

SYDNEY BOYS HIGH SCHOOL MOORE PARK, SURRY HILLS

2014

Year 10 Yearly Examination

Mathematics

General Instructions

- Working time 120 minutes.
- Write using black or blue pen.
- Pencil may be used for diagrams.
- Do not use Liquid paper or tape.
- Calculators may be used.
- All *necessary* working should be shown in every question if full marks are to be awarded.
- Marks may **NOT** be awarded for messy or badly arranged work.
- If more space is required, clearly write the number of the QUESTION on one of the back pages and answer it there. Indicate that you have done so.
- Clearly indicate your class by placing an X, next to your class.

Class	Teacher	
10 A	Ms Kilmore	
10 B	Ms Chen / Mr Elliott	
10 C	Ms Millar	
10 D	Ms Nesbitt / Ms Likourezos	
10 E	Mr Hespe	
10 F	Mr Choy	
10 G	Mr Fuller	

NAME:

Examiner: R. Boros

Question	Mark	
1		/20
2		/20
3		/20
4		/20
5		/20
6		/15
7		/10
Total		/125

Que	stion 1 (20 Marks)	Marks
a)	Write 5608200 in scientific notation.	1
b)	A bag contains 3 blue balls, 5 red balls and 4 yellow balls. If 1 ball is selected at random, find $P(a \text{ yellow ball})$	1
c)	When a pair of regular dice are thrown, what is the probability of a score of 9?	1
d)	The point (2, k) lies on $x^2 + y^2 = 8$. Find the value(s) of k.	1
e)	What is the minimum value of $4x^2 + 6$?	1
f)	Solve for x, $3(2x+1)(x+4) = 0$	1
g)	If $4x + 2y = 8$ and $5x - 2y = 9$ are solved simultaneously, find the value of x.	1

h)	\$5000 is invested at 4.00%p.a. compounded bi-annually. How much is the value of the investment (to the nearest cent) after 5 years?	2
i)	If the sides of a rectangle are increased by 50%. What is the area increased by?	1
j)	The ratio of the surface areas of 2 similar solids is 9:36. Write down the ratio of the volumes of the solids.	1

m)	What is the ratio of the area $\triangle ABX$ to that of the area of $\triangle ABC$	1
	B 5 X 3 C	
n)	Use the quadratic formula to solve $3x^2 - 5x + 1 = 0$. Leave your answer in surd form.	2
0)	Given $\cos\theta = -0.7$ and $0^{\circ} \le \theta \le 180^{\circ}$, Find θ in degrees and minutes.	1
p)	If $a^*b = \frac{1}{a-b}$, Find 3*(3*5)	1

g)	Use the s	tem and leaf plo	t given to answer th	ese questions.	
			Stem	leaf	
			3	2 5	
			4	13358	
		_	5	677	
			6	0	
	(i)	Find the media	an.		1
	(ii)	Find the mode	(c)		1
	(11)	Tinu the mode	(3).		-
	(iii)	Find the mean			1
h)	Find, by a	completion of the	e square, the minim	um value of $3x^2 + 8x - 9$	2

Que	estion 3 (20 Marks)	Marks			
a)	(i) Factorise $y = 3x^2 + 19x - 14$	1			
	(ii) What is the <i>y</i> intercept?	1			
	(iii) By making $3x^2 + 19x - 14 = 0$, solve for <i>x</i> .	1			
	(iv) Find the equation of the axis of symmetry to the curve.	1			
	(v) Find the coordinates of the vertex to this curve.	1			
	(vi) Draw a neat sketch of all the above information.				
	y 1				
	\leftarrow				
	\downarrow				

