

Year 10

Yearly Examination 2010

Advanced Mathematics

General Instructions

- Working time 120 minutes
- Write using black or blue pen.
- Approved calculators may be used.
- All necessary working MUST be shown in every question if full marks are to be awarded.
- Marks may not be awarded for untidy or badly arranged work.
- If more space is required, clearly write the number of the QUESTION on one of the back pages and answer it there. Indicate that you have done so.
- All answers must be given in exact simplified form unless otherwise indicated.
- Clearly indicate your class by placing an X, next to your class

NAME:

Class	Teacher
10 A	Mr Fuller
10 B	Ms Nesbitt
10 C	Ms Ward
10 D	Ms Roessler
10 E	Mr McQuillan
10 F	Mr Boros
10 G	Mr Hespe

Question	Mark
1	/20
2	/20
3	/15
4	/20
5	/20
6	/15
7	/16
Total	/126

Examiner: B. Kilmore

Quest	ion One (20 marks)	Answers	Marks
a	Write 23570000 in scientific notation.		1
b	Write the equation of the line shown		2
	below.		
	<i>y</i>		
	5+		
	-10 -5 -10 ×		
	-5‡		
	-10		
C	v (2		1
	Write with a positive index: $\left(\frac{a}{a}\right)$		1
	(b)		
d	Write with a rational denominator in		1
	simplest form:		
	4		
	$\frac{1}{3\sqrt{2}}$		
e	Calculate the following, giving your		1
	answer correct to 2 decimal places.		
	l		
	$4^3 - 5.14$		
	$\frac{1}{2}$		
C	$2+\sqrt{65-3.2}$		1
I	Given that $f(x) = x^2 - 3$, find the value		1
	of $f(-4)$		
g	Write the equation of a circle with centre		1
U	the origin and a radius of 6 units.		
h	Multiple Choice:		1
	A distribution of 10 scores has a mean of		
	75. If the highest score is increased by 5,		
	the new mean will be:		
	A. (1.5 B. 80 C. 75.5		

	Question One (continued)	Answers	Marks
i	Solve : $3-2x \le 7$		2
	2		
j	Find the least value of $3 + (x-1)^2$		1
k	Kelly runs the 14km City to Surf Race in 2 hours and 15 minutes. What is her speed in metres/second? Give your answer correct to two decimal places.		2
1	Sketch the region given by $x^2 + y^2 < 9$		1
m	Simplify $3\sqrt{54} + \sqrt{24}$		1
n	Expand and simplify: $(x-7)^2$		1
0	Given that $\sin \theta = 0.819$, find θ to the nearest degree if θ is an obtuse angle.		1
p	A letter is chosen at random from the word PARRAMATTA i. What is the probability that it is a T? ii. What is the probability that it is not a vowel?		2

Qu	estion Two (20 Marks)	Answers	Marks
a	These are the marks achieved by two		3
	students in five revision tests		
	Hung : 39, 45, 21, 38, 27		
	Deng : 25, 44, 47, 19, 29		
	i. Use your calculator to work		
	out the mean and standard		
	deviation for each student.		
	ii. Whose results are the most		
	consistent? Why?		
b	Factorise: $ef - 2f - 2e + f^2$		2
с	Solve the following simultaneous		2
-	equations:		
	*		
	2x + y = 4		
	5r - 2v - 19		
	$\int x - 2y - 1y$		

	Question Two (continued)	Answers	Marks
d	For which values of x will the		3
	following functions be undefined?		
	i. $q(x) = \frac{3x+7}{3x+7}$		
	x - 2		
	ii. $y = \sqrt{x^2 - 9}$		
e	Solve the following equations:		4
	2		
	i. $3x^2 - 48 = 0$		
	\therefore 2^2 7 4		
	11. $2x - 7x = 4$		
f	Solve by using the quadratic		2
	formula. Leave your answer in		
	simplified surd form.		
	2 0 0 0		
	$x^2 - 8x - 3 = 0$		
1			
1			
~	~: <i>~ 6</i> 00		1
g	Find the exact value of $\frac{\sin 60}{\cos 200}$		1
1	cos 60°		

	Question Two (continued)	Answers	Marks
h	Find the length of DC correct to 2 decimal places:		3
	B 12cm 56° A D C		

