SYDNEY BOYS HIGH SCHOOL
MOORE PARK, SURRY HILLS

Year 10

Yearly Examination 2009

Mathematics

General Instructions

- Working time -120 minutes
- Write using black or blue pen.
- Approved calculators may be used.
- All necessary working should be shown in every question if full marks are to be awarded.
- Marks may not be awarded for messy or badly arranged work.
- If more space is required, clearly write the number and the SECTION on the back page and answer it there. Indicate that you have done so.
- Write all answers in simplest exact form unless specified otherwise
- Clearly indicate your class by placing an \mathbf{X}, next to your class

Class	Teacher	
10 A	Mr McQuillan	
10 B	Ms Roessler	
10 C	Ms Nesbitt	
10 D	Mr Fuller	
10 E	Mr Hespe	
10 F	Mr Gainford	
10 G	Ms Evans	

NAME:

Examiner: E. Choy

Section	Mark
1	$/ 20$
2	$/ 20$
3	$/ 10$
4	$/ 20$
5	$/ 20$
6	$/ 20$
7	$/ 130$
Total	

Question One (20 marks)		Answers	Marks
A	Write down the gradient of the line $y=2 x-3$.		1
B	Simplify $\left(2 m^{3}\right)^{2}$		1
C	Expand and simplify $(\sqrt{3}-1)(\sqrt{3}+1)$		1
D	Write down the exact value of $\sin 60^{\circ}$.		1
E	Simplify $8^{\frac{1}{3}}$		1
F	Given that $\tan \alpha=0.42$ and α is acute, use your calculator to find the angle α, correct to the nearest minute.		1
G	If $P(x)=1-8 x^{2}+14 x^{3}-5 x^{4}$, write down the degree of the polynomial $P(x)$.		1
H	Using the remainder theorem, find the remainder when the polynomial $P(x)=2 x^{3}-x^{2}+3 x-1$ is divided by $(x-1)$.		1
I	Simplify $\frac{1}{a}+\frac{2}{a}$		1
J	Factorise $x^{2}-16$		1
K	Expand $(x-5)^{2}$		1
L	Write $\frac{1}{x}$ as a power of x.		1
M	Subtract 1-x from 1+x.		1
N	Two similar statues have volumes in the ratio $1: 64$. What is the ratio of their heights?		1

O	Sketch the graph of the line with equation $y=5$.		1
P	Solve for $x: 2 x-7=5-x$.	1	
Q	To what amount will $\$ 5000$ grow over 6 years if it is invested at 8\% p.a. compound interest compounded yearly. (Give your answer to the nearest cent.)		1
R	If $a=2 b \sqrt{\frac{c}{d}}$ express c in terms of a, b and d.	1	
S	Express $\sqrt[3]{2.5 \times 10^{6}}$ in standard (scientific) notation.		1
T	Simplify $\sqrt{4-4 x^{2}}-\sqrt{1-x^{2}}$		1

Question Two (20 marks)		Answers	Marks
A	Factorise $a^{2}+2 a b+b^{2}$		1
B	What test can be used to show that these two triangles are similar?		1
C	Ron was asked to write down the value of $\sqrt{16}$. He remembered that every positive number has two square roots, so that he wrote $\sqrt{16}= \pm 4$. Is Ron's answer correct? Give a reason for your answer.		1
D	What is the value of $-x^{2}$ when $x=5$?		1
E	Find the centre and exact radius of the circle with the equation $x^{2}+y^{2}+2 y-10=0$, by first completing the square in y.		1
F	The midpoint of an interval is $(2,8)$. Find two distinct points that could be the end points of this interval.		1
G	The surface area of a closed hemisphere is $12 \pi \mathrm{~cm}^{2}$. Find its radius.		1
H	(i) Write down the minimum value of $(x-1)^{2}+4$. (ii) Without doing any further working, write down the number of solutions of $(x-1)^{2}+4=1$.		2