Que	stion 4 (20 Marks)	Marks
a)	Express $\frac{2}{3-\sqrt{5}}$ with a rational denominator.	2
b)	Given $f(x) = 3 - 2x$ (i) Find $f(-1)$	1
	(ii) Find a positive number Q such that $f(Q) = Q^2$	2
	(iii) Find R such that $f(2^R) < -5$	1
c)	Find the size of α correct to the nearest minute. 7 6 50° α	2

d)	P,Q,R are 3 towns. P and Q are 35km apart and Q is due east of P. The true bearing of R									1		
e)	<i>P</i> , <i>Q</i> , <i>R</i> are 3 towns. <i>P</i> and <i>Q</i> are 35km apart and <i>Q</i> is due east of <i>P</i> . The true bearing of <i>R</i> from <i>P</i> is 044° and the true bearing of <i>R</i> from <i>Q</i> is 325°. Find the distance of <i>R</i> from <i>Q</i> correct to 1 decimal place.								3			
f)	The marks	1					1				1	
	Test A	9	11	12	12	13	13	14	15	15	16	
	Both tests $S.D_A = 2.0$		7 7=13a	9 nd $\overline{x_B} = 1$.2.	12	13	13	15	17	19	
	(i)	Find t	the stanc	lard devi	ation (to	0 1DP) of	Test B.					1
	(ii)		a convind Test B	cing expl	anation	why a m	ark of 1	5 in Test	A is bett	er than a	ı mark of	1

g)	State giving reason(s), whether or not the following is a polynomial, $10x^4 + 2x^3 - \frac{5}{x^2} + 10$	1
h)	If $P(x) = 5x + 2$ and $Q(x) = x^2 - 3x + 1$, find: (i) $P(x) - Q(x)$	1
	(ii) <i>P(x)Q(x)</i>	2
i)	A polynomial <i>P</i> (<i>x</i>) has degree 4, has leading coefficient 5 and a constant term of -3. Find a polynomial <i>P</i> (<i>x</i>) which satisfies these properties.	2

Que	estion 5 (20 Marks)	Marks
a)	Find the coordinates of the points of intersection of $y = 2x^3 - x^2$ and $y - 8x + 4 = 0$.	4
b)	Provide a neat sketch of $y = 5x(x-2)^2$	2

C)	Given $x^3 - 5x^2 + 7x - 2 = (x - 2)(ax^2 + bx + c)$ By long division or otherwise, find the values of a, b and c	3
d)	Find the equation of the cubic polynomial in this diagram. Leave your answer in factorised	3
	form.	

	(v)	1
		1
b)	Show that $(x-2)$ is a factor of $P(x) = x^3 + 2x^2 - 5x - 6$ using the remainder-factor theorem.	2
c)	Given $x^2 - x - 6$ is a factor of $2x^3 + mx^2 - 13x + n$, find the values of <i>m</i> and <i>n</i> .	2

2014 Year 10 Yearly - Solutions

Qı a)	Jestion 1 (20 Marks)	Marks
3)	Write 5608200 in scientific notation. 5.6082×10^{6}	1
b)	A bag contains 3 blue balls, 5 red balls and 4 yellow balls. If 1 ball is selected at random, find P(a yellow ball) $P = 1 - \frac{4}{12} = \frac{2/3}{3}$	4
c)	When a pair of regular dice are thrown, what is the probability of a score of 9? 3 G 6 3 $= \frac{4}{36}$ $= \frac{1}{9}$ 5 4	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
d)	The point (2, k) lies on $x^{2} + y^{2} = 8$. Find the value(s) of k. $4 + 4y^{2} = 8$ $y = \pm 2$ $y^{2} = 4$ $= 4 \pm 2$	1
e)	What is the minimum value of $4x^2 + 6$?	•
	6	
<u>بالم</u>	Solve for x, $3(2x+1)(x+4)=0$ 2x+1=0 $x+4=02x=-1$ $x=-4$ $x=-1/2, -4x=-1/2$	1
	If $4x+2y=8$ and $5x-2y=9$ are solved simultaneously, find the value of x. 5x - 2y=9 9x = 17 $x = \frac{17}{9}$ $x = \frac{17}{9}$	1

\$5000 is invested at 4.00%p.a. compounded bi-annually. How much is the value of the h 2 investment (to the nearest cent) after 5 years? $A = 5000(1 + 0.02)^{10}$ if they're shown some some sort of coorting in compound interest form - I mark = 60.94.97 If the sides of a rectangle are increased by 50%. What is the area increased by? i) 1 1/2 only for A = 24 2257. $\begin{bmatrix} 34_2 \\ A_{12} \end{bmatrix} = \begin{bmatrix} 9\pi_{12} \\ 4 \end{bmatrix}$ A2. A. = 5 inc inc 125% The ratio of the surface areas of 2 similar solids is 9:36. Write down the ratio of the 1000 1 * volumes of the solids. SA 9:36 $V = (5)^3 : (5_{36})^3$ = 27:216 1:8

$$\begin{array}{c|c} \chi - \chi_{2} = & \chi_{1} = y \\ \chi_{1} = y \\ \chi_{2} =$$

.

