

SYDNEYBOYSHIGH SCHOOL
 modre park, surry hills

Year 10

Yearly Examination 2015

Mathematics

General Instructions

- Working time - 120 minutes
- Reading time - 5 minutes
- Write using black or blue pen.
- Approved calculators may be used.
- All necessary working MUST be shown in every question if full marks are to be awarded.
- Marks may not be awarded for untidy or badly arranged work.
- All answers should be in simplest exact form unless specified otherwise.
- If more space is required, clearly write the number of the QUESTION on one of the back pages and answer it there. Indicate that you have done so.
- Clearly indicate your class by placing an X , next to your class

Examiner: A. Fuller

NAME:

Class	Teacher	
10 MaA	Mr Boros	
10 MaB	Mr Hespe	
10 MaC	Ms Ward	
10 MaD	Mr Parker	
10 MaE	Ms Millar	
10 MaF	Mr Elliott\& Mr Choy	
10 MaG	Mr Gainford	

Section	Mark
A	$/ 20$
B	$/ \mathbf{1 5}$
C	$/ 15$
D	$/ \mathbf{1 5}$
E	$/ 15$
F	$/ \mathbf{1 4}$
G	$/ 13$
H	$/ 13$

8) $(\sqrt{5}-1)^{2}=$
(A) 4
(B) 6
(C) $6-2 \sqrt{5}$
(D) $6-\sqrt{10}$
9)

As a decimal correct to 3 decimal places, the ratio $\frac{Y Z}{X Z}$ is
(A) 0.530
(B) 0.625
(C) 0.848
(D) unable to be calculated.
10)

The value of x is
(A) $3 \frac{1}{3}$
(B) $4 \frac{4}{5}$
(C) 7
(D) $7 \frac{1}{2}$
11) Rationalize the denominator of $\frac{1}{\sqrt{7}-2}$.
(A) $\frac{\sqrt{7}-2}{3}$
(B) $\frac{\sqrt{7}+2}{3}$
(C) $\frac{\sqrt{7}-2}{5}$
(D) $\frac{\sqrt{7}+2}{5}$
12)

The information below relates to a group's performance on two tests.

	Test I	Test II
Mean	60	68
Standard Deviation	6	10

What mark in Test II is equivalent to a mark of 72 in Test I?
(A) 72
(B) 80
(C) 84
(D) 88
13)

If $\cos \theta<0$ and $\sin \theta>0$, then
(A) $0^{\circ}<\theta<90^{\circ}$
(B) $90^{\circ}<\theta<180^{\circ}$
(C) $180^{\circ}<\theta<270^{\circ}$
(D) $270^{\circ}<\theta<360^{\circ}$
14) Which does NOT have $m+1$ as a factor?
(A) $m^{2}-1$
(B) $m^{2}+1$
(C) $m^{2}+m$
(D) $m^{2}+2 m+1$
15) The centre and radius of the circle $(x-1)^{2}+(y+2)^{2}=16$ are
(A) $(-1,2)$ and 4
(B) $(1,-2)$ and 4
(C) $(-1,2)$ and 16
(D) $(1,-2)$ and 16
16) Which graph illustrates the solution of $-4 x>8$?
(A)

(C)

(B)

(D)

17) The bearing of P from Q is

(A) 040°
(B) 050°
(C) 130°
(D) 310°
18) Which of the following is a polynomial?
(A) $x+\frac{2}{x}$
(B) $x^{2}+2^{x}$
(C) $(\sqrt{x}+1)^{2}$
(D) $\sqrt{2} x^{2}+\sqrt{3} x^{3}$
19) Three students are playing a game. They each toss a coin at the same time. A winner is declared if only one student tosses a head. What is the probability that a winner is declared?
(A) $\frac{1}{8}$
(B) $\frac{1}{6}$
(C) $\frac{1}{3}$
(D) $\frac{3}{8}$
20) For an item originally priced at $\$ P$, its value $\$ A$, after n years of depreciation at $r \%$ p.a. is given by
(A) $A=-P\left(1+\frac{r}{100}\right)^{n}$
(B) $A=-P\left(\frac{1+r}{100}\right)^{n}$
(C) $A=P\left(\dot{1}-\frac{r}{100}\right)^{n}$
(D) $A=P\left(\frac{1-r}{100}\right)^{n}$

SECTION B (15 marks)

1) How many significant figures does 0.002030 have?
2) $\quad P(x)=x^{3}+2 x^{2}-7 x-3$ and $Q(x)=x^{2}-3 x+7$

Find:
(a) The degree of $P(x) \times Q(x)$
(b) The constant term of $P(x) \times Q(x)$
(c) $\quad P(x)+Q(x)$
(d) $\quad P(x)-Q(x)$
3) Solve the following:
(a) $5-\frac{x}{2}=4$
(b) $x^{2}-11 x+24=0$
(c) $(3 x-2)^{2}=49$
(d) $9 x=10 x^{2}+2$
4) Let $f(x)=\frac{1}{2} x+2$.
[3]
(a) Evaluate $f(-3)$
(b) Simplify $f(3 x-1)$
(c) Find the inverse function $f^{-1}(x)$

SECTION C (15 marks)

1) Factorise the following:
(a) $a p^{2}-a p q$
(b) $a p+a q-p-q$
2) Find the exact value of the following:
(a) $\tan 150^{\circ}$
(b) $\cos \theta$, if θ is acute and $\tan \theta=\frac{\sqrt{2}}{2}$.
3) Use the remainder theorem to find the remainder when $x^{3}-3 x+5$ is divided by $(x+2)$.
4) $\quad \$ 1100$ is invested for 6 years compounded yearly at 6% p.a.
(a) How much is the investment worth after 6 years?
(b) How much interest is earned?
(c) What is the equivalent simple interest rate (to one decimal place)?
5) $\quad P(x)=5 x^{3}-17 x^{2}-x+11$ is divided by $A(x)=x-2$.

