

SYDNEY BOYS HIGH
 SCHOOL
 MOORE PARK, SURRY HILLS

2014

Year 10
Yearly Examination

Mathematics

General Instructions

- Working time - 120 minutes.
- Write using black or blue pen.
- Pencil may be used for diagrams.
- Do not use Liquid paper or tape.
- Calculators may be used.
- All necessary working should be shown in every question if full marks are to be awarded.
- Marks may NOT be awarded for messy or badly arranged work.
- If more space is required, clearly write the number of the QUESTION on one of the back pages and answer it there. Indicate that you have done so.
- Clearly indicate your class by placing an \mathbf{X}, next to your class.

Class	Teacher	
10 A	Ms Kilmore	
10 B	Ms Chen / Mr Elliott	
10 C	Ms Millar	
10 D	Ms Nesbitt / Ms Likourezos	
10 E	Mr Hespe	
10 F	Mr Choy	
10 G	Mr Fuller	

NAME:

Examiner: R. Boros

Question	Mark	
1		$/ 20$
2		$/ 20$
3		$/ 20$
4		$/ 20$
5		$/ 20$
6		$/ 15$
7		$/ 10$
Total		$/ 125$

Question 1 (20 Marks)	Marks	
a)	Write 5608200 in scientific notation.	1
b)	A bag contains 3 blue balls, 5 red balls and 4 yellow balls. If 1 ball is selected at random, find P $\overline{\text { a yellow ball })}$	1
c)	When a pair of regular dice are thrown, what is the probability of a score of 9 ?	
d)	The point $(2, k)$ lies on $x^{2}+y^{2}=8$. Find the value(s) of k.	1

h)	\$5000 is invested at 4.00\%p.a. compounded bi-annually. How much is the value of the investment (to the nearest cent) after 5 years?	2

W)	What is the ratio of the area $\triangle A B X$ to that of the area of $\triangle A B C$	1
n)		
	Use the quadratic formula to solve $3 x^{2}-5 x+1=0$. Leave your answer in surd form.	

| Question 2 (20 Marks) | Marks | |
| :--- | :--- | :---: | :---: |
| a) | | |

d)	Given $A B \\| C D$ and $P C=P B$, find, giving reasons, a relationship connecting x and y.	2
	The box and whisker plot represents the results of a yearly Latin test.	
e)	(i) What was the highest mark attained? (ii) Find the interquartile range. (iii) Find the median mark. (iv) Find the range.	1 1 1 1 1
f)	Make ' b ' the subject of this formula: $\frac{2}{a}=\frac{7}{b}-\frac{5}{c}$	2

a) (i) Factorise $y=3 x^{2}+19 x-14$
(ii) What is the y intercept?
(iii) By making $3 x^{2}+19 x-14=0$, solve for x.
(iv) Find the equation of the axis of symmetry to the curve.
(v) Find the coordinates of the vertex to this curve.
(vi) Draw a neat sketch of all the above information.

Given $\operatorname{Cos} \angle B A C=\frac{1}{8}$,
(i) Calculate the exact value of $\sin \angle B A C$.
(ii) Find the area of $\triangle A B C$ as a surd.
(iii) Find the length of side $B C$.
c) A car purchased for $\$ 8400$ depreciates at 15% p.a.

Find its value after 3 years. (to the nearest $\$$)
d) Each of these diagrams represents the slope of a ramp. Which ramp is the steepest?
A.
B.
C.
D.

e)

Find the true or compass bearing of A from C.

| Fimplify $\frac{x^{2}-4 x-5}{x^{2}+3 x+2}$ | |
| :--- | :--- | :--- |

Question 5 (20 Marks)	Marks	
a)	Find the coordinates of the points of intersection of $y=2 x^{3}-x^{2}$ and $y-8 x+4=0$.	4

| Given $x^{3}-5 x^{2}+7 x-2=(x-2)\left(a x^{2}+b x+c\right)$ | |
| :--- | :--- | :--- | :--- |
| By long division or otherwise, find the values of a, b and c | 3 |

e)	Given the graph of $y=P(x)$ in the diagram below	8

Sketch the graphs of the following on separate diagrams.
(i) $y=P(-x)$

(ii) $y=P(x)+2$

(iii) $y=P(x+4)$

(iv) $y=-P(x-4)$

a) Find x in each case.