. •

· • • . . .

Use the stem and leaf plot given to answer these questions. g) leaf Stem 25 3 13358 4 5 677 <u>б</u>. n 1 45 Find the median. (i) -1 43, 57. Find the mode(s). (ii) 47 . **1** Find the mean. (iii) Find, by completion of the square, the minimum value of $3x^2 + 8x - 9$ 2 ĥ) - $3\left(n^{2} + \frac{1}{3}n + \frac{16}{9} - \frac{16}{9} - \frac{27}{9}\right)$ = $3\left[\left(n+\frac{4}{3}\right)^2 - \frac{43}{9}\right]$: Min Value = $-\frac{43}{3}$

2014 Year 10 Mathematics Yearly:

3. (a) (i) Factorise
$$y = 3x^2 + 19x - 14$$

Solution: P -42 $y = 3x^2 + 21x - 2x - 14,$ S 19 = 3x(x+7) - 2(x+7),F 21, -2 = (3x-2)(x+7) 1

1

1

1

1

1

(ii) What is the y intercept? Solution: y = -14.

(iii) By making $3x^2 + 19x - 14 = 0$, solve for *x*.

Solution: (3x - 2)(x + 7) = 0, $\therefore x = \frac{2}{3}, -7.$

(iv) Find the equation of the axis of symmetry of the curve.

Solution: $x = -\frac{19}{6}$.

(v) Find the coordinates of the curve's vertex.

Solution:
$$3\left(-\frac{19}{6}\right)^2 + 19\left(-\frac{19}{6}\right) - 14 = -\frac{529}{12}$$
.
 \therefore Vertex is $\left(-3\frac{1}{6}, -44\frac{1}{12}\right)$.

(vi) Draw a neat sketch of all the above information.

(ii) Find the area of $\triangle ABC$ as a surd.

Solution:
$$\frac{1}{2} \times 4 \times 5 \times \frac{\sqrt{63}}{8} = \frac{15\sqrt{7}}{4}$$
.

(iii) Find the length of side BC.

Solution:
$$BC^2 = 4^2 + 5^2 - 2 \times 4 \times 5 \times \frac{1}{8},$$

= 36.
 $\therefore BC = 6.$

1

2

(c) A car purchased for \$8400 depreciates at $15\%\,\mathrm{p.a.}$ Find its value after 3 years (to the nearest \$).

Solution: $\$8400 \left(1 - \frac{15}{100}\right)^3 = \$5158.65.$: Value is \$5159.

(d) Each of these diagrams represents the slope of a ramp. Which ramp is the steepest?

Solution: A is the steepest.

Find the value of x.

Solution: $\frac{x+3}{3} = \frac{20}{4},$ 4x+12 = 60,4x = 48,x = 12.

- (g) Simplify $\frac{x^2 4x 5}{x^2 + 3x + 2}$. Solution: $\frac{(x-5)(x+1)}{(x+2)(x+1)} = \frac{x-5}{x+2}, \ x \neq -1$.
- (h) Find the total surface area of a hemisphere with a radius of 10 cm.

Solution:
$$\frac{1}{2} \times 4\pi \times 10^2 + \pi \times 10^2 = 300\pi \,\mathrm{cm}^2$$
.

(i) Find the length of BC correct to the nearest whole number.

