

Sydney Boys High School

MOORE PARK, SURRY HILLS

YEAR 10 ADVANCED MATHEMATICS

Yearly Examination 2016

General Instructions:

- All questions may be attempted.
- Marks may be deducted for careless or badly arranged work.
- All working and answers are to be written in this test booklet.
- If you wish to rewrite an answer, draw a line through your faulty answer and rewrite your answer on the back pages of this booklet.
Show the number and part of the answer being rewritten.
- Leave your answers in the simplest exact form, unless otherwise stated.
- Board approved calculators may be used.
- Clearly indicate your class by placing an \mathbf{X} next to your class.

Time Allowed: 120 minutes Reading Time: 5 minutes Write using black or blue pen.

Name:

Class	Teacher	
$10 \mathbf{A}$	Ms Kilmore	
$10 \mathbf{B}$	Mr Choy \& Mr Elliott	
$10 \mathbf{C}$	Ms Millar \& Ms Evans	
$10 \mathbf{D}$	Mr Wang	
$10 \mathbf{E}$	Mr Fuller	
$10 \mathbf{F}$	Ms Ward	
$10 \mathbf{G}$	Mr Parker \& Mr Elliott	

Section	Marks
A	$/ 10$
B	$/ 18$
C	$/ 17$
D	$/ 22$
E	$/ 18$
F	$/ 16$
G	$/ 13$
H	$/ 11$
Total	$/ 125$

SECTION A: MULTIPLE CHOICE (10 MARKS)

Circle the correct letter A, B, C, D in these questions

1 A customer pays $\$ 714$ in cash for an article on which he has been given 16% discount. What is the selling price of the article?
A. $\$ 599.76$
B. $\$ 615.50$
C. $\$ 850$
D. $\$ 865$

2 The balance of an investment at compound interest on $\$ P$ for 20 years at $r \%$ per annum payable half yearly is:
A. $\$ P\left(1+\frac{r}{100}\right)^{20}$
B. $\$ P\left(1+\frac{r}{200}\right)^{40}$
C. $\$ P\left(1+\frac{r}{200}\right)^{20}$
D. $\$ P\left(1+\frac{40 r}{100}\right)$

3 A cylinder and a cone have the same height. If the ratio of their base radii is $1: 2$, find the ratio of their volumes.
A. $3: 4$
B. $4: 5$
C. $1: 2$
D. $1: 4$

4 If $4 P=9 Q$ then $\frac{4 P^{2}}{9 Q^{2}}$ is equal to
A. $\frac{4}{9}$
B. $\frac{81}{16}$
C. 1
D. $\frac{9}{4}$

5 The square of $-2 x+x^{2}$ is
A. $4 x^{2}+x^{4}$
B. $4 x^{2}-4 x^{3}+x^{4}$
C. $4 x^{2}+4 x^{3}+x^{4}$
D. $4 x-4 x^{2}+x^{3}$

6 The solution to the equation $2 x^{2}=7 x$ is $x=$
A. $3 \frac{1}{2}$ only
B. 0 or $-3 \frac{1}{2}$
C. $3 \frac{1}{2}$ or $-3 \frac{1}{2}$
D. 0 or $3 \frac{1}{2}$

7 Which of the following could be the equation of the given graph.

A. $y=3 x-x^{2}$
B. $y=3 x^{2}-x$
C. $y=x-3 x^{2}$
D. $y=x^{2}-3 x$

8 The solution to $4-x \leq \frac{2}{3} x-3$ is:
A. $x \leq 4 \frac{1}{5}$
B. $x \leq \frac{5}{21}$
C. $x \geq 4 \frac{1}{5}$
D. $x \geq \frac{5}{21}$
$9 \quad \log _{3} 15+\log _{3} 18-\log _{3} 10=$
A. 1
B. 2
C. -2
D. 3

A fair coin is tossed 3 times. Find the probability that there is at least 1 tail.
A. $\frac{7}{8}$
B. $\frac{1}{2}$
C. $\frac{3}{8}$
D. $\frac{5}{8}$

SECTION B (18 Marks)	Marks	
$\mathbf{1}$	Find the cube root of $-64 x^{9}$	$\mathbf{1}$
$\mathbf{2}$	Find the square root of $1 \frac{7}{9}$ in exact form	
$\mathbf{3}$	Find the exact value of cos150	$\mathbf{1}$
$\mathbf{7}$		What is 6308992 written in scientific notation correct to 2 S.F.
$\mathbf{5}$		Find the circumference of a circle with diameter 13.8cm. Answer correct to 3 S.F.