The centre of the circle is denoted by 0 .
Do not give reasons.
(i)

(iv)

| Show that $(x-2)$ is a factor of $P(x)=x^{3}+2 x^{2}-5 x-6$ using the remainder-factor theorem. | |
| :--- | :--- | :--- |
| C) | |

d)	$B C=24 \mathrm{~cm}, \quad D B=3 \mathrm{~cm}, \quad A D=x$ Find the value of x.	2	
e)	$G F$ is a tangent to the circle at E. Quadrilateral $A B C D$ is cyclic. Prove $D C \\| G F$.	4	

Question $\mathbf{7}$ (10 Marks)	Marks	
a)	If the equation $x^{2}+y^{2}+a x+b y+c=0$ always represents a circle, prove that $a^{2}>4 c-b^{2}$.	3

C is the centre of this circle.
The distance d of the visible horizon from an observer at height h above the earth's surface is given by the formula $d^{2}=h^{2}+2 h r$ where r is the radius of the earth.
(i) Prove the tangent/secant formula.
(ii) Hence or otherwise prove $d^{2}=h^{2}+2 h r$

2014 Year 10 Yearly - Solutions

k)	Draw neat sketches of (I) $y=-x^{3}$ (ii) $y=2^{*}$ (im) $y=\frac{-1}{x-3}$	1
-1	A 3 sided die labelled A, B, C ls rolled and then an thbiased coin is tossed. Draw a tree diagram to llustrate the possible outcomes.	1

m)	What is the tatio of the area $\triangle A B X$ to that of the area of $\triangle A B C$ method : me thod 2 5: 8 $1 / 2 \times A B \times 5 \times \sin \theta=1 / 2 \times A B \times 8 \times \sin$ $25: 64$ $5: 8$	1
n)	Use the quadratic formula to solve $3 x^{2}-5 x+1=0$. Leave your answer in surd form. $\begin{aligned} x & =\frac{45 \pm \sqrt{(-5)^{2}-4 \times 3 \times}}{2 \times 3} \\ & =\frac{5 \pm \sqrt{25-12}}{6} \\ & =\frac{5 \pm \sqrt{13}}{6} \end{aligned}$	2
c)	Given $\cos \theta=-0.7$ and $0^{\circ} \leq \theta \leq 180^{\circ}$, Find θ in degrees and minutes. $134^{\circ} 26^{\prime}$	1
p)	If $a^{*} b=\frac{1}{a-b}$, Find $3^{*}\left(3^{*} 5\right)$ $\begin{aligned} 3 \times 5 & =\frac{1}{3-5} \\ & =-12 \end{aligned}$ $\begin{aligned} 3 \times-1 / 2 & =\frac{1}{3+1 / 2} \\ & = \end{aligned}$	1

Question 2 (20 Marks)

g)	Use the stem and leaf plot given to answer these questions. (i) Find the median. 45 (ii) Find the mode(s). 43,57 . (iii) Find the mean. 47	1 1 1
h) .	Find, by completion of the square, the minimum value of $3 x^{2}+8 x-9$ $\begin{aligned} & 3\left(x^{2}+\frac{8}{3} x+\frac{16}{9}-\frac{16}{9}-\frac{27}{9}\right) \\ = & 3\left[\left(x+\frac{4}{3}\right)^{2}-\frac{43}{9}\right] . \\ \therefore & M \text { in valne}=\frac{-43}{3} \end{aligned}$	2

2014 Year 10 Mathematics Yearly:
3. (a) (i) Factorise $y=3 x^{2}+19 x-14$.

$$
\begin{array}{rll}
\text { Solution: } & \mathrm{P} \quad-42 & y=3 x^{2}+21 x-2 x-14, \\
& \text { S } 19 & =3 x(x+7)-2(x+7), \\
& \text { F } 21,-2 & =(3 x-2)(x+7)
\end{array}
$$

(ii) What is the y intercept? Solution: $y=-14$.
(iii) By making $3 x^{2}+19 x-14=0$, solve for x.