Solution: $BC^2 = 4^2 + 6^2 - 2 \times 4 \times \cos 113^\circ,$ $\approx 70.7551.$ $\therefore BC \approx 8.$ 2

2

1

2

Question 4 (20 Marks)	Mark
a) Express $\frac{2}{3-\sqrt{5}}$ with a rational denominator.	2
$\frac{2}{3-\sqrt{5}} \times \frac{3+\sqrt{5}}{3+\sqrt{5}}$	
$= 6 + 2\sqrt{5}$	
= 3+55	
b) Given $f(x) = 3 - 2x$ (i) Find $f(-1)$ 3 - 2(-1) = 5	1
(ii) Find a positive number Q such that $f(Q) = Q^2$ $3 - 2(-3) = 9 = (-3)^2$ $3 - 2(1) = 1 = 1^2$ Q = 1(20)	2
(iii) Find R such that $f(2^{R}) < -5 3 - 2 \cdot 2^{n} < -5^{-2} - 2 \cdot 2^{n} < -8^{-2} - 2 \cdot 2^{n} < -8^{-2} - 2 \cdot 2^{n} < -8^{-2} - 2^{n}$	1
Find the size of α correct to the nearest minute.	2
7 6 $5in so = \frac{7}{3ind}$ $5in x = \frac{75i}{2}$ $\alpha = 63.20$ $= 63^{\circ}2i$ $\sigma = 16^{\circ}39'$	<u>150</u> 39″

.