$\mathbf{8}$	Given $\tan \theta=0.8$ and $\cos \theta<0$, find θ correct to the nearest degree. $0^{\circ} \leq \theta \leq 360^{\circ}$	$\mathbf{2}$
$\mathbf{9}$	A number is picked at random from the set $\{1,2,3,4, \ldots \ldots, 11\}$. Find the probability that the number picked is not prime.	$\mathbf{1}$
$\mathbf{1 0}$	Make A the subject in $T=\sqrt{\frac{B}{A}}$	$\mathbf{1}$

SEC	ION C (17 Marks)	Marks
1	In a game, 1 red die and 1 blue die are used. Both dice are unbiased but the faces of the red die are numbered $1,1,2,3,4,5$ and the faces of the blue die are numbered $1,1,2$, 2, 4, 4. The 2 dice are thrown together. Find the probability that: (a) the number on the red die is odd.	1
	(b) the number on the blue die is greater than the number on the red die	2
	(c) the numbers on the dice are identical.	1
2	Given the points $A(-2,1), B(5,-1)$ and $C(3,3)$. Find	
	(a) the equation of the line through A, parallel to $B C$. (Answer in general form)	2
	(b) the equation of the perpendicular bisector of $B C$. (written in gradient/intercept form)	2

3	A glass sphere has a radius of 5.75 cm . (a) Calculate its volume correct to 2 D.P. (b) The glass sphere is tightly packed into a cylindrical gift box such that it just touches the curved surface of the box and the top and bottom of the box. Find the total surface area of the interior of the box correct to 2 D.P.	2
4	Find the exact value of (10000 000001$)^{2}-(9999999999)^{2}$	2
5	Given $\log _{10} Z=\log _{10} A+\log _{10} B-\log _{10} C$, express Z in terms of A, B and C.	1
6	Solve for $x, \log _{10}\left(10 x^{2}+12 x-3\right)=1+2 \log _{10} x$	2

SECTION D (22 Marks)		Marks
1	Given $f(x)=3-2 x$, find	
	(a) $f(-1)$	1
	(b) $f^{-1}(x)$	1
	(c) $f^{-1}(2)$	1
	(d) a positive number q such that $f(q)=q^{2}$	2
	(e) find r such that $f\left(2^{r}\right)<-5$	2
2	We are told that $A B$ is a diameter and $\angle A B C=70^{\circ}$	
	Find: (a) $\angle B C A$	1
	(b) $\angle A D C$	1

3	For the equation $y=x^{2}-1$ (a) Sketch the graph, showing its important features (intercepts, vertex, axis of symmetry) (b) State whether this equation is a function or not, giving reasons. (c) Is the inverse relation of this equation a function? Why/Why not?	2
4	Find the area of the triangle, to the nearest cm^{2}.	2
5	The marks shown in the table were obtained by 20 boys in a spelling test. Find, from this table the: (a) range (b) median (c) mode (d) mean correct to 2D.P. (e) standard deviation correct to 2D.P.	1 1 1 2 2

| SECTION E (18 Marks) | Marks |
| :---: | :---: | :---: |
| Simplify $\frac{a^{-\frac{1}{2}} b^{\frac{3}{2}} \times b^{-\frac{7}{8}} a^{3}}{a^{\frac{3}{2}} b^{-\frac{3}{2}}}$ | $\mathbf{2}$ |
| $\mathbf{2}$ | |

4	Sketch the graph of $(x-3)^{2}+(y+4)^{2}=25$ showing all the important features.	2

| 6 | Sketch the graph of $y=\log _{10}(1+x)$ showing all of its important features. | 2 |
| :--- | :--- | :--- | :--- |
| 7 | | |

| SECTION F (16 Marks) | Marks |
| :---: | :---: | :---: |
| $\mathbf{1}$(a) There are several definitions for $\|x\|$. One such definition is $\|x\|=\sqrt{x^{2}}$
 By similarly defining $\|x-3\|$, solve the following equation for x.
 $\|x-3\|=2 x-4$ | $\mathbf{2}$ |
| (b) Investigate your solution and comment. | |

3	The volumes of 2 similar square pyramids are in the ratio 8:27. Find the ratio of (a) their base edges	$\mathbf{1}$

$\mathbf{5}$	Over the last few years, NSW car number plates were made up of 3 letters followed by 3 digits eg ABC307. New registration plates now have 3 letters, 2 digits and then another letter eg PQR72X (a) How many plates were available under the old scheme?	1
(b) How many plates are available under the new scheme?		