Qu	estion Three (15 Marks)	Answers	Marks
a	Shade the region on the number		3
	plane where		
	$x + y \le 4$ and $2y > 3x + 6$		
b	Find the value of <i>m</i> such that		2
	$1 - 2\sqrt{2} - m \sqrt{2}$		
	$\frac{1}{\sqrt{2}-1}$ - m - $\sqrt{2}$		
C	Draw a sketch of the following		6
C	functions:		0
	-1		
	i. $y = \frac{1}{x}$		
	<i>X</i>		
	(Indicate 2 points)		
	(indicate 2 points)		

	Question Three (continued)	Answers	Marks
	ii. $y = 2^x$ (Show the v-intercept as well		
	as one other point)		
	iii. $y = (x-4)(x-1)(x+5)$		
	(Indicate the intercepts)		
d	Find θ , correct to the nearest minute, in the triangle ABC drawn below.		2
	C 11m 9m 59° A B		

	Question Three (continued)	Answers	Marks
e	Find the value of the angle <i>a</i> , giving		2
	reasons in full. (The centre of the		
	circle is labelled 'O'.)		
	· · · · · · · · · · · · · · · · · · ·		
	A		
1			
1			
1			
1			
1			
1			
1			
1			
1			
1			
1			

Qu	estion Four (20 Marks)	Answers	Marks
a	For the parabola:		4
	$y = x^2 + 2x - 8$		
	find		
	i. The x-intercept		
	ii. The y-intercept		
	iii. The vertex		
	iv Hence sketch the graph		
	iv. Thenee, sketch the graph		
b	Find the volume of this cone:		2
	۸ (A)		
	Λ		
	180m		
	16cm		

	Question Four (continued)	Answers	Marks
с	The materials to make 25kg of an		3
	alloy of copper and zinc cost \$62. If		
	the copper costs \$3.20/kg and zinc		
	costs $$1.40/kg$, find the composition		
	of the alloy.		
	, i i i i i i i i i i i i i i i i i i i		
d	Sketch this curve by first completing		2
	the square on x :		
	$x^2 - 6x + y^2 = 7$		
e	i. Prove that $\Delta LMP \parallel\mid \Delta PQR$		3
	L 24 M		
	15		
	x 15		
	ХР ХР		
	25 36		
	23 23		
	Q 40 R		
	ii. Hence write an equation and		
	solve it to find the value of <i>x</i> .		

	Question Four (continued)	Answers	Marks
f	In the diagram below $\angle BOC = x^{\circ}$,		3
	$\angle BDC = y^{\circ}$ and $\angle BAC = 48^{\circ}$.		
	<i>O</i> is the centre of the circle. Find the		
	values of x° and y° giving reasons		
	in full		
	A		
	480		
	x		
	/ / / c		
	B		
	D		
g	Fully factorise, if $(x-1)$ is one of		3
0	the factors of		-
	$x^{3}-13x+12=0$		

Q	uestion Five (20 Marks)	Answers	Marks
a	Solve the following simultaneous		3
	equations:		
	$y = x^2 - 5x + 8$		
	y = 2x - 4		
1			2
b	Describe how the graph of		3
	$y = -(x-2)^2 + 1$ differs from the graph of		
	$y = x^2$		
с	The chord of a circle to an external point		2
	T cuts the circumference at Y and Z. A		
	tangent from T meets the circumference at		
	<i>W</i> .		
	Given that $TZ = 40$ cm $ZV = 50$ cm		
	Given that $TZ = 400$ m, $ZI = 500$ m, calculate the length of TW		
	Cive records for your ensure		
	Give reasons for your answer.		
	~		
	W		
	γ		

	Quest	ion Five (continued)	Answers	Marks
f	AB is	an interval with $A(0,2)$ and $B(4,0)$		5
	i.	Find the midpoint of AB		
	ii.	Find the gradient of the perpendicular bisector of AB		
	iii.	Hence, or otherwise, find the equation of the perpendicular bisector of AB		