•

$\begin{pmatrix} 2(-2)^2 + (y+1)^2 = i4 \\ (2(-2)^2 + (y+1)^2 = i4 \\ R = 3 \text{ towns. } P \text{ and } Q \text{ are 35km apart and } Q \text{ is due east of } P. The true bearing of } R \\ \text{from } P \text{ is } 0.44^3 \text{ and the true bearing of } R \text{ from } Q \text{ is } 325^\circ. Find the distance of } R \text{ from } Q \text{ correct to 1 decimal place.} \\ R = 35 \\ 35 \\ R = 35 \\ 35 \\ R = 25.64 \\ = 25.64 \\ = 25.6(1 \text{ d.p.}) \\ R = 25.6(1 \text{ d.p.}) \\ R = \frac{11}{12} \frac{12}{12} \frac{13}{13} \frac{13}{13} \frac{14}{15} \frac{15}{15} \frac{16}{19} \\ R = 25.64 \\ = 25.6(1 \text{ d.p.}) \\ R = \frac{11}{12} \frac{12}{12} \frac{13}{13} \frac{13}{13} \frac{14}{15} \frac{15}{15} \frac{16}{19} \\ R = 25.64 \\ R = 25.64 \\ = 25.6(1 \text{ d.p.}) \\ R = 25.6(1 \text{ d.p.}) \\ R = \frac{11}{12} \frac{12}{12} \frac{13}{13} \frac{13}{13} \frac{14}{15} \frac{15}{15} \frac{16}{19} \\ R = \frac{1}{12} \\ R = \frac{1}{12} \frac{12}{12} \frac{12}{12} \frac{13}{13} \frac{13}{13} \frac{14}{15} \frac{15}{15} \frac{16}{19} \\ R = \frac{1}{12} \\ R = 1$	d)	What is the equation of the circle with radius 4 units and centre $(2,-1)$?	1
e) P,Q,R are 3 towns. P and Q are 35km apart and Q is due east of P . The true bearing of R from P is 0.44° and the true bearing of R from Q is 325°. Find the distance of R from Q correct to 1 decimal place. Q Q Q Q Q Q Q Q Q Q		$(2(2)^{2} + (1)^{2} + 1)^{2}$	
$\begin{array}{c} P, Q, R \mbox{ are 3 towns. } P \mbox{ and } Q \mbox{ are 35km apart and } Q \mbox{ is due east of } P. The true bearing of } R \\ from P \mbox{ is 044° and the true bearing of } R \mbox{ from } Q \mbox{ is 325°. Find the distance of } R \mbox{ from } Q \mbox{ correct to 1 decimal place.} \\ \hline P Q, Q \mbox{ are 3 from } Q \mbox{ is 325°. Find the distance of } R \mbox{ from } Q \mbox{ correct to 1 decimal place.} \\ \hline P Q Q \mbox{ is 325°. Find the distance of } R \mbox{ from } Q \mbox{ correct to 1 decimal place.} \\ \hline P Q Q \mbox{ is 325°. Find the distance of } R \mbox{ from } Q \mbox{ correct to 1 decimal place.} \\ \hline P Q Q Q \mbox{ is 325°. Find the distance of } R \mbox{ from } Q \mbox{ correct to 1 decimal place.} \\ \hline P Q Q Q \mbox{ is 325°. Find the distance of } R \mbox{ from } Q \mbox{ correct to 1 decimal place.} \\ \hline P Q \mb$		(7(-2) + (Y+1) = 16	
from <i>P</i> is 044° and the true bearing of <i>R</i> from <i>Q</i> is 325°. Find the distance of <i>R</i> from <i>Q</i> correct to 1 decimal place. $ \begin{array}{r} & & & & & \\ \hline & & & & \\ \hline & & & & \\ \hline & & & &$			
from <i>P</i> is 044° and the true bearing of <i>R</i> from <i>Q</i> is 325°. Find the distance of <i>R</i> from <i>Q</i> correct to 1 decimal place. $ \begin{array}{r} & & & & & \\ \hline & & & & \\ \hline & & & & \\ \hline & & & &$			
from <i>P</i> is 044° and the true bearing of <i>R</i> from <i>Q</i> is 325°. Find the distance of <i>R</i> from <i>Q</i> correct to 1 decimal place. $ \begin{array}{r} & & & & & \\ \hline & & & & \\ \hline & & & & \\ \hline & & & &$			
from <i>P</i> is 044° and the true bearing of <i>R</i> from <i>Q</i> is 325°. Find the distance of <i>R</i> from <i>Q</i> correct to 1 decimal place. $ \begin{array}{c} $			
from <i>P</i> is 044° and the true bearing of <i>R</i> from <i>Q</i> is 325°. Find the distance of <i>R</i> from <i>Q</i> correct to 1 decimal place. $ \begin{array}{c} $			
from <i>P</i> is 044° and the true bearing of <i>R</i> from <i>Q</i> is 325°. Find the distance of <i>R</i> from <i>Q</i> correct to 1 decimal place. $ \begin{array}{r} $	1	$P \cap P$ are 2 towns. Read O are 25km apart and O is due east of P . The true bearing of P	2