Find the quotient $Q(x)$ and the remainder $R(x)$.
6) A triangle has sides $4 \mathrm{~cm}, 6 \mathrm{~cm}$ and 7 cm ?
(a) What is the size of the smallest angle (to the nearest degree)?
(b) Hence, what is the area of the triangle (to the nearest square centimetre)?

SECTION D (15 marks)

1) Sketch the graph of the following (on the axes provided):
(a) $y=4-x^{2}$
(b) $\quad y=\frac{2}{2+x}$
(c) $y=-4^{x}$
(d) $\quad y=2(2+x)$
(a)

(c)

(b)

(d)

2) Give an example of a function f for which $f(a+b)=f(a) \times f(b)$
3) For the set of scores: $29,31,31,34,45,39,42,45,47,53,57,61$

Calculate:
(a) the range
(b) the inter-quartile range
4) Consider the parabola $y=x^{2}-6 x+7$.
(a) Use the quadratic formula to find the x intercepts
(b) Find the coordinates of the vertex.
5) Find the value of the pronumerals in the following (no reasons required):

Diagrams are NOT TO SCALE
(a)

(b)

(c)

(d)

1)

Standard Model Deluxe Model

The two umbrellas above are similar shapes with $a: b=4: 5$. The standard model requires $1.44 \mathrm{~m}^{2}$ of material. How much material is required for the deluxe model?
2) The net of the die is shown below.

The faces are numbered $1,2,3$ and 4 . The die is rolled twice. The number on the face that the die lands on is recorded each time.
(a) By considering a table, or otherwise, find the probability that the sum of the two recorded numbers is greater than 4.
(b) Find the probability that the sum of the two recorded numbers is greater than 4 if it is known that a 3 appears on one of the dice.
3) The graph of $y=f(x)$ is given below

Sketch the following (on the axes provided)
(a) $y=f(x)-1$
(b) $y=f\left(\frac{x}{2}\right)$
(c) $y=f(1-x)$
(a)

(b)

(c)

4) $y=-\sqrt{x+4}$. What are the restrictions on x ?
5) Write down the equation of the following cubic curves.
(You may leave the equation in factored form)
(a) The x - intercepts are $-2,-1$ and 1 . The y-intercept is -4 .
(b)

6)

Find the size of the angle θ to the nearest degree.

SECTION F (14 marks)

1) Write the following in the form a^{b}
(a) $3^{x} \times 3^{y}$
(b) $3^{x} \times 5^{x}$
2) If the $17^{\text {th }}$ day of a month is Thursday:
(a) What is the first day of the month?
(b) What is the first day of the following month likely to be?
3) Make a the subject of $a b=a c+b d$
4) Andrew has a bucket of coins. Each coin has a zero on one side and an integer greater than zero on the other side. He randomly draws three coins, tosses them and calculates a score by adding the three numbers that appear.
(a) On Monday, Andrew draws coins with a 7, a 5 and a 10 for a score of 17. By considering a tree diagram, or otherwise, what other scores could he obtain by tossing the same three coins?
(b) On Tuesday, Andrew draws three coins and tosses them three times, obtaining scores of 60,110 and 130 . On each of these tosses, exactly one of the coins shows a zero. Determine the maximum possible score that can be obtained by tossing these three coins.
(c) On Wednesday, Andrew draws a coin with 25 , one with a 50 , and a third coin. He tosses these three coins and obtains a score of 170 . Determine all possible numbers, other than zero, that could be on the third coin.

SECTION G (13 marks)

1) (a) Expand $\left(x^{2}+2 x\right)^{2}$
(b) Write $x^{4}+4 x^{3}-5 x^{2}-18 x+8$ in the form

$$
\begin{equation*}
\left(x^{2}+2 x\right)^{2}+A\left(x^{2}+2 x\right)+B \tag{1}
\end{equation*}
$$

(c) Hence, by using the substitution $m=x^{2}+2 x$,

$$
\text { solve } x^{4}+4 x^{3}-5 x^{2}-18 x+8=0
$$

2) If $x^{2}=8 x+y$ and $y^{2}=x+8 y$ with $x \neq y$. What is the value of $x^{2}+y^{2}$?
3). $f(x)=2 x^{2}-x^{4}, 0 \leq x \leq 1$. Find the inverse function $f^{-1}(x)$.
3) The lines $y=\frac{1}{2} x$ and $y=-\frac{1}{2} x$ are tangents to a circle at $(2,1)$ and $(2,-1)$.

Find the equation of the circle.

SECTION H (13 marks)

1) A cone, a cylinder and a sphere all have radius r. The height of the cylinder is H and the height of the cone is h.
(a) If the cylinder and the sphere have the same volume, show that

$$
\begin{equation*}
H=\frac{4}{3} r . \tag{1}
\end{equation*}
$$

(b) If the cone and the cylinder have the same total surface area, show that

$$
r+2 H=\sqrt{r^{2}+h^{2}}
$$

(c) Hence, prove that h and H cannot both be integers.
2). A monic cubic polynomial has a remainder of $(x+8)$ when divided by $\left(x^{2}+4\right)$ and a remainder of -4 when divided by x.