Que	estion Six (15 Marks)	Answers	Marks
a	Show that		3
	$\frac{1}{(x-y)(x-z)} + \frac{1}{(y-z)(y-x)} + \frac{1}{(z-x)(z-y)} = 0$		
b	Find the mode of this data: Cumulative Frequency Histogram 0 0 0 0 0 0 0 0 0 0 0 0 0		
С	Use the remainder theorem to find the remainder for the following division: $(2x^3 + 7x - 13) \div (x - 2)$		1

	Question Six (continued)	Answers	Marks
d	Given: $AB = AC$ and XAY is a tangent		3
	to the circle at A.		
	Prove that BC // XY.		
	, Y		
	A		
	$x \to (X)$		
	C C		
	8		
Α	3		3
C	If θ is an acute angle and $\cos \theta = \frac{3}{7}$,		5
	Find $\sin \theta$. (Answer in simplest surd		
	form.		
1			

	Question Six (continued)	Answers	Marks
f	A farmer has a triangular field ABC		4
	which has side $a = 17km$, side $b =$		
	13km and side $c = 11km$. Calculate		
	the cost of fertilizer if the farmer needs		
	to use 1 tonne of fertilizer for every		
	square kilometre and fertilizer costs		
	\$155.50 per tonne (or part thereof)		

Q	uestion Seven (16 Marks)	Answers	Marks
a	Transpose the following formula to		2
	make b the subject.		
	$v = a \left(\frac{1}{b} - \frac{1}{c} \right)$		
b	A lampshade is made by cutting off the top part of a cone. Find the area of material required to make this lampshade if the top opening has a radius of 7 cm and the bottom opening has a radius of 14cm and the lampshade is 24cm tall.		4
	shade		

	Question Seven (continued)	Answers	Marks
с	The sum of the squares of two		3
	consecutive positive odd integers		
	exceeds the product of the integers by		
	147. Find them.		
d	A plane leaves town A and flies on a		4
	bearing of 120° for 600km to point <i>P</i> . It		
	then changes direction to fly on a bearing of 220° until it reaches town B . The distance		
	between town A and town B is 1100km		
	between town A and town B is 1100km.		
	i. Draw a clear diagram showing the		
	plane's trip showing all salient		
	information.		
	ii Find the distance from town P to		
	town B		
	town D		
	Show all angle calculations on		
	your diagram.		
i i			1

	Question Seven (continued)	Answers	Marks
e	By considering x^2 or otherwise, find the		3
	value of x as an integer:		
	$x = \sqrt{6} + \sqrt{6} + \sqrt{6} + \sqrt{6} + \dots$		

Quest	ion One (20 marks)	Answers	Marks
а	Write 23570000 in scientific notation.	2.357×107	1
b	Write the equation of the line shown below.	· · · · · · · · · · · · · · · · · · ·	2
		y = -x + 4 or $x + y - 4 = 0$	-
	-10		
с	Write with a positive index: $\left(\frac{a}{b}\right)^{-2}$	$\left(\frac{b}{a}\right)^2$	1
d	Write with a rational denominator in simplest form: $\frac{4}{3\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} = \frac{4\sqrt{2}}{3\times 2}$	$=\frac{2\sqrt{2}}{3}$	1
e	Calculate the following, giving your answer correct to 2 decimal places. $\frac{4^3 - 5.14}{2 + \sqrt{65 - 3.2^2}}$	6.26	1
f	Given that $f(x) = x^2 - 3$, find the value of $f(-4)$	$ \begin{aligned} f(-4) &= (-4)^2 - 3 \\ &= 16 - 3 \\ &= 13 \end{aligned} $	1
g	Write the equation of a circle with centre the origin and a radius of 6 units.	$\pi^2 + \gamma^2 = 36$	1
h	 Multiple Choice: A distribution of 10 scores has a mean of 75. If the highest score is increased by 5, the new mean will be: A. 77.5 B. 80 C. 75.5 D. cannot be determined 	$\frac{10 \times 75 + 5}{10} = 75.5$	1