I	Solve the equation $2^{x} \times 4=32$ for x.	1
J	Write down the exact value of : (i) $\tan \alpha$ (ii) $\tan \left(180^{\circ}-\alpha\right)$	2
K	Given the formula $F=\frac{9}{5} C+32^{\circ}$, find the value of C if $F=320^{\circ}$.	1
L	A new car costs $\$ 35690$. If it depreciates at a compound interest rate of 20% p.a., find its value, to the nearest dollar, at the end of four years.	1
M	Solve (algebraically) the pair of equations simultaneously. $\begin{aligned} & y=4 x-1 \\ & y=x+2 \end{aligned}$	1
N	On separate diagrams sketch the graphs of (i) $y=-x^{3}$	3

| (ii) $y=2 x^{2}$ | | |
| :--- | :--- | :--- | :--- |
| (iii) $y=-\sqrt{25-x^{2}}$ | | |
| (ii) Solve the equation $\sin \theta=\frac{1}{\sqrt{2}}$ for | | |
| $0^{\circ} \leq \theta \leq 180^{\circ}$. | | |

Question Three (10 marks)							Answers	Marks

| Question Five (20 marks) | Answers | Marks |
| :--- | :--- | :--- | :--- |
| | | |
| The diagram above shows the circle | | |
| (x-1) $+y^{2}=25$ with centre A(1, 0) and | | |
| radius 5. The point P(5, 3) lies on the | | |
| circumference of the circle. | | |
| (i) Find the gradient of AP. | | |
| (ii) Find, in general form, the equation of | | |
| the tangent at P. | | |

	stion Six (20 marks)	Answers	Marks
A	 (i) In the diagram above, P has coordinates $(-4,2)$. Find length of OP. (ii) Write down the exact value of $\cos \theta$.		2
B	In the diagram above, QP is a tangent to the circle, while QRS is a secant. If QP = a units, $\mathrm{QR}=b$ units and $\mathrm{RS}=c$ units. Write down an equation (do not prove this equation) showing the relationship between a, b and c.		2

C	The diagram above shows a cyclic quadrilateral ABCD . The diagonal BD of the quadrilateral passes through the centre O of the circle and $\angle C A D=42^{\circ}$. Find, giving reasons: (i) $\angle B A C$ (ii) $\angle B D C$	6
D	In the diagram above, C 1 and C 2 are circles intersecting at A and B . The tangent to C 1 at A meets C2 at P. Q is the point on C1 so that QB is parallel to AP. The chord QB intersects C2 at R. (i) Draw in the intervals AQ, AB and PR. (ii) Give a reason why $\angle P A B=\angle A Q B$. (iii) Give a reason why $\angle P A B=\angle P R B$ (iv) Explain why QA is parallel to RP. (v) Are QA and RP equal? Explain your answer.	10

| Question Seven (20 marks) | Marks |
| :--- | :--- | :--- |
| (i)Find the size of each interior angle in a
 regular hexagon. | |
| (ii) In the diagram above, the length of the | |
| straight line joining the midpoints of two | |
| adjacent sides of a regular hexagon is | |
| 12cm. | |

This is the end of the exam.

Question One (20 marks)		Answers	Marks
A	Write down the gradient of the line $y=2 x-3$.	$m=2$	1
B	Simplify $\left(2 m^{3}\right)^{2}$	$4 m^{6}$	1
C	Expand and simplify $(\sqrt{3}-1)(\sqrt{3}+1)$ $3-1$	$=2$	1
D	Write down the exact value of $\sin 60^{\circ}$.	$\sqrt{3} / 2$	1
E	Simplify $8^{\frac{1}{3}}$	2	- 1
F	Given that $\tan \alpha=0.42$ and α is acute, use your calculator to find the angle α, correct to the nearest minute.	$22^{\circ} 47^{\prime}$	1
G	If $P(x)=1-8 x^{2}+14 x^{3}-5 x^{4}$, write down the degree of the polynomial $P(x)$.	4	1
H	Using the remainder theorem, find the remainder when the polynomial $P(x)=2 x^{3}-x^{2}+3 x-1$ is divided by $(x-1) . \quad P(1)=2-1+3-1$	$=3$	1
I	Simplify $\frac{1}{a}+\frac{2}{a}$	$3 / a$	1
J	Factorise $x^{2}-16$	$(x+4)(x-4)$	1
K	Expand $(x-5)^{2}$	$x^{2}-10 x+25$	1
L	Write $\frac{1}{x}$ as a power of x.	x^{-1}	1
M	Subtract $1-x$ from $1+x$. $1+x-(1-x)$	$2 x$	1
N	Two similar statues have volumes in the ratio $1: 64$. What is the ratio of their heights?	$1: 4$	1