SECTION G (13 Marks)											
1	Here are the \% maths and English marks for 10 selected students.										
	Maths	72	63	87	94	55	46	66	81	62	84
	English	61	39	52	45	79	59	51	63	71	75

Ron scored 72\% in maths and 71\% in English.
(a) Calculate the mean and standard deviation for each test.
(b) Which is the better relative result for Ron? Give reasons.

2 In $\triangle \mathrm{ABC}, \mathrm{AB}=15 \mathrm{~m}, \mathrm{BC}=10 \mathrm{~m}, \angle \mathrm{BAC}=40^{\circ}$.
Find the value(s) of $\angle B C A$ to the nearest degree.

1

A semi-circle on diameter $A B$, passes through $C . S$ is the midpoint of $A B$. $A C, B C, A B$ are tangents to the circle centre O at P, Q and R.
$O R$ is 1 unit in length
$\angle C B A=60^{\circ}$
(a) Find the size of $\angle A C B$
(b) Find the shaded area bounded by the arc $P Q$ and the intervals $P C$ and $Q C$.

4 (a) Expand $(x-y)^{2}$
(b) If x and y are positive, prove that the sum of their squares is greater than or equal to twice their product.
(c) Using 4(b) or otherwise, find the minimum value of $\frac{x}{y}+\frac{y}{x}$ when x and y are positive.
$1 \quad a b c$ and $c b a$ represent 2 separate 3 digit numbers with the order of their digits reversed. The first pronumeral stands for the hundreds.
The second pronumeral stands for the tens.
The third pronumeral stands for the units.
Further, it is given that $0<c<a<10$ and a, b, c are all positive integers.
(a) Prove that $a b c-c b a$ is a multiple of 99.
(b) Since $a b c-c b a$ is a multiple of 99 , it can be written in the form $99 n$, where n is a positive integer. Find the value of n.

2 A father, in his will, left all of his money to his children in the following manner: $\$ 1000$ to the first born and then $\frac{1}{10}$ of what then remains; $\$ 2000$ to the second born and $\frac{1}{10}$ of what then remains; then $\$ 3000$ to the third born and $\frac{1}{10}$ of what then remains and so on. When this is done, it was found that each child had the same amount.
(a) Let the total amount of money to be distributed be $\$ P$. Write an equation to find how much the first child would receive.
(b) Using 2(a) write down an equation to find out how much the second child would receive.
(c) By making your equation in 2(a) and 2(b) equal to each other, find
(i) $\$ P$
(ii) How much do the first 2 children receive?
(iii) How many children are in the family?

BLANK PAGE

Sydney Boys High School

 MOORE PARK, SURRY HILLS
YEAR 10 ADVANCED MATHEMATI CS

Yearly Examination 2016

Suggested Solutions

Sections	Marker
A	-
B	PSP
C	AW
D	AF
E	AYW
F	JM
G	EC/JD
H	BK

Multiple Choice Answers (Section A):

1. C
2. A
3. B
4. A
5. D
6. B
7. D
8. D
9. C
10. A

SECTION A: MULTIPLE CHOICE (10 MARKS)

Circle the correct letter A, B, C, D in these questions
1 A customer pays $\$ 714$ in cash for an article on which he has been given 16% discount. What is the selling price of the article? Solution: $(100-16) \% \times x=\$ 714$
$\therefore x=\$ 714 \div(84 \%)$
$=\$ 714 \times \frac{100}{84}$
$=\$ 850$
A. $\$ 599.76$
B. $\$ 615.50$
D. $\$ 865$

2 The balance of an investment at compound interest on $\$ P$ for 20 years at $r \%$ per annum payable half yearly is: Solution: The formula for compound interest when compounded hal yearly is $A=P\left[1+\frac{r}{200}\right]^{2 n}$, So, we have $n=20, \therefore A=P\left[1+\frac{r}{200}\right]^{40}$
A. $\$ P\left(1+\frac{r}{100}\right)^{20}$
B. $\$ P\left(1+\frac{r}{200}\right)^{40}$
C. $\$ P\left(1+\frac{r}{200}\right)^{20}$
D. $\$ P\left(1+\frac{40 r}{100}\right)$

3 A cylinder and a cone have the same height. If the ratio of their base radii is $1: 2$, find the ratio of their volumes. Solution: $V\left(\right.$ cylinder $1=\pi r^{2} h \quad V$ (cone $)=\frac{1}{3} \pi r^{2} h$.