Find the polynomial in the form $a x^{3}+b x^{2}+c x+d$
3)

Two circles touch internally at A where there is a common tangent. $B C$ is a diameter of the larger circle, touching the smaller circle at P. $A C$ cuts the smaller circle at Q. Prove that $\angle A P Q+\angle A C P=90^{\circ}$.

End of Exam

Use this space if you wish to rewrite any answers.
Clearly indicate the Question number.

SYDNEYBOYS HIGH SCHOOL

MOORE PARK, SURRY HILLS

2015

Year 10 Yearly

Advanced Mathematics

Solutions

Sections	Teacher
A	-
B	AMG
C	EC
D	JM
E	PSP
F	AW
G	DH
H	RB

Multiple Choice Answers (Section A):

1. B
2. C
3. A
4. D
5. B
6. A
7. B
8. D
9. B
10. D
11. A
12. D
13. B
14. A
15. D
16. D
17. B
18. B

SECTION A (20 marks) Circle the correct answer
B. $\sqrt{1)} \frac{3 x-3}{3}=$

$$
\frac{3(x-1)}{3}=x-1
$$

(A) x
(B) $x-1$
(C) $x-3$
(D) $3 x-1$
(A) $\frac{1}{100}$
(B) $\frac{1}{20}$
(C) -20
(D) -100

These cards are shuffled and placed in a hat. One card is drawn from the hat at random.
What is the probability that it is a card with a 3 on it?
(A) $\frac{1}{3}$
(B) $\frac{1}{7}$
(C) $\frac{2}{5}$
(D) $\frac{2}{7}$

C
8) $(\sqrt{5}-1)^{2}=$
(A) 4
$\sqrt{9}$

(B) 6
(C) $6-2 \sqrt{5}$
(D) $6-\sqrt{10}$

As a decimal correct to 3 decimal places, the ratio $\frac{Y Z}{X Z}$ is
(A) 0.530
(B) 0.625
(C) 0.848
(D) unable to be calculated:
, 10
B

$$
5 x=4 \times 6
$$

The value of x is
(A) $3 \frac{1}{3}$
(B) $4 \frac{4}{5}$
(C) 7
(D) $7 \frac{1}{2}$.

1) Rationalize th
(A) $\frac{\sqrt{7}-2}{3}$
(C) $\frac{\sqrt{7}-2}{5}$
(D) $\frac{\sqrt{7}+2}{5}$
$\sqrt[12]{ }$
The information below relates to a group's performance on two tests.

	Test I	Test I
Mean	60	68
Standard Deviation	6	10

What mark in Test Π is equivalent to a mark of 72 in Testis? 72 in lest 1 Was $z=2$
(A) 72
(B) 80
(C) 84
(D) 88 \therefore ln lest $268+2 \times 10=88$

If $\cos \theta<0$ and $\sin \theta>0$, then
(A) $0^{\circ}<\theta<90^{\circ}$
(B) $90^{\circ}<\theta<180^{\circ}$
(C) $180^{\circ}<\theta<270^{\circ}$
(D) $270^{\circ}<\theta<360^{\circ}$

B
14) Which does NOT have $m+l$ as a factor?
(A). $m^{2}-1$
(B) $m^{2}+1$
(C) $m^{2}+m$
(D) $m^{2}+2 m+1$
25) The centre and radius of the circle $(x-1)^{2}+(y+2)^{2}=16$ are
(A) $(-1,2)$ and 4
(B) $(1,-2)$ and 4
(C) $(-1,2)$ and 16
(D) $(1,-2)$ and 16
$\sqrt[16)]{ }$ Which graph illustrates the solution of $-4 x>8$?
A
$\xrightarrow[4-3]{(\mathrm{A})}$
(B)

(C)
(D)

$\sqrt{17)}$ The bearing of P from Q is

(A) 040°
(B) 050°
(C) 130°
(D) 310°
*8) Which of the following is a polynomial?
(A) $x+\frac{2}{x}$
(b) $x^{2}+2^{x}$
(c) $(\sqrt{x}+1)^{2}$
(D) $\sqrt{2} x^{2}+\sqrt{3} x^{3}$

F9) Three students are playing a game. They each toss a coin at the same time. A winner is declared if only one student tosses a head. What is the probability that a winner is declared?
(A) $\frac{1}{8}$
(B) $\frac{1}{6}$
(C) $\frac{1}{3}$
(D) $\frac{3}{8}$
20). For an item originally priced at $\$ P$, its value $\$ A$, after n years of depreciation at $r \%$ p.a. is given by
(A) $A=-P\left(1+\frac{r}{100}\right)^{n}$
(B) $A=-P\left(\frac{1+r}{100}\right)^{n}$
(C) $A=P\left(1-\frac{r}{100}\right)^{n}$
(D) $A=P\left(\frac{1-r}{100}\right)^{n}$

SECTION B (15 marks)

1) How many significant figures does 0.002030 have?

$$
\begin{align*}
& \text { [Vargpoorly Molerstiod } \tag{4}\\
& \text { Many wore } 5 \text { and many } 3]
\end{align*}
$$

2) $\quad P(x)=x^{3}+2 x^{2}-7 x-3$ and $Q(x)=x^{2}-3 x+7$

Find:-
(a) The degree of $P(x) \times Q(x)$
[Mary wrote x^{5}]

