

SYDNEY BOYS HIGH SCHOOL MoORE PARK, SURRY HILLS

Year 10

Yearly Examination 2010

Advanced Mathematics

General Instructions

- Working time - 120 minutes
- Write using black or blue pen.
- Approved calculators may be used.
- All necessary working MUST be shown in every question if full marks are to be awarded.
- Marks may not be awarded for untidy or badly arranged work.
- If more space is required, clearly write the number of the QUESTION on one of the back pages and answer it there. Indicate that you have done so.
- All answers must be given in exact simplified form unless otherwise indicated.
- Clearly indicate your class by placing an X , next to your class

Examiner: B. Kilmore

NAME:

Class	Teacher	
10 A	Mr Fuller	
10 B	Ms Nesbitt	
10 C	Ms Ward	
10 D	Ms Roessler	
10 E	Mr McQuillan	
10 F	Mr Boros	
10 G	Mr Hespe	

Question	Mark
1	$/ 20$
2	$/ 20$
3	$/ 15$
4	$/ 20$
5	$/ 15$
6	$/ 16$
7	$/ 126$

Question One (20 marks)		Answers	Marks
a	Write 23570000 in scientific notation.		1
b	Write the equation of the line shown below.		2
c	Write with a positive index: $\left(\frac{a}{b}\right)^{-2}$		1
d	Write with a rational denominator in simplest form: $\frac{4}{3 \sqrt{2}}$		1
e	Calculate the following, giving your answer correct to 2 decimal places. $\frac{4^{3}-5.14}{2+\sqrt{65-3.2^{2}}}$		1
f	Given that $f(x)=x^{2}-3$, find the value of $f(-4)$		1
g	Write the equation of a circle with centre the origin and a radius of 6 units.		1
h	Multiple Choice: A distribution of 10 scores has a mean of 75. If the highest score is increased by 5 , the new mean will be: A. 77.5 B. 80 C. 75.5 D. cannot be determined		1

	Question One (continued)	Answers	Marks
i	Solve : $3-2 x \leq 7$		2
j	Find the least value of $3+(x-1)^{2}$		1
k	Kelly runs the 14km City to Surf Race in 2 hours and 15 minutes. What is her speed in metres/second? Give your answer correct to two decimal places.		2
1	Sketch the region given by $\mathrm{x}^{2}+\mathrm{y}^{2}<9$		1
m	Simplify $3 \sqrt{54}+\sqrt{24}$		1
n	Expand and simplify: $(x-7)^{2}$		1
0	Given that $\sin \theta=0.819$, find θ to the nearest degree if θ is an obtuse angle.		1
p	A letter is chosen at random from the word PARRAMATTA i. What is the probability that it is a T? ii. What is the probability that it is not a vowel?		2

Question Three (15 Marks)		Answers	Marks
aShade the region on the number plane where $x+y \leq 4$ and $2 y>3 x+6$		3	

	Question Three (continued) ii.$y=2^{x}$ (Show the y-intercept as well as one other point) iii. $y=(x-4)(x-1)(x+5)$ (Indicate the intercepts)		Answers

	Question Three (continued)		Answers
e	Find the value of the angle a, giving reasons in full. (The centre of the circle is labelled ' O^{\prime}.)		

| Question Four (20 Marks) | Answers | Marks |
| :---: | :---: | :---: | :---: |
| aFor the parabola:
 $y=x^{2}+2 x-8$
 find
 i.
 ine
 ii.
 The y-intercept
 iii.
 The vertex
 iv.
 Hence, sketch the graph | | 4 |

	Question Four (continued)		Answers
cThe materials to make 25kg of an alloy of copper and zinc cost $\$ 62$. If the copper costs $\$ 3.20 / \mathrm{kg}$ and zinc costs $\$ 1.40 / \mathrm{kg}$, find the composition of the alloy.		3	

	Question Four (continued)		Answers
f	In the diagram below $\angle B O C=x^{\circ}$, $\angle B D C=y^{\circ}$ and $\angle B A C=48^{\circ}$. O is the centre of the circle. Find the values of x° and y° giving reasons in full.		3

| Question Five (20 Marks) | Answers | Marks |
| :--- | :--- | :--- | :---: |
| aSolve the following simultaneous
 equations:
 $y=x^{2}-5 x+8$
 $y=2 x-4$ | | 3 |

	Question Five (continued)		Answers
d	Find the surface area of this object correct to the nearest c^{2} if it is to be coated both inside and out with a rust protector. The radius of the small cylinder is 5cm and the radius of the large cylinder is 15cm.		