- Solaria

	Question One (continued)	Answers	Marks
i	Solve: $3-2x \le 7$	$-2x \neq 4$	2
		z >-2	
j	Find the least value of $3 + (x - 1)^2$	when x=1, value in 3	1
k	Kelly runs the 14km City to Surf Race in 2 hours and 15 minutes. What is her speed in metres/second? Give your answer correct to two decimal places.	14000 m 2.25 × 36005 7 1.73 m/s	2
1	Sketch the region given by x ² + y ² < 9	-3^{\prime}	1
m	Simplify $3\sqrt{54} + \sqrt{24} = 3\sqrt{9 \times 6} + \sqrt{4 \times 6}$	= 956+256 = 1156	- 1
n	Expand and simplify: $(x-7)^2$	$x^2 - 7x - 7x + 49 = x^2 - 14x + 49$	1
0	Given that $\sin \theta = 0.819$, find θ to the nearest degree if θ is an obtuse angle. $\operatorname{Aim}^{-1}(0.819) \stackrel{!}{=} 54.98^{\circ}$	180°-54.98° ~ 125°	1
p	 A letter is chosen at random from the word PARRAMATTA i. What is the probability that it is a T? ii. What is the probability that it is not a vowel? 	$(i) \frac{2}{10} = \frac{1}{5}$ $(ii) \frac{4}{10} = \frac{3}{5}$ $or 1 - \frac{4}{10} = \frac{3}{5}$	2
-	·		

Question Two (20 Marks) Answers Marks These are the marks achieved by two а 3 students in five revision tests Hung ²⁷34 SD 8.7 Deng ²⁷35 SD 10.9 32.8 (i) Hung: 39, 45, 21, 38, 27 Deng: 25, 44, 47, 19, 29 i. Use your calculator to work out the mean and standard deviation for each student. smaller SD fle more consistent Halfig ii. Whose results are the most consistent? Why? 1 Ъ Factorise: $ef - 2f - 2e + f^2$ 2 (e+f)(f-2)2 ef+f2-2f-2e. f(e+f) - 2(e+f)Solve the following simultaneous 2 с $(i) \times 2$ f(x+2y) = 85(x-2y) = 19equations: + 2x + y = 4 (1) 5x - 2y = 19/11x = 26+y= x = 350 4=-2 (3,-3

		Question Two (continued)	Answers	Marks
	d	For which values of x will the following functions be undefined?	(i) エキん·	$\begin{pmatrix} 3 \\ \end{pmatrix}$
		i. $g(x) = \frac{3x+7}{x-2}$		
		ii. $y = \sqrt{x^2 - 9}$	(ii) -3223	\bigcirc
			(accept x>-3, x<3)	2
	e	Solve the following equations:	$3x^2 - 48 = 0$	4
		1. $3x^2 - 48 = 0$	$\frac{1}{3} x^2 - 16 = 0$ (x 4) x + 4) = 0 (x)	
		$ii. 2x^2 - 7x = 4$	$\begin{array}{c} (1-4) x = \pm 4 \end{array} $	
			2x - 7x - 4 = 0 $(2x + E) x - 4$	
			$\chi = -\frac{1}{2}, \chi = 4(2)$	
	f	Solve-by using the quadratic formula. Leave your answer in simplified surd form.	$\chi = -8 \pm 164 - 4 \times 1 \times 3$	2
		$x^2 - 8x - 3 = 0$	2	
		b = -8	$= 8 \pm \sqrt{76}$	
		C	= 8±2519	
\frown			$= 4 \pm \sqrt{19}$ (2)	
	h	Find the exact value of $\frac{\sin 60^\circ}{\cos 60^\circ}$	J3 J3 X3 J3	1
			$\frac{a}{1} = \frac{a}{2} = \frac{b}{2}$	\bigcup
		$(\tan 60 = \sqrt{3})$	<i>لون</i> 4	

Ouestion Two (continued) Marks Answers 3 Find the length of DC correct to 2 $\begin{array}{c} 1 & ADB \\ 1 & ADB \\ 12 & COS 56 = \frac{AD}{12} \\ 12 & AD = 12 \cos 56 \end{array}$ decimal places: В MSm $I_{n} \triangle ABC,$ $sine AC = \frac{12}{sin 29},$ $rule Sin 95^{\circ} = \frac{12}{sin 29},$ $AC = \frac{12 sin 95}{sin 29},$ Since AD + DC = AC AC - AD = DC, AC - AD = DC, $Sin 29^{\circ} - \frac{12 cos 5b}{sin 29},$ $DC = \frac{17.95 cm}{3}$ 56° D A