correct to 1 decimal place. $ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\$)		5
$ \begin{array}{rcl} & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ \hline \end{array} \begin{array}{r} x \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ \hline \end{array} \begin{array}{r} x \\ & & \\ $			
$\frac{\chi}{5(\pi 46} = \frac{35}{5(\pi 79)}$ $\chi = 25.64$ $= 25.64$ $= 25.6(1d.p.)$ The marks from 2 tests are shown below. $\frac{1}{1 \text{ test } A = 9 \text{ th} 1 \text{ th} 12 \text{ th} 2 \text{ th} 3 \text{ th} 4 \text{ th} 5 \text{ th} 5 \text{ th} 6 \text{ th} 7 \text{ th} 9 \text{ th} 1 \text{ th} 2 \text{ th} 2 \text{ th} 3 \text{ th} 4 \text{ th} 5 \text{ th} 5 \text{ th} 6 \text{ th} 7 \text{ th} 9 \text{ th} 1 \text{ th} 2 \text{ th} 2 \text{ th} 3 \text{ th} 4 \text{ th} 5 \text{ th} 5 \text{ th} 7 \text{ th} 9 \text{ th} 1 \text{ th} 2 \text{ th} 2 \text{ th} 3 \text{ th} 4 \text{ th} 5 \text{ th} 5 \text{ th} 7 \text{ th} 9 \text{ th} 1 \text{ th} 2 \text{ th} 3 \text{ th} 3 \text{ th} 5 \text{ th} 7 \text{ th} 9 \text{ th} 3 \text{ th} 5 \text{ th} 7 \text{ th} 9 \text{ th} 3 \text{ th} 5 \text{ th} 7 \text{ th} 9 \text{ th} 3 \text{ th} 5 \text{ th} 7 \text{ th} 9 \text{ th} 3 \text{ th} 5 \text{ th} 7 \text{ th} 9 \text{ th} 3 \text{ th} 5 \text{ th} 7 \text{ th} 9 \text{ th} 3 \text{ th} 5 \text{ th} 7 \text{ th} 9 \text{ th} 3 \text{ th} 5 \text{ th} 7 \text{ th} 9 \text{ th} 3 \text{ th} 5 \text{ th} 7 \text{ th} 9 \text{ th} 3 \text{ th} 5 \text{ th} 7 \text{ th} 9 \text{ th} 3 \text{ th} 5 \text{ th} 7 \text{ th} 9 \text{ th} 3 \text{ th} 5 \text{ th} 7 \text{ th} 9 \text{ th} 3 \text{ th} 5 \text{ th} 7 \text{ th} 9 \text{ th} 3 \text{ th} 5 \text{ th} 7 \text{ th} 9 \text{ th} 5 \text{ th} 7 \text{ th} 9 \text{ th} 1 \text{ th} 5 \text{ th} 7 \text{ th} 9 \text{ th} 1 \text{ th} 5 \text{ th} 7 \text{ th} 9 \text{ th} 1 \text{ th} 5 \text{ th} 7 \text{ th} 9 \text{ th} 1 \text{ th} 12 \text{ th} $		N I	
$\frac{\chi}{5(\pi 46} = \frac{35}{5(\pi 79)}$ $\frac{\chi}{7} = 25.64$ $= 25.64$ $= 25.6(1d.p.)$ The marks from 2 tests are shown below. $\frac{1}{1 \text{ test } A = 9 \text{ til } 12 \text{ til } 12 \text{ til } 13 \text{ til } 15 \text{ til } 15 \text{ til } 16}{12 \text{ til } 12 \text{ til } 13 \text{ til } 15 \text{ til } 17 \text{ til } 19}$ Both tests have $\overline{x_a} = 13 \text{ and } \overline{x_g} = 12$. $S.D_a = 2.0$ (i) Find the standard deviation (to 1DP) of Test B. $4, 1 \text{ (id - p.)}$ (ii) Give a convincing explanation why a mark of 15 in Test A is better than a mark of 14 in A in		440 2740 2	
$\mathcal{X} = 25, 64$ $= 25, 6(1 d. \rho.)$ The marks from 2 tests are shown below. $\boxed{\frac{\text{Test A} 9}{11} 12} 12 13 13 14 15 15 16}{\frac{1}{\text{Test B} 5} 7 9 10 12 13 13 15 17 19}$ Both tests have $\overline{x_A} = 13 \text{ and } \overline{x_g} = 12$. $S.D_A = 2.0$ (i) Find the standard deviation (to 1DP) of Test B. $4, 1 (1 d. \rho.)$ (ii) Give a convincing explanation why a mark of 15 in Test A is better than a mark of 15 in Test A is bet		0 46 55 B	
$\mathcal{X} = 25, 64$ $= 25, 6(1 d. p.)$ The marks from 2 tests are shown below. $\boxed{\frac{\text{Test A} 9 11}{\text{Test B} 5 7 9 10 12 13 13 14 15 15 16}}$ Both tests have $\overline{x_{A}} = 13 \text{ and } \overline{x_{g}} = 12$. $S.D_{A} = 2.0$ (i) Find the standard deviation (to 1DP) of Test B. $4, 1 (1 d. p.)$ (ii) Give a convincing explanation why a mark of 15 in Test A is better than a mark of 15 in		11 35 (0.	