Let reylinder $=1, \therefore r$ cone $=2$ Ratio of the volumes: $\pi(1)^{2} h: \frac{\pi(2)^{2} h}{3}$ $\pi h: \frac{4}{3} \pi h$
$1: 4 / 3$
3:4 i. ratio is $3: 4$
(A.) $3: 4$

4	B. $4: 5$

C. $1: 2$
D. $1: 4$

4 If $4 P=9 Q$ then $\frac{4 P^{2}}{9 Q^{2}}$ is equal to solution: Silecitute $P=\frac{9 Q}{4}$ into $\frac{4 P^{2}}{9 Q^{2}}$

$$
\begin{aligned}
\Rightarrow \frac{4\left(\frac{9 Q}{4}\right)^{2}}{9 Q^{2}} & =\frac{4 \times 81 Q^{2}}{16} \times \frac{1}{9 Q^{2}} \\
& =\frac{4 \times 81 \times Q^{2}}{16 \times 9 \times Q^{2}}=\frac{9}{4}
\end{aligned}
$$

A. $\frac{4}{9}$
B. $\frac{81}{16}$
C. 1

5

$$
\text { The square of }-2 x+x^{2} \text { is Solution: } \begin{aligned}
\left(-2 x+x^{2}\right)^{2} & =\left(-2 x+x^{2}\right)\left(-2 x+x^{2}\right) \\
& =4 x^{2}-2 x^{3}-2 x^{3}+x^{4} \\
& =4 x^{2}-4 x^{3}+x^{4}
\end{aligned}
$$

A. $4 x^{2}+x^{4}$
B. $4 x^{2}-4 x^{3}+x^{4}$
C. $4 x^{2}+4 x^{3}+x^{4}$
D. $4 x-4 x^{2}+x^{3}$

6	The solution to the equation $2 x$ Solution: $2 x^{2}=7 x$, immedintely see O is a solution $\begin{aligned} 2 x & =7 \\ x & =7 / 2 \\ & =3 \frac{1}{2} \text {. So } x=31 / 2 \text { or } 0 \end{aligned}$ A. $3 \frac{1}{2}$ only B. 0 or $-3 \frac{1}{2}$ C. $3 \frac{1}{2}$ or $-3 \frac{1}{2}$ D. 0 or $3 \frac{1}{2}$
7	Which of the following could be the equation of the given graph. Roots of the function are $x=3,0$. $\therefore f(x)=a(x-3)(x)=a x^{2}$ The graph is concave down, no a must be rugative \therefore wefficient of x^{2} mat be regative. thes A is the only choice that fits the graph. A. $y=3 x-x^{2}$ B. $y=3 x^{2}-x$ C. $y=x-3 x^{2}$ D. $y=x^{2}-3 x$
8	The solution to $4-x \leq \frac{2}{3} x-3$ is: Solution: $\quad 4-x \leq \frac{2}{3} x-3$ $-\frac{2}{3} x-x \leq-3-4$ $-\frac{2 x}{3}-\frac{3 x}{3} \leq-7$ $\begin{aligned} -5 x & \leq-21 \\ x & \geqslant \frac{21}{5} \\ & \geqslant 4 \frac{1}{5} \end{aligned}$ $-\frac{5 x}{3} \leq-7$ A. $x \leq 4 \frac{1}{5}$ B. $x \leq \frac{5}{21}$ C. $x \geq 4 \frac{1}{5}$ D. $x \geq \frac{5}{21}$
9	A. 1 B. 2 C. -2 D. 3
10	A fair coin is tossed 3 times. Find the probability that there is at least 1 tail. Solvtion:$P(\text { Al least onetail })=1-P(\text { Notails })=1-\frac{2}{2} \times \frac{1}{2} \times \frac{1}{2}=1-\frac{1}{8}=\frac{7}{8}$A. $\frac{7}{8}$ B. $\frac{1}{2}$ C. $\frac{3}{8}$ D. $\frac{5}{8}$