	· · ·		
01	restion Three (15 Marks)	Answers	Marks
a	Shade the region on the number plane where $x+y \le 4$ and $2y > 3x+6$ $y = \frac{3}{2}x+3$. $y \le -x+4$ $y \le -x+4$ $y \le -2=x$	3. X - Z 4	3
	Find the value of <i>m</i> such that $\frac{1-2\sqrt{2}}{\sqrt{2}-1} = m - \sqrt{2}$	v M=-3	2
C	Draw a sketch of the following functions: i. $y = \frac{-1}{x}$ (Indicate 2 points)	(-1,1)	4

	Question Three (continued)	Answers	Marks
	ii. $y = 2^x$ (Show the y-intercept as well as one other point)	(1 ₁ 2).	Z
	iii. $y = (x-4)(x-1)(x+5)$ (Indicate the intercepts)		2
d	Find θ , correct to the nearest minute, in the triangle ABC drawn below.	$\frac{\sin\theta}{9} = \frac{\sin59}{11}$	2
	11m 9m	$sin \theta = \frac{9sin S9}{11}$	
	θ 59° Α Β	$\Theta = 44^{\circ}32'$	

	Question Three (continued)	Answers	Marks
e	Find the value of the angle a, giving	· · · · · · · · · · · · · · · · · · ·	2
	reasons in full. (The centre of the		
	circle is labelled 'O'.)		
	,		
		/	
		5	
,		1	
		$1 \text{ NOC} = 90^{\circ}$	
		$\Delta A10 - 10$	•
	0		
		() in a semi-circle	21.
	$ \rangle \qquad $	2,5	
		/ ABO = 33	
		(complementary L)	/
		ت ک	
		I PAO = 55	
	۲		
		$(1, 1, \overline{1}, \Lambda)$	
		(buse LS 1505 L).	
		с š	
		° (- 33	
		4= 00.	
		0	
			ĺ
	κ.		
		-	

 \mathbf{I}_{L}

	Question Four (continued)	Answers	Marks
c	The materials to make 25kg of an	75 (0)200-01 (1.2)-0 - 75	3
	alloy of copper and zinc cost \$62. If	1 wpport + y which - as	
	the copper costs \$3.20/kg and zinc	3707 + 140 - 62	
	costs \$1.40/kg, find the composition	naun + 1.409 - 02	
.			
		2(+y=2) - 0	
		110 · (0000)	
		520x + 1409 = 02000	
		, ,	
		15/19 conner	
		10/10 22.1	
		· · ·	
		4	
d	Sketch this curve by first completing	3	2
	the square on x :		
	x - 6x + y = 7		
	$(2)(2)^{2} + (1)^{2} - (1)^{2}$	σ	
	$\left[\left(1 - 3 \right)^{2} + 3 \right] = 4$	-1 0 1 2 3 4 5 6	
	centre (30)		
		-2	
	radius 11	-3	
	1	4	
e	i. Prove that $\Delta LMP \parallel \Delta POR$		3
		(1) Equiangular	
	L. 24 M	• 0	
,			
	× 2/15	24 7	
	$ \sum_{n=1}^{\infty} \sum_{i=1}^{\infty} P_{i} $	$(ii) = \frac{1}{100} = \frac{1}{100}$	
	26	40 36	
	25 30		1
			*
	Q 40 R)(= d)	
	ii Hence write on equation and		
	solve it to find the value of r		
Í			
}			
L			

Question Four (continued)AnswersMarkefIn the diagram below
$$\angle BOC = x^2$$
,
 $\angle BDC = x^2$,
 $\exists z = 0^{\circ}$ 3 $ZBC = x^2$
(and y^2 giving reasons
in full. $\chi = 2 \times 4S = 96^{\circ}$
(conglet at the auther is
thick the auther is
(conglet at the auther is
thick the auther is
(conglet at the auther is
(conglet at the auther is
thick the auther is
(conglet at the auther is
thick the auther is
(conglet at the auther is
thick the auther is
(conglet at the auther is
thick the auther is
(conglet at the auther is
thick the auther is
(sopplementany angles
cyclic allowing
and is
(sopplementany angles
cyclic allowing
the factors of
 $x^3 - 13x + 12 = 0$ gFully factories, if $(x-1)$ is one of
 $x^3 - 0x^2 - (3x + 12)$ (x - 1) (x - 3) (x + 4)