(b) The constant term of $P(x) \times Q(x)$
[Well answered.]
-21
(c) $\quad P(x)+Q(x)$
[Well answered] $x^{3}+3 x^{2}-10 x+4$
(d) $\quad P(x)-Q(x)$

$$
x^{3}+x^{2}-4 x-10
$$

[Tels angered:]
3) Solve the following:
(a) $5-\frac{x}{2}=4$

$$
\begin{aligned}
10-x & =8 \\
-x & =-2
\end{aligned}
$$

$$
x=2
$$

[Wed answered]
(b) $x^{2}-11 x+24=0$

$$
\begin{array}{r}
(x-3)(x-8)=0 \\
x=3,8 \\
{[\text { Well answered.] }}
\end{array}
$$

[Here many failed to put ± 7, so got only ore unsure? $]$
(c) $(3 x-2)^{2}=49$

$$
\begin{array}{rlr}
3 x-2 & = \pm 7 & x=3,-\frac{5}{3} \\
3 x & = \pm 7+2 & \\
x & =\frac{ \pm 7+2}{3} &
\end{array}
$$

(d) $\quad 9 x=10 x^{2}+2$
[Quite well
$10 x^{2}-9 x+2=0$ answered $]^{[2]}$

$$
\begin{aligned}
& x=\frac{9 \pm \sqrt{81-80}}{20} \\
& x=\frac{1}{2}, \frac{2}{5} \quad x=\frac{1}{2}+\frac{2}{5} \\
& x)=\frac{1}{2} x+2 .
\end{aligned}
$$

4). Let $f(x)=\frac{1}{2} x+2$.
(a) Evaluate $f(-3)$

$$
f(-3)=-\frac{3}{2}+2 \quad f(-3)=1 / 2
$$

[Almost all got this right.]
(b)

$$
\begin{aligned}
& f(3 x-1)=\frac{1}{2}(3 x-1)+2 \quad f(3 x-7)=\frac{3}{2}(x+1) \\
&=\frac{3}{2} x-\frac{1}{2}+2 \quad[\text { Tracy failed to do } \\
& \text { tres that Surporfication }
\end{aligned}
$$ the that simplification

(c) Find the inverse function $f^{-1}(x)$ step. $]$

$$
\begin{aligned}
y & =\frac{1}{2} x+2 \\
x & =\frac{1}{2} y+2 \\
2 x & =y+4 \\
y & =2 x-4
\end{aligned}
$$

LA sizeable propantion Showed no understanding of this process.]

Section C Solutions
(a) $a p(p-q)[1]$
(b) $a(p+q)-(p+q)$

$$
=(p+q)(a-1)[2]
$$

(1) This was roatsonably well
(a) doal, the convor. siviog ansues
(b) is $(p+q)(1-a)$ or $-(p+q)(a-1)$.
(2) $\tan 150$

$$
\begin{aligned}
(a) & =-\tan 30^{\circ} \\
& =-\frac{1}{\sqrt{3}} \cdot[1]
\end{aligned}
$$

(b)

$$
\begin{aligned}
\begin{aligned}
\frac{\sqrt{6}}{6} 1^{\sqrt{2}} & \cos \theta \\
& =\frac{2}{\sqrt{6}} \times \frac{\sqrt{6}}{\sqrt{6}} \\
\sqrt{\frac{2}{3}} & =\frac{\sqrt{6}}{2} \cdot[1]
\end{aligned}
\end{aligned}
$$

(2) oand (a) only a munainty of stadat gare $\quad \tan 150^{\circ}=\frac{1}{\sqrt{3}}$
Answers expressed wi non - ratioualist foun were commor.
(3)

$$
\begin{aligned}
p(-2) & =-8+6+5 \\
& =3 .
\end{aligned}
$$

(3) wall don
\therefore remander $=3$
(4)
(a) $1100 \times(1.06)^{6}$

$$
=\$ 1560.37 \quad[1]
$$

(b) 460.37 interest is earned. [1]
(c)

$$
\begin{aligned}
& \frac{460.37}{11000} \div 6 \\
& \div 0.07
\end{aligned}
$$

approx 7%.

$$
\begin{aligned}
& \mp 0.00697 \\
& \mp 7 \%
\end{aligned}
$$

$(5) \frac{5 x^{2}-7 x-15}{5 x^{3}-17 x^{2}-x+11[3}$
$5 x^{3}-10 x^{2}$
(23)
$=7 x^{2}-71$

$$
\begin{array}{r}
-7 x-15 \\
-7 x^{2}-x+11 \\
-\left(-7 x^{2}+14 x\right) \\
\hline \frac{-(-15 x+11}{-19)}
\end{array}
$$

lutrodectan
(5) Thi wos a. type ay questan, wheh war generally wall doce
(6) (a)

$$
\begin{aligned}
16^{2} & =49+36-84 \cos \theta \\
84 \cos \theta & =69 \\
\therefore 107 \theta & =\frac{69}{84} \\
\theta & =400^{-1}\left(\frac{69}{84}\right)[2] \\
(b) & =34^{\circ} 46^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
A & =\frac{1}{2} \times 42 \sin \theta \\
& =11.976 \quad[1]
\end{aligned}
$$

(6)

Answers here were geverale good, woth some ung the sinerrule ad othens usg rgit -agled tragle thagovanetry

Kourdy ogf to the wearest degree caused prablem for students
With huadsught it is appropnate to emphasme two sacient ports

- tha uecarenty for students uot to tord anf vutil lust step of a calcula tion ad to show thein calculator outpurt begore roundig ayg.
- the keed to show all warky; baid conect ansmers do not a 1 ways s cre full marts

Section D

1. (a) $y=4-x^{2}$

(b) $y=\frac{2}{2+x}$

(c) $y=-4^{x}$

Comments

1. -Students need to make sure they label all key points, such as asymptotes, intercepts and at least two points.
2. For $f(a+b)=f(a) \times f(b)$