| Sketch the graph of the line with equation
 $y=5$. | |
| :--- | :--- | :--- | :--- |

τ		$\mathrm{I}=\downarrow+{ }_{z}(\mathrm{I}-x)$ $\stackrel{\rightharpoonup}{\nabla}+\underset{i}{ }(\mathrm{I}-x)$ 	H
1	$\frac{C}{1}=\lambda$		0
โ	$\left(x+\theta,\left(x 1^{\prime} \varepsilon\right)^{\prime}(+1)\right.$	 	H
I		 	G
I	STO		\square
1		 	5
1	$\operatorname{NnNmon} N$	 	g
I	$\mu(G+L)$	${ }_{\tau} q+q p_{Z}+{ }_{\tau} p$ วsبoperi	V
SYIRW	S.amsury	(syxeur 0Z) OML uoty	

(ii) $y=2 x^{2}$

	stion Three (10 marks)	Answers	Marks
A	In the diagram above DE is parallel to BC , $\mathrm{AE}=16, \mathrm{CE}=8$ and $\mathrm{DE}=12$. Let $\mathrm{BC}=x$. (i) Show that $\triangle A B C$ is similar to $\triangle A D E$. (ii) Find x.	$\begin{gathered} D \hat{A E}=\hat{B A C} \text { (common) } \\ A \hat{E D}=A \hat{C} B \text { (corresp. } \angle= \\ D E / / B C \\ \therefore \triangle A B C / / \triangle A D E(E q) \\ \frac{x}{12}=\frac{16+8}{16} \\ x=18 \end{gathered}$	iccug
B	A house has a hemispherical roof of diameter 15 metres. The roof is to be painted (on the outside only) with a special reflective coating that costs $\$ 120$ per litre. How much (correct to the nearest hundred dollars) will it cost to purchase enough of the coating to paint the roof if one litre of the coating will cover an area of $5 \mathrm{~m}^{2}$?	$\begin{aligned} & \text { Sung. Area }=2 \pi(7.5)^{2} \\ & \text { Lites }=\frac{2 \pi(7.5)^{2}}{5} \\ & \text { Sost }=\frac{2 \pi(7.5)^{2}}{5} \times 120 \\ & =\$ 8500 \end{aligned}$	7
C	Two similar cones have volumes $27 \mathrm{~cm}^{3}$ and $64 \mathrm{~cm}^{3}$. (i) Write down the ratio of the surface area of the smaller cone to the larger cone. (ii) Find the radius of the smaller cone if its height is $\frac{9}{\pi} \mathrm{~cm}$.	Side natio $=3: 4$ \therefore Area nafio $=9: 16$ $\begin{aligned} \frac{\pi}{3} \cdot r^{2} \cdot \frac{9}{\pi} & =27 \\ r^{2} & =9 \\ r & =3 \mathrm{~cm} \end{aligned}$	4