Solution: $\quad(3 x-2)(x+7)=0$,

$$
\therefore x=\frac{2}{3},-7 \text {. }
$$

(iv) Find the equation of the axis of symmetry of the curve.

Solution: $x=-\frac{19}{6}$.
(v) Find the coordinates of the curve's vertex.

Solution: $3\left(-\frac{19}{6}\right)^{2}+19\left(-\frac{19}{6}\right)-14=-\frac{529}{12}$.
\therefore Vertex is $\left(-3 \frac{1}{6},-44 \frac{1}{12}\right)$.
(vi) Draw a neat sketch of all the above information.

(b)

Given $\cos B \widehat{A} C=\frac{1}{8}$:
(i) Calculate the exact value of $\sin B \widehat{A} C$.

Solution: $\frac{\sqrt{63}}{8}=\frac{3 \sqrt{7}}{8}$.

(ii) Find the area of $\triangle A B C$ as a surd.

Solution: $\frac{1}{2} \times 4 \times 5 \times \frac{\sqrt{63}}{8}=\frac{15 \sqrt{7}}{4}$.
(iii) Find the length of side $B C$.

$$
\text { Solution: } \begin{aligned}
B C^{2} & =4^{2}+5^{2}-2 \times 4 \times 5 \times \frac{1}{8}, \\
& =36 . \\
\therefore B C & =6 .
\end{aligned}
$$

(c) A car purchased for $\$ 8400$ depreciates at 15% p.a.

Find its value after 3 years (to the nearest $\$$).
Solution: $\$ 8400\left(1-\frac{15}{100}\right)^{3}=\$ 5158.65$.
\therefore Value is $\$ 5159$.
(d) Each of these diagrams represents the slope of a ramp. Which ramp is the steepest?

Solution: A is the steepest.
(e)
\mathcal{N} Find the true or compass bearing of A from C.

Solution: $360-110=250$.

$$
\therefore 250^{\circ} \mathrm{T} \text { or } \mathrm{S} 70^{\circ} \mathrm{W} \text {. }
$$

(f)

Find the value of x.

$$
\text { Solution: } \quad \begin{aligned}
\frac{x+3}{3} & =\frac{20}{4}, \\
4 x+12 & =60, \\
4 x & =48, \\
x & =12 .
\end{aligned}
$$

(g) Simplify $\frac{x^{2}-4 x-5}{x^{2}+3 x+2}$.

Solution: $\frac{(x-5)(x+1)}{(x+2)(x+1)}=\frac{x-5}{x+2}, x \neq-1$.
(h) Find the total surface area of a hemisphere with a radius of 10 cm .

Solution: $\frac{1}{2} \times 4 \pi \times 10^{2}+\pi \times 10^{2}=300 \pi \mathrm{~cm}^{2}$.
(i) Find the length of $B C$ correct to the nearest whole number.

$$
\text { Solution: } \begin{aligned}
B C^{2} & =4^{2}+6^{2}-2 \times 4 \times \cos 113^{\circ}, \\
& \approx 70.7551 . \\
\therefore B C & \approx 8 .
\end{aligned}
$$