An exponential as:
eg. $2^{a+b}=2^{a} \times 2^{b}$
3. (a)

$$
\begin{aligned}
\text { Range } & =61-29 \\
& =32
\end{aligned}
$$

(b) Interquartile range

$$
\begin{aligned}
& =Q_{3}-Q^{1} \\
& =\left(\frac{53+47}{2}\right)-\left(\frac{34+31}{2}\right) \\
& =50-32.5 \\
& =17.5
\end{aligned}
$$

Comments
2. - Not many students got this question.
3. - Some students incorrectly found the quartiles.
4. $y=x^{2}-6 x+7$
(a)

$$
\begin{aligned}
x & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{-(-6) \pm \sqrt{(-6)^{2}-4(1)(7)}}{2(1)} \\
& =\frac{6 \pm \sqrt{8}}{2} \\
& =\frac{6 \pm 2 \sqrt{2}}{2} \\
& =\frac{2(3 \pm \sqrt{2})}{2} \\
& =3 \pm \sqrt{2}
\end{aligned}
$$

(b)

$$
\begin{aligned}
& x=\frac{-b}{2 a} \\
& \text { (axis of sy } \\
& x=\frac{-(-6)}{2(1)} \\
&=3
\end{aligned}
$$

(axis of symmetry)

At $x=3: y=(3)^{2}-6(3)+7$

$$
=9-18+7
$$

$$
=-2
$$

$$
\therefore \text { vertex }=(3,-2)
$$

Comments
In (a), students need to make sure they factorise the numerator first before simplifying to minimise errors.
Likewise in (b) students substituted x incorrectly.
5.
(a) $a=30^{\circ}$
two lots of:
angles in the same segment).
(b) $b=50^{\circ}$
(tangents from external point and angle in alternate segment)
(c) $c=65^{\circ}$
(angle sum of a triangle and angle at the centre and circumference.)
(d) $d=20^{\circ}$
(opposite angle in a cyclic quadrilateral and co-interior angles in parallel lines).

Comments
Very well answered
Note: no reasons needed

Section E Solutions

1.

$\begin{array}{llll}\text { Sides } & a & : & b \\ & 4 & : & 5\end{array}$

SA $\quad a^{2}: b^{2}$
$4^{2}: \quad 5^{2}$
1.44 : Δ
\therefore Deluxe Model requires $\Delta=1.44 \times \frac{5^{2}}{4^{2}}=2.25 \mathrm{~m}^{2}$
Comment: The main error was forgetting to square the ratio. This was a 1 mark penalty.
2. a) $\mathrm{P}(>4)=\frac{10}{16}=\frac{5}{8}$

$\mathbf{+}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{1}$	2	3	4	5
$\mathbf{2}$	3	4	5	6
$\mathbf{3}$	4	5	6	7
$\mathbf{4}$	5	6	7	8

$-\frac{1}{2}$ if fraction not reduced
b) $\quad \mathrm{P}(>4 \mid 3$ on one face $)=\frac{5}{7}$ i.e. 5 of the shaded squares satisfy the condition.

$\mathbf{+}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{1}$	2	3	4	5
$\mathbf{2}$	3	4	5	6
$\mathbf{3}$	4	5	6	7
$\mathbf{4}$	5	6	7	8

$-\frac{1}{2}$ if fraction not reduced BUT not penalised twice

- 1 for an answer that was impossible

Alternatively

$\mathrm{P}(3$ on one face $)=\frac{7}{16}$
$\mathrm{P}(>4$ and at least one 3$)=\frac{5}{16}$
$\therefore \mathrm{P}(>4 \mid 3$ on one face $)=\frac{\frac{5}{16}}{\frac{7}{16}}=\frac{5}{7}$,
Comment: The advice given in the question was to use a table - this was good advice, especially for part b)
Part b) was not done very well. Practice with two-way tables is recommended.
3. The dotted graph is the original function and the solid is the answer.
(a) $y=f(x)-1$

NB The answer is the original graph translated 1 unit downwards.

(b) $y=f\left(\frac{x}{2}\right)$

NB the answer is the original graph stretched horizontally by a factor of 2 .
OR
By applying the function to some significant points (red dots), the transformation can be seen.
NB that $(0,-2)$ doesn't "move" since $f\left(\frac{0}{2}\right)=f(0)=-2$

x	-2	0	2	4
$f(x)$	-2	-2	0	2
$f\left(\frac{x}{2}\right)$	$f\left(\frac{-2}{2}\right)$	$f\left(\frac{0}{2}\right)$	$f\left(\frac{2}{2}\right)$	$f\left(\frac{4}{2}\right)$
$=f(-1)$				
$=-2$	$=f(0)$	$=f(1)$ $=-2$	$=f(2)$	
$=2$				

3. (c) $y=f(1-x)$

NB the answer is the original graph reflected in the line $x=\frac{1}{2}$.
By applying the function to some significant points (red dots), the transformation can be seen.