$\mathcal{X} = 25, 64$ $= 25, 6(1 d. \rho.)$ The marks from 2 tests are shown below. $\boxed{\frac{\text{Test A} 9}{11} 12} 12 13 13 14 15 15 16}{\frac{1}{\text{Test B} 5} 7 9 10 12 13 13 15 17 19}$ Both tests have $\overline{x_A} = 13 \text{ and } \overline{x_g} = 12$. $S.D_A = 2.0$ (i) Find the standard deviation (to 1DP) of Test B. $4, 1 (1 d. \rho.)$ (ii) Give a convincing explanation why a mark of 15 in Test A is better than a mark of 15 in Test A is bet		$\frac{\chi}{2} = \frac{35}{100}$	-
$= 25, 6(id.p.)$ The marks from 2 tests are shown below. $\boxed{\frac{\text{Test A} 9 11}{\text{Test B} 5 7} 9 10 12 13 13 14 15 15 16}_{\text{Test B} 5 7 9 10 12 13 13 15 17 19}$ Both tests have $\overline{x_{A}} = 13 \text{ and } \overline{x_{g}} = 12.$ $S.D_{A} = 2.0$ (i) Find the standard deviation (to 1DP) of Test B. $4, l (id.p.)$ (ii) Give a convincing explanation why a mark of 15 in Test A is better than a mark of 15 in Test A is better than a mark of 1			
(i) Give a convincing explanation why a mark of 15 in Test A is better than a mark of 1		X = 25,64	
Test A9111212131314151516Test B57910121313151719Both tests have $\overline{x_A} = 13$ and $\overline{x_g} = 12$. $S.D_A = 2.0$ (i) Find the standard deviation (to 1DP) of Test B.1(i)Find the standard deviation (to 1DP) of Test B.1 \mathcal{U}_{+} , /(i $\mathcal{L}_{-}\rho$.)1(ii)Give a convincing explanation why a mark of 15 in Test A is better than a mark of 15 in Test P.1		=25,6(1d.p.)	
Test A9111212131314151516Test B57910121313151719Both tests have $\overline{x_A} = 13$ and $\overline{x_g} = 12$. $S.D_A = 2.0$ (i) Find the standard deviation (to 1DP) of Test B.1(i)Find the standard deviation (to 1DP) of Test B.1 \mathcal{U}_{+} , /(i $\mathcal{L}_{-}\rho$.)1(ii)Give a convincing explanation why a mark of 15 in Test A is better than a mark of 15 in Test P.1			
Test B57910121313151719Both tests have $\overline{x_A} = 13$ and $\overline{x_g} = 12$. $S.D_A = 2.0$ (i) Find the standard deviation (to 1DP) of Test B.1(i)Find the standard deviation (to 1DP) of Test B.1 \mathcal{U}_{+} , \mathcal{I}_{-} (\mathcal{I}_{-} \mathcal{I}_{-})1(ii)Give a convincing explanation why a mark of 15 in Test A is better than a mark of 15 in Test P.1	f)		
Both tests have $\overline{x_A} = 13$ and $\overline{x_g} = 12$. $S.D_A = 2.0$ (i) Find the standard deviation (to 1DP) of Test B. $4/4$, / ($i d \cdot \rho \cdot \gamma$) (ii) Give a convincing explanation why a mark of 15 in Test A is better than a mark of 1			
S.D _A = 2.0 (i) Find the standard deviation (to 1DP) of Test B. $4/4$, $1/(1 d - \rho \cdot)$ (ii) Give a convincing explanation why a mark of 15 in Test A is better than a mark of 1			
(i) Find the standard deviation (to 1DP) of Test B. $4 + 1 (1 d - p \cdot)$ (ii) Give a convincing explanation why a mark of 15 in Test A is better than a mark of 1		Both tests have $\overline{x_A} = 13$ and $\overline{x_B} = 12$.	
(ii) Give a convincing explanation why a mark of 15 in Test A is better than a mark of 1 15 in Test B		$S.D_{A} = 2.0$	
(ii) Give a convincing explanation why a mark of 15 in Test A is better than a mark of 1 15 in Test B		(i) Find the standard deviation (to 1DD) of Test D	
(ii) Give a convincing explanation why a mark of 15 in Test A is better than a mark of 1 in Test B		(i) Find the standard deviation (to TDP) of rest B.	
(ii) Give a convincing explanation why a mark of 15 in Test A is better than a mark of 1		4,1 (1d.p.)	
1E in Tost D			
1E in Test D			
15 in Test B In fest A 15 is more than one so above the mea- In test B 15 is less than one so above the mean.			1
In test B 15 is less than one so above the mean.		15 in Test B	-
In test 13 15 is less than one so above the meaning		In test of 15 is more than one 3 should be	
		In test B 15 is less than one so above the mean	·
			1