	tion 4 (20 Marks)	Marks
a)	Express $\frac{2}{3-\sqrt{5}}$ with a rational denominator. $\begin{aligned} & \frac{2}{3-\sqrt{5}} \times \frac{3+\sqrt{5}}{3+\sqrt{5}} \\ & =\frac{6+2 \sqrt{5}}{4} \\ & =\frac{3+\sqrt{5}}{2} \end{aligned}$	2
b)	Given $f(x)=3-2 x$ (i) Find $f(-1)$ $3-2(-1)=5$ (ii) Find a positive number Q such that $f(Q)=Q^{2}$ $\begin{gathered} 3-2(-3)=9=(-3)^{2} \\ 3-2(1)=1=12 \\ Q=1(>0) \end{gathered}$ (iii) Find R such that $f\left(2^{R}\right)<-5 \quad 3-2 \cdot 2^{n}<-5$ $\begin{gathered} -2 \cdot 2^{r}<-8 \\ 2^{r}>4 \\ r>2 \end{gathered}$	1 2 1
c)	Find the size of α correct to the nearest minute. $\begin{aligned} & \frac{6}{\sin 50}=\frac{7}{\sin \alpha} \\ & \sin \alpha=\frac{7 \sin 50}{6} \\ & \alpha=63.20^{\prime} 39^{\prime \prime} \\ & =63^{\circ} 21^{\prime} \\ & \text { or } 116^{\circ} 39^{\prime} \end{aligned}$	2

g)	State giving reason(s), whether or not the following is a polynomial, $10 x^{4}+2 x^{3}-\frac{5}{x^{2}}+10$ not a polynomial $\frac{1}{x^{2}} \text { has a negative index }(-2)$	1
h)	If $P(x)=5 x+2$ and $Q(x)=x^{2}-3 x+1$, find: (i) $\quad P(x)-Q(x)$	1
	$-x^{2}+8 x+1$ $\begin{aligned} & \text { (ii) } \quad P(x) Q(x) \\ & 5 x^{3}-13 x^{2}-x+2 \end{aligned}$	2
i)	A polynomial $P(x)$ has degree 4 , has leading coefficient 5 and a constant term of -3 . Find a polynomial $P(x)$ which satisfies these properties. $5 x^{4}-3$ (may have addurtional terms with indices 013,2 or 1)	2

e) Given the graph of $y=P(x)$ in the diagram below

Sketch the graphs of the following on separate diagrams.
(i) $y=P(-x)$

(iii) $y=P(x+4)$

(ii) $y=P(x)+2$

(iv) $y=-P(x-4)$

(v)

$$
x=110^{\circ}
$$

b) Show that $(x-2)$ is a factor of $P(x)=x^{3}+2 x^{2}-5 x-6$ using the remainder-factor theorem.

$$
\begin{aligned}
P(2) & =2^{3}+2(2)^{2}-5(2)-6 \\
& =8+8-10-6 \\
& =0
\end{aligned}
$$

c) Given $x^{2}-x-6$ is a factor of $2 x^{3}+m x^{2}-13 x+n$, find the values of m and n.

$$
\begin{align*}
& (x-3)(x+2) \\
& 2 x^{3}+m x^{2}-13 x+n=\left(x^{2}-x-6\right) Q(x) \\
& 2(3)^{3}+9 m-39+n=0 \\
& 9 m+n=-15 \\
& 2(-2)^{3}+m(-2)^{2}-13(-2)+n=0 \\
& 4 m+n=-10
\end{align*}
$$

(1)-(2) $5 m=-5$

$$
\frac{m=-1}{\binom{y}{y}}
$$

d)	$(x+21)^{2}=(x+3)^{2}+24^{2}$
$x^{2}+42 x+41=x^{2}+6 x+9+576$	

C is the centre of this circle.
The distance d of the visible horizon from an observer at height h above the earth's surface is given by the formula $d^{2}=h^{2}+2 h r$ where r is the radius of the earth.
(i) Prove the tangent/secant formula.

$$
\text { Construct } P B, P D
$$

In $\triangle A B P$ and $\triangle A P D$,
$\angle A P B=\angle B D P$ (Alternate segment Theoveni)
$\angle A$ in common

(ii) Hence or otherwise prove $d^{2}=h^{2}+2 h r$