\(\left.$$
\begin{array}{|c|c|c|c|c|}\hline x & -2 & 0 & 2 & 4 \\
\hline f(x) & -2 & -2 & 0 & 2 \\
\hline & f(1-(-2)) & \begin{array}{l}f(1-0) \\
=f(3) \\
=2\end{array} & \begin{array}{l}f(1) \\
=0\end{array} & \begin{array}{l}f(1-2) \\
=f(-1) \\
=-2\end{array}\end{array}
$$ \begin{array}{c}f(1-4)

=f(-3)

=-2\end{array}\right]\)| |
| :--- |

Comment: Parts (b) and (c) were not done well.
No half marks were awarded. The graph had to be "perfect".
4. The domain of $y=-\sqrt{x+4}$ is determined by $x+4 \geq 0$
$\therefore x \geq-4$

Comment: A lack of understanding about square roots cost many students the mark.
5. (a) $y=k(x+2)(x+1)(x-1)$
[1 mark]

The y-intercept is -4 i.e. $-4=k(-2)(-1)(1)$
[Substitute $x=0$]
$\therefore k=2$
$y=2(x+2)(x+1)(x-1)$
(b) There is a double root at $x=0$
$y=k x^{2}(x-1)$
[1 mark]

Substitute $(-1,2) \Rightarrow 2=k(-2)$
$\therefore k=-1$
$\therefore y=-x^{2}(x-1)$ or $x^{2}(1-x)$

Comment: Many students ignored the text about the two graphs being cubics.
Students with an incorrect answer, who showed no working, could only get a maximum of 1 mark if that.
6. Using the Sine Rule

$$
\begin{aligned}
& \frac{\sin \theta}{8}=\frac{\sin 42^{\circ}}{7} \\
& \therefore \sin \theta=\frac{8 \sin 42^{\circ}}{7} \\
& \therefore \theta \doteqdot 50^{\circ}, 180^{\circ}-50^{\circ} \\
& \quad=50^{\circ}, 130^{\circ}
\end{aligned}
$$

Both angles fit the diagram.

Comment: Many students only scored 1.5 marks because they didn't consider the "ambiguous case".
Many students ignored the "nearest degree" which could have been costly.

1) Write the following in the form a^{b}
(a) $3^{x} \times 3^{y}$

$$
3^{x+y}
$$

(1)

DONE FAIRLY WELL.
(1) for EACH COMPONENT
(b) $\quad 3^{x} \times 5^{x}$

$$
15^{x}
$$

(1)
2). If the $17^{\text {th }}$ day of a month is Thursday:
(a) What is the first day of the month?

$$
\begin{align*}
7=\text { Thurs }=17-14 & =3 \text { rd Thurs } \tag{1}\\
1^{\text {ST }} & =\text { TUESDAY }
\end{align*}
$$

DONE FARLEY WELL:.:
(b) What is the first day of the following month likely to be?

$$
\begin{aligned}
& \text { Thurs }=17+14=34 \\
& 31 \text { DAYS: ThurS }=3 \pi^{T 1}: 1^{T T}=\text { FRIDAY } \\
& 300 \text { MYS: } \text { Wed }=30^{\text {Ti }}: 1^{S T}=\text { THURSDAY }
\end{aligned}
$$

DONE VERYWIELL THURSDAY ANGkOR: FRIDAY ACCEPTED Au

DONE VERY HEL
(1) FOR UPTO

$$
a(p-c)=b d
$$

4) Andrew has a bucket of coins. Each coin has a zero on one side and an integer greater than zero on the other side. He randomly draws three coins, tosses them and calculates a score by adding the three numbers that appear.
(a) On Monday, Andrew draws coins with a 7, a 5 and a 10 for a score of 17 . By considering a tree diagram, or otherwise, what other scores could he obtain by

Other scores $=$ $0,5,7,10,12,15,22$.

DONE FÁRLY WElL - LAYOUT. WAS POOR
(1) FOR CORRECT TREE DIAGRAM
($\frac{1}{2}$) DEDUCTED FOR FIRST OMISSION.
(1) $\operatorname{Or}(12)$ DEDUCTED FOR MORE OMISSIONS.
(b) On Tuesday, Andrew draws three coins and tosses them three times, obtaining scores of 60,110 and 130. On each of these tosses, exactly one of the coins shows a zero. Determine the maximum possible score that can be obtained by tossing these three coins.

$$
\begin{aligned}
& a+b=60-8 \\
& b+c=110 \\
& a+c=130
\end{aligned}
$$

$$
\begin{gathered}
(1)+(2)+(3)=2 a+2 b+2 c=300 \\
2(a+b+c)=300 \\
a+b+c=150
\end{gathered}
$$

$$
\text { Max Possible Score }=150
$$

DONE FAIRLY WELL.
(1) FOR SET UP OF EQUATIONS LAYOUT WAS EXTREMELY POOR.
(c) On Wednesday, Andrew draws a coin with 25, one with a 50 , and a third coin. He tosses these three coins and obtains a score of 170 . Determine all possible numbers, other than zero, that could be on the third coin.

$$
\begin{aligned}
& a=0 \\
& b=50 \\
& \hline c=120
\end{aligned}
$$

$$
a=25
$$

$$
a=0
$$

$$
\frac{b=150}{c=95}
$$

$$
\frac{b=0}{c=145}
$$

$$
b=0
$$

$$
c=170
$$

DONE VERY WELL
(12) DEDUCTED FOR TEACH
Third coin could be.

$$
95,120,145,170 \cdot 2
$$

5). Solve $2 \sin x+1=0$ for $0^{\circ} \leq x \leq 360^{\circ}$

$$
\begin{aligned}
\sin x & =-\frac{1}{2} \\
x & =-30 \\
x & =210^{\circ} \& 330^{\circ}
\end{aligned}
$$

(2)

DONE POORLY $\frac{1}{2}$ FOR $x=-30^{\circ}$

(1) FOR ONE SOLUTION. | MOST ONLY GAVE |
| :--- |
| ONE SOLUTION |

1. (a) Expand $\left(x^{2}+2 x\right)^{2}$.