Q	uestion Five (20 Marks)	Answers	Marks	
a	Solve the following simultaneous		3	
	equations:			
	$y = x^2 - 5x + 8$			
	y=2x-4			
1944 - 1944 - 1	$2x - 4 = x^2 - 5x + 8$	x=3,04 2		
	$x^2-7x+1Q=0$ U	y=2 or 4.		
	(x-3)(x-4)=0			
	((2) for no 'y' values		
Ъ	Describe how the graph of $(x_1, y_2)^2 + 1$ different from the events of	MOVED UP 1 UNIT	\bigcirc ³	
	y = -(x-2) + 1 differs from the graph of $y = x^2$	MOVED RIGHT 2 UNITS	\bigcirc	
		REFLECTED in ~ axis		
	· · · · · ·	and the second		
	The short of a sirele to an outernal naint		2	;
	The chord of a chord to an external point T cuts the circumference at Y and Z. A	TW2 = YT. X ZT (Tang	gent \$	<i>iecant</i>
	tangent from T meets the circumference at W .	$= 90 \times 40^{\circ}$	Thre	
	Given that $TZ = 40$ cm, $ZY = 50$ cm,	= 3600		
	calculate the length of TW.	10100		
	Give reasons for your answer.	TW = 713600		
		Th = 60		
	40			
	Y			

	Question Five (continued)	Answers	Marks]
d	Find the surface area of this object correct	INSIDE = 2TIC × 30	4	-
	to the nearest cm^2 if it is to be coated	= 300 FT :		
	both inside and out with a rust protector.			
	TT1	OUTSDE = 2TT x 30.		
	The radius of the small cylinder is 5cm	= 3017 × 30		
	and the radius of the large cylinder is	= 9001		
	-	$TOP = T(15)^2 - TT(5)^2$		
		= 20011.		
		BOTTOM= 200T		
1		TOTAL SA = 300 TT + 900TT +	200 17 4	20017
		$= 1600 \pi$		
		5001-55		
		= 5026.00		
			.2	5
		SA= 5027 (nearest cr		
e	the number of copies of the Australian		3	
	newspaper sold per hour during one week	i) Range=30-10=20(1)	
	at two railway stations X and Y.		-	
	-	3 10+0 Paras - 28-17		
		HIN & Kange- 20		
	Station X	= 16. ()		
		14,15,16, due to		
		not being	a	
		able tos	ee.	
	Station Y			
	0 5 10 15 20 25 30			
	Number Sold per Hour			
		Å		
			to the second	
	i. Find the range and interquartile			
	range of the sales of newspapers at			
	Jiation A.			
	ii. I me me median number of papers			
	sold at Station Y per hour?			

	Quest	ion Five (continued)	Answers	Marks
h	AB is i.	an interval with A(0,2) and B(4,0) Find the midpoint of AB	$\left(\frac{0+4}{2},\frac{2+0}{2}\right)=\left(2,1\right)$	5
	ii.	Find the gradient of the perpendicular bisector of AB	$m_{AB} = \frac{2 - 0}{0 - 4} = -\frac{1}{2}$	2
	iii.	Hence, or otherwise, find the equation of the perpendicular bisector of AB	Grad. perp bisector = a $y-y_1=m(x-x_1)$. y-1=2(x-2) y=2x-4+1. y=2x-3. a ax-y-3=0	2).
 4 194 1.				