	T1ON B SOLUTONS	Marks
1	Find the cube root of $-64 x^{9}$ $\begin{aligned} \sqrt[3]{-64 x^{9}} & =\left(-64 x^{9}\right)^{\frac{1}{3}} \\ & =-4 x^{9 \times \frac{1}{3}} \\ & =-4 x^{3} \end{aligned}$ No marks were awarded if you only got the cube root of -64 correct.	1
2	Find the square root of $1 \frac{7}{9}$ in exact form $\begin{aligned} \sqrt{1 \frac{7}{9}} & =\sqrt{\frac{16}{9}} \\ & =\frac{\sqrt{16}}{\sqrt{9}} \\ & =\frac{4}{3} \end{aligned}$ Note: $\sqrt{16}$ means the (positive) square root of 16 i.e. $\sqrt{16}=4$ However, the square roots of $1 \frac{7}{9}$ are $\pm \frac{4}{3}$.	1
3	Find the exact value of $\cos 150^{\circ}$. $\begin{aligned} \cos 150^{\circ} & \left.=\cos (180-30)^{\circ} \quad \text { [Second quadrant }\right] \\ & =-\cos 30^{\circ} \\ & =-\frac{\sqrt{3}}{2} \end{aligned}$	1
4	Find the circumference of a circle with diameter 13.8 cm . Answer correct to 3 S.F. $\begin{aligned} \text { Circumference } & =\pi \times \text { diameter } \\ & =\pi \times 13.8 \\ & =43.35397862 \ldots \\ & =43.4 \text { (3 sig. fig. }) \end{aligned}$	2
5	Find x, correct to 4 D.P. $\begin{aligned} & \tan 37^{\circ}=\frac{x}{8} \\ & \begin{aligned} \therefore x & =8 \tan 37^{\circ} \\ & =6.028432401 \ldots \\ & =6.0284(4 \mathrm{dp}) \end{aligned} \end{aligned}$	2
6	What is the supplement of 83° Supplement $=180^{\circ}-83^{\circ}=97^{\circ}$	1
7	What is 6308992 written in scientific notation correct to 2 S.F. $\begin{aligned} 6308992 & =6.308992 \times 10^{6} \\ & =6.3 \times 10^{6} \quad(2 \text { sig. fig. }) \end{aligned}$	1

	11O N S SOLUTIONS	Marks
8	Given $\tan \theta=0.8$ and $\cos \theta<0$, find θ correct to the nearest degree. $0^{\circ} \leq \theta \leq 360^{\circ}$ $\tan \theta=0.8>0$ $\therefore 1^{\text {st }}$ and $3^{\text {rd }}$ quadrants $\cos \theta<0$ $\therefore 2^{\text {nd }}$ and $3{ }^{\text {rd }}$ quadrants $\therefore \theta$ lies in the $3^{\text {rd }}$ quadrant. $\begin{aligned} \therefore \theta & =\tan ^{-1} 0.8+180^{\circ} \\ & \doteqdot 219^{\circ} \end{aligned}$ Note: In general, $-90^{\circ}<\tan ^{-1} \theta<90^{\circ}$ Most students are misusing the notation. Students who presented two solutions could only get a maximum of 1 mark. Students who only presented the solution $\tan ^{-1} 0.8$ or equivalent only got $\frac{1}{2}$ mark.	2
9	A number is picked at random from the set $\{1,2,3,4, \ldots \ldots, 11\}$. Find the probability that the number picked is not prime. Note: 1 is NOT a prime number and 2 is a prime number $\begin{aligned} & \text { Primes }=\{2,3,5,7,11\} \\ & \begin{aligned} \mathrm{P}(\text { Not prime }) & = \\ & 1-\mathrm{P}(\text { prime }) \\ & =1-\frac{5}{11} \\ & =\frac{6}{11} \end{aligned} \end{aligned}$	1
10	Make A the subject in $T=\sqrt{\frac{B}{A}}$ $\begin{aligned} & T^{2}=\frac{B}{A} \quad\left(\Rightarrow A T^{2}=B\right) \\ & \therefore A=\frac{T^{2}}{B} \end{aligned}$	1
11	Find θ, correct to the nearest minute. Using the cosine rule: $\begin{aligned} & \cos \theta=\frac{4^{2}+5^{2}-8^{2}}{2 \times 4 \times 5}=-\frac{23}{40} \\ & \therefore \theta \doteqdot 125^{\circ} 6^{\prime} \end{aligned}$ The diagram is not to scale, so students putting down acute angles were penalised. Also students who wrote a reflex angle were penalised. The answer needs to be the nearest minute, otherwise students were penalised.	2

A student invests $\$ 200$ into a savings account earning interest at 7% compounded annually.
(a) How much does he have in the account (to the nearest cent), after 2 years?