Solution: $x^{4}+4 x^{3}+4 x^{2}$.
Comment: Generally well done.
(b) Write $x^{4}+4 x^{3}-5 x^{2}-18 x+8$ in the form
$\left(x^{2}+2 x\right)^{2}+A\left(x^{2}+2 x\right)+B$.
Solution: $x^{4}+4 x^{3}+4 x^{2}-9 x^{2}-18 x+8=\left(x^{2}+2 x\right)^{2}-9\left(x^{2}+2 x\right)+8$.
Comment: Although most answered this part well, some did not seem to understand what was required and others, after finding A and B, did not explicitly answer the question.
(c) Hence, by using the substitution $m=x^{2}+2 x$, solve $x^{4}+4 x^{3}-5 x^{2}-18 x+8=0$.

$$
\begin{aligned}
& \text { Solution: } \quad m^{2}-9 m+8=0 \text {, } \\
& (m-8)(m-1)=0 \text {, } \\
& \therefore m=8,1 \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& (x+4)(x-2)=0, \\
& x=-4,2 . \quad=-1 \pm \sqrt{2} . \\
& \text { Solution: } \quad m^{2}-9 m+8=0 \text {, } \\
& x=\frac{-2 \pm \sqrt{4+4}}{2},
\end{aligned}
$$

Comment: Well done by those who succeeded in (b).
Most subsequent errors were the result of a careless attempt to factorise $x^{2}+2 x-1$ as $(x-1)^{2}$.
2. If $x^{2}=8 x+y$ and $y^{2}=x+8 y$ with $x \neq y$, what is the value of $x^{2}+y^{2}$?

Solution: Method 1:-

$$
\begin{align*}
& x^{2}=8 x+y \ldots \ldots \ldots \tag{1}\\
& y^{2}=x+8 y \ldots \ldots \ldots \tag{2}\\
&\boxed{1}]-\left[\begin{array}{|c}
2 \\
(x+y)(x-y) \\
x^{2}-y^{2}
\end{array}=7 x-7 y,\right. \\
& x+y=7(x-y), \\
&\boxed{1}]+\left[\begin{array}{|c}
2 \\
x
\end{array} x^{2}+y^{2}\right.=9 x+9 y, \\
&=9(x+y), \\
&=9 \times 7, \\
&=63 .
\end{align*}
$$

Comment: Few got beyond simple addition, $9(x+y)$, which only garnered a half mark.

Solution: Method 2:-

$$
\begin{aligned}
x+y & =7 \text { (as above). } \\
\text { Now } x^{2} & =7 x+x+y, \\
\text { i.e. } x^{2} & =7 x+7, \text { and similarly } y^{2}=7 y+7, \\
x^{2}-7 x-7 & =0, \\
x & =\frac{7 \pm \sqrt{49+28}}{2} \\
& =\frac{7 \pm \sqrt{77}}{2}, \text { and also } y=\frac{7 \pm \sqrt{77}}{2} .
\end{aligned}
$$

As $x \neq y$, take $x=\frac{7+\sqrt{77}}{2}, y=\frac{7-\sqrt{77}}{2}$,

$$
\text { then } \begin{aligned}
x^{2}+y^{2} & =\frac{49+14 \sqrt{77}+77}{4}+\frac{49-14 \sqrt{77}+77}{4}, \\
& =\frac{252}{4}, \\
& =63 .
\end{aligned}
$$

3. $f(x)=2 x^{2}-x^{4}, 0 \leqslant x \leqslant 1$. Find the inverse function $f^{-1}(x)$.

Solution: First put $y=2 x^{2}-x^{4}$, with end-points $(0,0)$ and $(1,1)$,
then for the inverse, $x=2 y^{2}-y^{4}$,

$$
\begin{aligned}
\text { next put } k & =y^{2}, \\
x & =2 k-k^{2}, \\
& =-\left(k^{2}-2 k+1\right)+1, \\
x-1 & =-(k-1)^{2}, \\
k-1 & = \pm \sqrt{1-x}, \\
k & =1 \pm \sqrt{1-x},
\end{aligned}
$$

but the inverse passes through $(0,0)$ and $(1,1)$ like $f(x)$,

$$
\begin{aligned}
\text { so } k & =1-\sqrt{1-x}, \\
y^{2} & =1-\sqrt{1-x}, \\
y & =\sqrt{1-\sqrt{1-x}},(y \geqslant 0 \text { as through }(0,0) \text { and }(1,1)) \\
\text { i.e. } f^{-1}(x) & =\sqrt{1-\sqrt{1-x}} .
\end{aligned}
$$

Comment: Many candidates failed to use completion of squares to extract y as the subject from $x=2 y^{2}-y^{4}$.
Those who did then often failed to take account of whether the positive or negative root was appropriate to the given domain.
Sadly, quite a few students must have been away in Year 8 when $\sqrt{a^{2}+b^{2}} \neq a+b$ was discussed.
4. The lines $y=\frac{1}{2} x$ and $y=-\frac{1}{2} x$ are tangents to a circle at $(2,1)$ and $(2,-1)$.

Find the equation of the circle.

Solution:

To find the centre, calculate where the perpendicular from the tangent at $(2,1)$ cuts the x-axis.