	Ques	ion Five (continued)	Answers	Marks
f	$A B$ is an interval with $A(0,2)$ and $B(4,0)$			5
		Find the midpoint of AB		
		Find the gradient of the perpendicular bisector of $A B$		
		Hence, or otherwise, find the equation of the perpendicular bisector of AB		

	Question Six (continued)		Answers
d	Given: $\mathrm{AB}=\mathrm{AC}$ and XAY is a tangent to the circle at A. Prove that BC // XY.		

	Question Six (continued)		Answers
f	A farmer has a triangular field ABC which has side $\boldsymbol{a}=\mathbf{1 7 k m}$, side $\boldsymbol{b}=$ $\mathbf{1 3 k m}$ and side $\boldsymbol{c}=\mathbf{1 1 \mathbf { k m } . \text { Calculate }}$ the cost of fertilizer if the farmer needs to use 1 tonne of fertilizer for every square kilometre and fertilizer costs \$155.50 per tonne (or part thereof).		4

| Question Seven (16 Marks) | Answers | Marks |
| :--- | :--- | :--- | :---: |
| aTranspose the following formula to
 make b the subject.
 $v=a\left(\frac{1}{b}-\frac{1}{c}\right)$ | 2 | |

	Question Seven (continued)		Answers
c	The sum of the squares of two consecutive positive odd integers exceeds the product of the integers by 147. Find them.		3
d	A plane leaves town A and flies on a bearing of 120° for 600 km to point P. It then changes direction to fly on a bearing of 230° until it reaches town B. The distance between town A and town B is 1100km.		
i.Draw a clear diagram showing the plane's trip showing all salient information. ii. Find the distance from town P to town B Show all angle calculations on your diagram.			

	Question Seven (continued)	Answers	Marks
e	By considering x^{2} or otherwise, find the value of x as an integer: $x=\sqrt{6+\sqrt{6+\sqrt{6+\sqrt{6+\ldots}}}}$ 		

Question One (20 marks)		Answers	Marks
	Write 23570000 in scientific notation.	2.357×10^{7}	1
b	Write the equation of the line shown below.	$\begin{aligned} & y=-x+4 \\ & x+y-4=0 \end{aligned}$	2
c	Write with a positive index: $\left(\frac{a}{b}\right)^{-2}$	$\left(\frac{b}{a}\right)^{2}$	1
d	Write with a rational denominator in simplest form: $\frac{4}{3 \sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}}=\frac{4 \sqrt{2}}{3 \times 2}$	$\frac{2 \sqrt{2}}{3}$	1
e	Calculate the following, giving your answer correct to 2 decimal places. $\frac{4^{3}-5.14}{2+\sqrt{65-3.2^{2}}}$	$6 \cdot 26$	1
f	Given that $f(x)=x^{2}-3$, find the value of $f(-4)$	$\begin{aligned} f(-4) & =(-4)^{2}-3 \\ & =16-3 \\ & =13 \end{aligned}$	1
g	Write the equation of a circle with centre the origin and a radius of 6 units.	$x^{2}+y^{2}=36$	1
h	Multiple Choice: A distribution of 10 scores has a mean of 75. If the highest score is increased by 5 , the new mean will be: A. 77.5 B. 80 C. 75.5 D. cannot be determined	$\frac{10 \times 75+5}{10}=75.5$	1