B	The line l with equation $4 x+y=7$ intersects the parabola P from part (A) in two distinct points. (i) Use simultaneous equations to find the two points of intersection. (ii) Go back to your sketch on part (A)(iii) and include the line l, showing clearly its points of intersection with the parabola P.	$\begin{align*} & y=x^{2}-10 x \tag{1}\\ & y=7-4 x \tag{2}\\ & \text { sub (i) into } \end{align*}$ sub (1) into (2) $\begin{aligned} & x^{2}-10 x=7-4 x \\ & x^{2}-6 x-7=0 \\ & (x-7)(x+1)=0 \\ & x=-1,7 \end{aligned}$ sub into (2) when $x=-1$ $\begin{aligned} & y=7-4(-1) \\ & y=11 \end{aligned}$ $y=7-4(7)$ $y=-21$ \therefore points of intersection are $(-1,11) \&(7,-21)$
C	The diagram above shows a pyramid with square base $A B C D$. Point P is the apex of the pyramid. It is given that $\mathrm{PD}=\mathrm{PB}=8$ and $\angle P B D=60^{\circ}$. The point P lies vertically above the centre X of the square. (i) Find length DB giving reasons. (ii) Find the exact volume of the pyramid.	$P D=P B=8 \text { (given) }$ $\therefore \triangle P B D$ is isosceles. $\angle P B D=60^{\circ} \text { (given) }$ If an angle in an isosceles triangle is 60° the triangle is in fact equilateral $\therefore D B=8$ units p $\begin{aligned} 8^{2} & =x^{2}+x^{2} \\ 2 x^{2} & =64 \\ x^{2} & =32 \end{aligned}$ $8^{2}=h^{2}+4^{2}$ $n^{2}=48$ $h=\sqrt{48}$ $n=4 \sqrt{3}$ $\begin{aligned} & V=\frac{1}{3} A h \\ & V=\frac{1}{3} x^{2} h \\ & V=\frac{1}{3}(32)(4 \sqrt{3}) \\ & V=\frac{128 \sqrt{3}}{3} \end{aligned}$ units 3

Question fine (y/o)

$$
\begin{aligned}
m_{A P} & =\frac{3-0}{5-1} \\
& =\frac{3}{4}
\end{aligned}
$$

Hence yradient of Cangent is $\frac{-4}{3}$
Eqr of tangent is

$$
\begin{aligned}
& y-3=-\frac{4}{3}(x-5) \\
& 3 y-9=-4 x+20 \\
& 4 x+3 y-29=0
\end{aligned}
$$

B

$$
y=a x^{2}
$$

Sence $(-1,2)$ hies on groph.

$$
2=a(-1)^{2}
$$

Since $(-1)^{n}= \pm 1 \sim$ an enteger

$$
\begin{aligned}
a & = \pm 2 \\
\text { If } a & =2
\end{aligned}
$$

Then wher $x>0, y>0$ But dagram ahows

$$
x>0, y<0
$$

Hence $a=-2$

$$
y=-2 x^{2}
$$

consudering all de forvible integer values of $n, n \neq 0$ the only vabues ctat satisfy the doogram are $n=-1,-3,-5, \cdots$.

B	In the diagram above, the vertices of $\triangle A B C$ and $\triangle A D C$ are on the circumference of a circle with centre O , and $\angle C A D=90^{\circ}$. Let the diameter $\mathrm{CD}=d$ and let $\mathrm{AC}=b$. (i) Explain why $\angle A D C=\angle A B C$. (ii) Hence show that $\frac{b}{\sin B}=d$.	(i) Angles inthe sume segmat $\begin{align*} & (i i) \sin D=\frac{b}{d . \quad 1} \\ & \frac{b}{\sin D=d} \quad 1 \tag{3}\\ & \therefore \frac{b}{\sin B}=d . \quad 1 \\ & \text { smee } \angle D=\angle B . \end{align*}$	4
C	The maximum daily temperatures $\left({ }^{\circ} \mathrm{C}\right)$ recorded in a city over a period of 20 days are given below. (i) Find the range of the temperatures. (ii) Find the interquartile range of the temperatures. (iii) Find the standard deviation, correct to 1 decimal place. (iv) What would be the two most appropriate measures of spread for these temperatures? Why?	(i) $11^{6} \mathrm{C}$. (ii) $\begin{aligned} Q Q 2 & =27.5 \\ Q 1 & =25.5 \\ Q 3 & =30 \\ Q 3-Q & =4.51 \end{aligned}$ (iii) 2.9 (iv) Range o triter Qua Larce. Tho fe	4 1

Use this space if you wish to REWRITE any answers Clearly indicate the QUESTION number
\geqslant,

FCa.