Slope of normal $=-2$,

$$
\begin{aligned}
y-1 & =-2(x-2) . \\
\text { When } y & =0,-1
\end{aligned}=-2 x+4, ~ 子 \begin{aligned}
2 x & =5, \\
x & =\frac{5}{2} .
\end{aligned}
$$

\therefore Centre $\left(2 \frac{1}{2}, 0\right)$.

$$
\begin{aligned}
\text { Radius } & =\sqrt{\left(\frac{5}{2}-2\right)^{2}+1^{2}} \\
& =\frac{\sqrt{5}}{2}
\end{aligned}
$$

\therefore Circle: $\left(x-\frac{5}{2}\right)^{2}+y^{2}=\frac{5}{4}$,

$$
\begin{aligned}
x^{2}-5 x+\frac{25}{4}+y^{2} & =\frac{5}{4} \\
x^{2}-5 x+y^{2}+5 & =0 .
\end{aligned}
$$

Comment: Many candidates failed to make a clear sketch which would have helped in planning the method to use. For too many candidates, this seemed to arise from an inconsistent mis-application of the order of ordered pairs.
An effective - but somewhat more cumbersome - method of finding the centre used by some candidates was to derive the equations of both normals and then to solve them simultaneously.

Comments about पh10 Yearly 2015 Section H.
La) students grunted $V=\pi r^{2} /, V=\frac{4}{3} \pi^{3}$ but did not show how $H=\frac{4}{3} r$ was arrived at.
(b) students quoted $S A=2 \pi r^{2}+2 \pi r A$ and $S A=\pi^{2}+\pi r^{\prime} S$ Many del not show where $s=\sqrt{h^{2}+r^{2}}$ came from Mot students getting this for ute then successful
(c) Ven y badly done. Only 5 students successful
See the solutions it understand the rigor see the solutions to understand the rigor
involved.
2. A difficult manic uric to find. Some marks goer for porto of the answer. See the detailed solutions (o). to uliderstond.
3. Many studevit did not drawing the common tangowi and then labelled, it. See my diagram. In may opinion once the i is done and l a few alt. seq the used the proof comes out easily, T enterifoined many distrent solution
But liveware, chords mary toot, equal but. But beware,' charles may took equal but Hey are not, angles par boo 90° but then not. All tidal assumptions. Overfisf \Rightarrow yes. drew in 4 constmetion live.

Mayo logical; able to he followed lime of working are needed birth reasons. There were s further pages student could use to set out a proof 7 sion ed

3 student o scored $13 / 3$ in Section A.

SECTION H (13 marks)

1) A cone, a cylinder and a sphere all have radius r. The height of the cylinder is H and the height of the cone is h.
(a) If the cylinder and the sphere have the same volume, show that

$$
\left.\begin{array}{l}
V=\pi r^{2} h^{H=\frac{4}{3} r} \\
V=\frac{4}{3} \pi r^{3}
\end{array}\right\}^{50} \begin{aligned}
& k V^{2} H=\frac{4}{3} \pi r^{31} \\
& H=\frac{4}{3} r
\end{aligned}
$$

(b) If the cone and the cylinder have the same total surface area, show that

$$
\begin{aligned}
& S A=2 \pi r^{2}+2 \pi r H=\sqrt{r^{2}+h^{2}} \\
& S A=\pi r^{2}+\pi r S \Rightarrow S=\sqrt{r^{2}+h^{2}} \\
& \text { So } 2 \pi r^{2}+2 \pi r H=\pi r \\
& 2 \pi(r+H)=\pi r \sqrt{h}^{2}+r^{2}
\end{aligned}
$$

(c) Hence, prove that h and H cannot both be integers.

2). A monic cubic polynomial has a remainder of $(x+8)$ when divided
by $\left(x^{2}+4\right)$ and a remainder of -4 when divided by x.

1 st part of inf: $P(x)=\left(x^{2}+4\right)(x+a)+(x+8)$
must be amman ic cubic $P(x)$

$2^{n t}$ part of info: $P(x)=x\left(x^{2}+b\right)-4$ must be a
So $\left(x^{2}+4\right)(x+a)+(x+8)=x\left(x^{2}+6\right)-4$
$x^{3}+a x^{2}+4 x+4 a+x+8=x^{3}+6 x-4$
$x^{3}+a x^{2}+5 x+4 a+8=x^{3}+6 x-4$
$a=0$ is a possibility as $0 x^{2}$ but $4 a+8=-4$ and. $b=5$.

So the manic $P(x)$ could be $1 x^{3}+0 x^{2}+5 x^{a}-44^{3}$ or

$$
\text { Ix }-3 x^{2}+5 x-4 x+3 y \text { dividing by } x \text { and }\left(x^{2}+4\right) \text {, }
$$

bcheck, Answer is x^{3}.
3)

Two circles touch internally at A where there is a common tangent. $B C$ is a diameter of the larger circle, touching the smaller circle at P. $A C$ cuts the smaller circle at Q.
Prove that $\angle A P Q+\angle A C P=90^{\circ}$.
In the large arcle, $\left\{\begin{array}{l}X \hat{A} B=B \hat{C} A=\alpha \text { alt. seq. theorem: } \\ B \hat{A C}=90^{\circ}\end{array}\right.$ $\left\{\begin{array}{l}B \hat{A} C=90^{\circ} \text { angle in a sere circle. } \\ \hat{A A} \hat{C}=C \overrightarrow{B A}=\theta \text { alt seq. theorem }\end{array}\right.$
 $\left\{\begin{array}{l}Y \hat{Q}=\hat{Q}=\hat{A}=\theta \text { alt sg. theorem }\end{array}\right.$ $\hat{A} \hat{P} Q+A \hat{C} P=\theta+\alpha \quad$ tangent at $A, \alpha+90^{\circ}+\theta=180^{\circ}$ stang hat Now along the common tangent at , so $\alpha+\theta=90^{\circ}$ 年 and. moult is proved.