	Question One (continued)	Answers	Marks
i	Solve: $3-2 x \leq 7$	$\begin{aligned} -2 x & \leq 4 \\ x & \geqslant-2 \end{aligned}$	2
j	Find the least value of $3+(x-1)^{2}$	when $x=1$, ratue $\therefore 3$	1
k	Kelly runs the 14 km City to Surf Race in 2 hours and 15 minutes. What is her speed in metres/second? Give your answer correct to two decimal places.	$\frac{14000 \mathrm{~m}}{2.25 \times 3600 \mathrm{~s}} \approx 1.73 \mathrm{~m} / \mathrm{s}$	2
1	Sketch the region given by $\mathrm{x}^{2}+\mathrm{y}^{2}<9$		1
m	Simplify $3 \sqrt{54}+\sqrt{24}=3 \sqrt{9 \times 6}+\sqrt{4 \times 6}$	$\begin{aligned} & =9 \sqrt{6}+2 \sqrt{6} \\ & =11 \sqrt{6} \end{aligned}$	1
n	Expand and simplify: $(x-7)^{2}$	$x^{2}-7 x-7 x+49=x^{2}-14 x+49$	1
o	Given that $\sin \theta=0.819$, find θ to the nearest degree if θ is an obtuse angle. $\sin ^{-1}(0.819) \div 54.98^{\circ}$	$180^{\circ}-54.98^{\circ} \approx 125^{\circ}$	1
p	A letter is chosen at random from the word PARRAMATTA i. What is the probability that it is a T? ii. What is the probability that it is not a vowel?	(i) $\frac{2}{10}=\frac{1}{5}$ (ii) $\frac{6}{10}=\frac{3}{5}$ or $1-\frac{4}{10}=\frac{3}{5}$	2

	estion Three (15 Marks)	Answers	Marks
a	Shade the region on the number plane where $x+y \leq 4$ and $2 y>3 x+6$ $\begin{aligned} & y>\frac{3}{2} x+3 \\ & y \leq-x+4 \end{aligned}$		3
b	Find the value of m such that $\frac{1-2 \sqrt{2}}{\sqrt{2}-1}=m-\sqrt{2}$	v $m=-3$	2
c	Draw a sketch of the following functions: i. $y=\frac{-1}{x}$ (Indicate 2 points)		$\begin{array}{r} 4 \\ -1 \\ \hline \end{array}$

	Question Three (continued)	Answers	Marks
	ii. $y=2^{x}$ (Show the y-intercept as well as one other point) iii. $y=(x-4)(x-1)(x+5)$ (Indicate the intercepts)		
d	Find θ, correct to the nearest minute, in the triangle ABC drawn below.	$\begin{aligned} \frac{\sin \theta}{9} & =\frac{\sin 59}{11} \\ \sin \theta & =\frac{9 \sin \rho 4}{11} \\ \theta & =44^{\circ} 32^{1} \end{aligned}$	2

	uestion Four (20 Marks)	Answers	Marks
a	For the parabola: $y=x^{2}+2 x-8$ find i. The x -intercept ii. The y-intercept iii. The vertex iv. Hence, sketch the graph	$\begin{aligned} & x=-4,2 \\ & y=-8 \\ & (-1,-9) \end{aligned}$	4
b	Find the volume of this cone:	$\begin{aligned} V & =\frac{1}{3} \pi r^{2} h \\ & =\frac{1}{3} \times \pi \times 8^{2} \times 18 \\ \div & 1206.37 \mathrm{~cm}^{3} \\ & o r \\ & 384 \pi \mathrm{~cm}^{3} \end{aligned}$	2

	Question Four (continued)	Answers	Marks	
c	The materials to make 25 kg of an alloy of copper and zinc cost $\$ 62$. If the copper costs $\$ 3.20 / \mathrm{kg}$ and zinc costs $\$ 1.40 / \mathrm{kg}$, find the composition of the alloy.	$\begin{gathered} x \text { copper }+y \text { zine }=25 \\ 3.20 x+1.40 y=62 \\ x+y=25-140 y=6200 \text { (0) } \end{gathered}$ 15 lig copper $10 \log$. zinc	3	
d	Sketch this curve by first completing the square on x : $\begin{aligned} & x^{2}-6 x+y^{2}=7 \\ & (x-3)^{2}+y^{2}=4^{2} \end{aligned}$ centre $(3,0)$ radius 4		2	
e	i. Prove that $\triangle L M P \\| \triangle P Q R$ ii. Hence write an equation and solve it to find the value of x.	(i.) Equiangular $\text { (ii) } \begin{aligned} \frac{24}{40} & =\frac{x}{36} \\ x & =21.6 \end{aligned}$	3	