[8]
 State giving reason(s), whether or not the following is a polynomial,
$$10x^4 + 2x^4 - \frac{5}{x^2} + 10$$
 1

 $n o \downarrow a polynomial
 $n o \downarrow a negative index (-2)$
 1

 $\frac{1}{x^2} has a negative index (-2)$
 1

 $n \uparrow P(x) = 5x + 2 and Q(x) = x^2 - 3x + 1, find:$
 1

 $(1) P(x) - Q(x)$
 1

 $-x^2 + 8x + 1$
 2

 $(1i) P(x) - Q(x)$
 2

 $5x^2 - 13x^2 - x + 2$
 2

 $5x^2 - 3 + 3x^2 - x + 2$
 2

 $(1i) P(x) Q(x)$
 2

 $5x^4 - 3$
 2

 $(may have add thereof hans with indices a figs $2x + 1$
 2$$

r

c) Given
$$x^3 - 5x^2 + 7x - 2 = (x - 2)(x^2 + bx + c)$$

By long division or otherwise, find the values of a, b and c

$$\frac{x^2 - 3x + 1}{(x - 2)} = \frac{x^3 - 2x^2}{x^3 - 2x^2} + 7x - 2$$

$$\frac{x^3 - 5x^2 + 7x - 2}{-3x^2 + 7x - 2} = (x - 2)(x^2 - 3x + 1)$$

$$\therefore \quad \boxed{a = 1, \ b = -3, \ c = 1}$$
d) Find the equation of the cubic polynomial in this diagram. Leave your answer in factorised form.

$$y = a (x + 3)^2 (x - 5)$$

$$at (0, 90)$$

$$90 = a (0 + 3)^2 (0 - 5)$$

$$90 = -45a$$

$$a = -2$$

$$4 = -2$$

$$y = 2(x - 5)(x + 3)^2$$

$$y = 2(5 - x)(x + 3)^2$$

Question 7 (10 Marks) Marks If the equation $x^2 + y^2 + ax + by + c = 0$ always represents a circle, prove that $a^2 > 4c - b^2$. a) 3 $\chi^{2} + a\chi + y^{2} + by = -c$ $\chi^{2} + a\chi + \frac{a^{2}}{4} + y^{2} + by + \frac{b^{2}}{4} = -c$ $\left(\chi + \frac{a}{2}\right)^{2} + \left(\frac{y}{4} + \frac{b}{2}\right)^{2} = \frac{a^{2} + b^{2}}{4} - c$ $= \frac{a^{2}+b^{2}-4c}{4}$ Now $(x+\frac{9}{2})^{2} \ge 0$ and $(y+\frac{b}{2})^{2} \ge 0$ and radius > 0 $a^{2}+b^{2}-4c > 0$ $q^{2}+b^{2} > 4c$ $a^{2}+b^{2} > 4c$ $a^{2} < 4c-b^{2}$ b) 3. C 0 \mathcal{X} B(5,0) $\{-1, 0\}$ AB=6 units 2 By symmetry, 200 Triangle ABC is equilateral. The vertices A, B and C lie on the circumference of the circle. Find the exact coordinates of the centre of the circle. Centre, $\sqrt{1}$ $0 = (2,\sqrt{3})$ tan 60 = 3 $y_0 = \frac{3}{tan60}$ 3 ß 3 Y0= √3

c) R C is the centre of this circle. The distance d of the visible horizon from an observer at height h above the earth's surface is given by the formula $d^2 = h^2 + 2hr$ where r is the radius of the earth. Prove the tangent/secant formula. (i) 2 Construct PB, PD LAPB = LBOP (Alternate Segment Theorem) LAPB = LBOP (Alternate Segment Theorem) LA in common LA in common $LA BP ||| \Delta APO (Equiangular)$ AP = (AB) $Then \frac{AB}{AP} = \frac{AP}{AO} (Matchingsides in)$ Hence or otherwise prove d² = h² + 2hrIn DABP and DAPP, (ii) APZ=AB. AD $d^{2} = h(2r+h)$ $d^{2} = h^{2} + 2hr$ OR From Byth LAPO = 90° (tangent meets radius From Pyth. Theorem, $\tau^2 + d^2 = (h+\tau)^2$ contact.) $r^2 + d^2 = h^2 + 2hr + r^2$ $d^2 = h^2 + 2hr$ # **END OF TEST**