Q	uestion Six (15 Marks)	Answers	3.7.1
a	Show that		
	$\frac{1}{(x-y)(x-z)} + \frac{1}{(y-z)(y-x)} + \frac{1}{(z-x)(z-y)} = 0$	LHS = $\frac{\sqrt{-z} - (x-z) + x-y}{(x-y)(x-z)(y-z)}$	5
		= 0	-
b	Find the mode of this data: Cumulative Frequency Histogram 10 of 8 7 6 5 4 1 2 1 2 3 4 1 2 3 4 1 2 3 4 5 5 5 4 1 2 3 4 5 5 5 5 5 6 5 7 6 5 7 6 5 7 6 5 7 6 5 7 6 7 6 7 6 5 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 7 6 7 6 7 6 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 6 7 7 7 6 7 7 7 6 7 7 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7	Mode = 5	1
c	Use the remainder theorem to find the remainder for the following division: $(2x^3 + 7x - 13) \div (x - 2)$	$P(2) = 2(2)^3 + 7(2) - 13$ = 17	1

	Onestion Six (continued)	Answers	Marks
	Given: $AB = AC$ and XAY is a tangent		3
L u	to the circle at A.	1 there and there and	
	Prove that BC // XY	LXAB = LACB (ALT Segmen Theorem)	
	¥	INDO LABE / have and and	
	A T	2 ACB = 2.120 (Dase angles of	
	X / X)	(Soseles WADC)	
		LXAB = LABC	
	U		
		(1) (i coucí)	
		: XUIIBC / alternate Ls equal)	
			ļ
e	100		3
	If θ is an acute angle and $\cos\theta = \frac{1}{7}$,		
	Find $\sin \theta$. (Answer in simplest surd		
	form.	1	
		7	
		1990	
		6	
		3	
		Sup - 140	
		JING - II-	
		= 2110	
			2 march 10

···· •----

Ą

Į	Question Six (continued)	Answers	Marks
f	A farmer has a triangular field ABC		4
	which has side $a = 17km$, side $b =$	À.	
	13km and side $c = 11km$. Calculate	I T	
	the cost of fertilizer if the farmer needs		
	to use 1 tonne of fertilizer for every		
	square kilometre and fertilizer costs		
	\$155.50 per tonne (or part thereof).		
		C Z B	
		(1)	
		Conb = 18 + 11 = 13	
:		2~17×11	
		/3	
		13 = 49.88	
		20	
		A - H , ITWIL Y SID B	
		T E Z XI XI X DALLE	
		1 2	
		= 71.5 Km	
		Charged for 72 Km	
		Cast 72×155.5	
		atilab	
	•	=======================================	
	•		
	. "		

Q	uestion Seven (16 Marks)	Answers	Marks
a	Transpose the following formula to make b the subject. $v = a \left(\frac{1}{b} - \frac{1}{c}\right)$	$v = a \left(\frac{1}{b} - \frac{1}{c} \right)$ $\frac{v}{a} = \frac{1}{b} - \frac{1}{c}$ $\frac{v}{a} + \frac{1}{c} = \frac{1}{b}$ $\frac{vc + a}{ac} = \frac{1}{b}$ $b = \frac{ac}{vc + a}$	2
b	A lampshade is made by cutting off the top part of a cone. Find the area of material required to make this lampshade if the top opening has a radius of 7 cm and the bottom opening has a radius of 14cm and the lampshade is 24cm tall.	x x 24 14 24 14 24 14 14 2x = x + 24 x = 24 2x = x + 24 x = 25 $S_{1} = 25$ $S_{2} = 50$ $S_{2} = 50$ $Area = \pi RS_{2} - \pi rS_{1}$ $= \pi(14)(50) - \pi(7)(25)$ $= 525 \pi m^{2}$ $\approx 1649.34 cm^{2}$	4

Outstien Seven (continued)AnswersMarkscThe sum of the squares of two
consecutive positive odd integers
exceeds the product of the integers by
147. Find them.
$$|ct x & bc = positive odd integer. 3$$
147. Find them. $|ct x = bc = positive = positiv$

	Question Seven (continued)	Answers	Marks
e	By considering x^2 or otherwise, find the		3
	value of x as an integer:	$\chi = \sqrt{6 + \sqrt{6 + \sqrt{6 + \sqrt{6 + \dots}}}}$	\Box
	$x = \sqrt{6 + \sqrt{6 + \sqrt{6 + \dots}}}$	$\chi^2 = 6 + \sqrt{6 + \sqrt{6 + \sqrt{6 + \dots}}}$	2
		2 - 1	
		$x^2 - x = 6$	
		$\chi^2 - \chi - 6 = 0$	
		(x-3)(x+2) = 0	
		$\chi = -2(3)$	
		x is clearly positive.	
		x = 3	