart in a direct line. i) Show that $t=\frac{80}{\sqrt{\left(900-864 \cos 58^{\circ}\right)}}$ ii) Find the value of t (correct to 2 decimal places)	$\begin{aligned} & 80^{2}=(18 t)^{2}+(24 t)^{2}-2(18 t)(24 t) \cos \\ & 80^{2}=324 t^{2}+576 t^{2}-864 t^{2} \cos 58 \\ & t^{2}(900+864 \cos 58)=80^{2} \\ & t^{2}=\frac{80^{2}}{900-864 \cos 58} \\ & t= \pm \sqrt{\frac{80^{2}}{900-864 \cos 58}} \\ &=\frac{80}{\sqrt{\left(900-864 \cos 58^{\circ}\right)}} \end{aligned}$ since $t>0$ $t=3.80 \text { hours. }$	$\begin{aligned} & 3 \\ & 1) \end{aligned}$
B	Two regular polygons have N and ($N-5$) number of sides. The number of degrees of each of their angles differ by 1 . (i) Show that $N^{2}-5 N-1800=0$ (ii) Find the possible value(s) of N .	$\begin{aligned} & \frac{(N-2) 180}{N}-\frac{(N-7) 180}{N-5}=1 \\ & (N-2)(N-5) 180-N(N-7) 180= \\ & \left(N^{2}-7 N+10\right) 180-\left(N^{2}-7 N\right) 180= \\ & \left(N^{2}-7 N 0\right) 180+1800-\left(N^{2}-7 N\right) 180 \\ & N^{2}-5 N-1800=0 \\ & (N-45)(N+40)=0 \\ & N=45,-40 \end{aligned}$ only possible value of N is 45 (since $N>0$	$\begin{aligned} & N(N-5 \\ & J^{2}-5 N \\ &= N^{2}- \\ &(3 \end{aligned}$ (2)

C	Consider the triangle ABC . i) Given the fact that $\operatorname{Sin} 2 \theta=2 \operatorname{Sin} \theta \operatorname{Cos} \theta$, use the sine rule to show that $\cos \theta=\frac{b}{2 a}$ ii) Hence prove that: $b^{2}=a(a+c)$ where $a \neq c$.	$\begin{aligned} & \frac{\sin 2 \theta}{b}=\frac{\sin \theta}{a} \\ & \frac{2 \sin \theta \cos \theta}{b}=\frac{\sin \theta}{a} \\ & \cos \theta=\frac{b}{2 a} \\ & \cos \theta=\frac{b^{2}+c^{2}-a^{2}}{2 b c} \\ & \frac{b}{2 a}=\frac{b^{2}+c^{2}-a^{2}}{2 b c} \\ & \frac{b^{2} c}{2 a}=b^{2}+c^{2}-a^{2} \\ & b^{2} c=b^{2} a+a\left(c^{2}-a^{2}\right) \\ & b^{2}(c-a)=a(c-a)(c+a) \\ & b^{2}=a(c-a)(c+a) \\ & b^{2}=a(c+a) \end{aligned}$
D	$A B C D$ is a cyclic quadrilateral. $B A$ and $C D$ are both produced and intersect at $E . B C$ and $A D$ produced intersect at F . The circles EAD, FCD intersect at G as well as at D. Prove that the points E, G and F are collinear.	Note $\alpha+\beta=180^{\circ}$ (opp. L's of cyclic quad. $A B C D$) $\angle E G D=\beta\left(\begin{array}{l}\text { ext. } L \text { of cychic quad } \\ A E G D \text { equal to od } \\ \text { a }\end{array}\right)$ AEGD equal to opp.) $\angle D G F=\alpha\binom{$ ext. L of cyclic $q u a d}{D G F$.$C equal to opp int. L}$ $\begin{aligned} \angle F G E & =\alpha+\beta \\ & =180^{\circ} \end{aligned}$ $\therefore E, G$ and F are collepear (4)