	uestion Five (20 Marks)	Answers	Marks
a	Solve the following simultaneous equations: $\begin{align*} & y=x^{2}-5 x+8 \\ & y=2 x-4 \\ & 2 x-4=x^{2}-5 x+8 \tag{2}\\ & x^{2}-7 x+12=0 \tag{1}\\ & (x-3)(x-4)=0 \end{align*}$	$\begin{aligned} & x=3,4,2 \\ & y=2 \text { or } 4 \end{aligned}$ Qfor no 'y' values	3
b	Describe how the graph of $y=-(x-2)^{2}+1$ differs from the graph of $y=x^{2}$	Moved up 1 unt MOVED RIGHT 2 UNTS REFLECTED in x axi	$\begin{aligned} & D^{3} \\ & 1 \\ & 1 \end{aligned}$
c	The chord of a circle to an external point T cuts the circumference at Y and Z. A tangent from T meets the circumference at W. Given that $T Z=40 \mathrm{~cm}, Z Y=50 \mathrm{~cm}$, calculate the length of TW. Give reasons for your answer.	$\begin{aligned} T W^{2} & =Y T \times z T \cdot(\text { Tand } \\ & =90 \times 40 \\ & =3600 \\ T W & =+\sqrt{3600} \\ T W & =60 \end{aligned}$	2 ent Thn

Find the mode of this data:
Lit =

$$
\begin{aligned}
& \frac{y-z-(x-z)+x-y}{(x-y x x-2)(y-z)} \\
& =0
\end{aligned}
$$

Cumulative Frequency Histogram

Score
c Use the remainder theorem to find the remainder for the following division:
$\left(2 x^{3}+7 x-13\right) \div(x-2)$
$P(2)=2(2)^{3}+2(2)-13$

$$
=17
$$

	Question Six (continued)	Answers	Marks	
d	Given: $A B=A C$ and $X A Y$ is a tangent to the circle at A . Prove that $\mathrm{BC} / / \mathrm{XY}$.	$\angle X A B=\angle A C B$ (HLT segment theown) $\angle A C B=\angle A B C$ (base anjles of) soseles $\triangle A B C$) $\therefore \angle X A B=\angle A B C$ $\therefore x y \\| B C$ (altemate is equai)	3	
e	If θ is an acute angle and $\cos \theta=\frac{3}{7}$, Find $\sin \theta$. (Answer in simplest surd form.	$\begin{aligned} \operatorname{Sin} \theta & =\frac{\sqrt{40}}{7} \\ & =\frac{2 \sqrt{10}}{7} \end{aligned}$	3	

	uestion Seven (16 Marks)	Answers	Marks
a	Transpose the following formula to make b the subject. $v=a\left(\frac{1}{b}-\frac{1}{c}\right)$	$\begin{aligned} & v=a\left(\frac{1}{b}-\frac{1}{c}\right) \\ & \frac{v}{a}=\frac{1}{b}-\frac{1}{c} \\ & \frac{v}{a}+\frac{1}{c}=\frac{1}{b} \\ & \frac{v c+a}{a c}=\frac{1}{b} \\ & b=\frac{a c}{v c+a} \end{aligned}$	2
b	A lampshade is made by cutting off the top part of a cone. Find the area of material required to make this lampshade if the top opening has a radius of 7 cm and the bottom opening has a radius of 14 cm and the lampshade is 24 cm tall.	using similar triangles $\begin{aligned} \frac{x}{x+24} & =\frac{7}{14} \\ \frac{x}{x+24} & =\frac{1}{2} \\ 2 x & =x+24 \\ x & =24 \end{aligned}$ $\begin{aligned} & S_{1}^{2}=24^{2}+7^{2} \\ & S_{1}=625 \\ & S_{1}=25 \end{aligned}$ $S_{2}=50$ $\begin{aligned} \text { Area } & =\pi R S_{2}-\pi r S_{1} \\ & =\pi(14)(50)-\pi(7)(25) \\ & =525 \pi \mathrm{~cm}^{2} \\ & \approx 1649.34 \mathrm{~cm}^{2} \end{aligned}$	4

use sine rule twice: Find size of $\hat{A B P}$.
Find value of x.