After two years, the student has $\$ 200(1.07)^{2}=\$ 228.98$
(b) After how many complete years will he first have more than $\$ 3000$?

Let n be the number of years to get $\$ 3000$.
12
$3000=200(1.07)^{n}$
$\therefore 1.07^{n}=15$
$\therefore n=\log _{1.07} 15$
$=\frac{\log _{10} 15}{\log _{10} 1.07}$
Students who used trial and error or who showed no working got no marks if their answer was wrong.

$$
\doteqdot 40.02518912
$$

So after 41 years the student will have more than $\$ 3000$.

3	For the equation $y=x^{2}-1$ (a) Sketch the graph, showing its important features (intercepts, vertex, axis of symmetry) Note: the axis of sy mmetry is the y-axis. (b) State whether this equation is a function or not, giving reasons. $y=x^{2}-1$ is a function as it satisfies the vertical lihe test. (a vertical line only cuts the curve once) (c) Is the inverse relation of this equation a function? Why/Why not? No. The origrinal function $y=x^{2}-1$ does not satisfy the horizontal line test. Note: This is equivalent to testing whether the inverse relation satisfiks the re-tical line test.	2
4	Find the area of the triangle, to the nearest cm^{2}. $A=\frac{1}{2}(12)(14) \sin 60^{\circ}$ $\approx 73 \mathrm{~cm}^{2}$	2
5	The marks shown in the table were obtained by 20 boys in a spelling test. Find, from this table the: (a) range $7-2=5$ (b) median 5.5 (the average of the $10^{\text {th }} 811^{\text {th }}$ score) (c) mode 7 (d) mean correct to 2D.P. 4.75 (e) standard deviation correct to 2D.P. 2.07	1 1 1 2 2

A half mark was deducted for the entire section E if the axes of any graph is not labelled.

	ON E (18 Marks)	Marks
1		2
2	Graph $y=2^{x}-5$ showing all the imporfant features, given $-1 \leq x \leq 4$	fre ${ }^{2}$
3	3 marks for corre c, d. 3 marks for corre working out i.e. ap abbreviation of the must be given oth P would be deducted working must sho to be awarded. $P A$ is a tangent to the circle, centre O. $\angle P A B=60^{\circ}$. Find angles a, b, c, d giving a reason for each answer. $\begin{array}{cc} \angle O A P=90^{\circ} & \begin{array}{c} \text { Tangent perpendicular } \\ \text { to radius } \end{array} \\ \begin{array}{cc} a=90-60^{\circ} & \begin{array}{c} \text { (adiacent iomplementary } \\ \text { angles) } \end{array} \\ =30^{\circ} & b=180-110-30 \\ & \text { (Angle sum of a } \triangle \text {) } \\ d=60^{\circ} & b=30^{\circ} \\ \text { (angle in alternate } \\ \text { segment. } \end{array} \\ c=120^{\circ} \text { (angles at the centre } \end{array}$	tt values of a, b, ct reasoning and propriate circle geometry erwise makk d. Also neqessary wn if marks are 6
	is twice the angle at cirenmferen al subtended by the same arc)	

4	Sketch the graph of $(x-3)^{2}+(y+4)^{2}=25$ showing all the important features. Centre $=(3,-4) \quad$ radins $=5$ Full marks awarded if a	2
5	$T A$ and $T B$ are tangent lines to the circle centre $O . O B$ is a radius line and meets $T B$ at B. Find w and h. $h=15 \mathrm{~cm}$ (tangents from an external pt) $\angle O B T=90^{\circ} \quad$ (Tangent perperidiculan to radius) $\therefore \angle O B D=120^{\circ}-90=30^{\circ}$ Since $O B=C D$ (radio of circle) $\therefore \triangle O B D$ is an isosules \triangle) $\therefore \quad \angle O D B=\angle, \angle B D \neq$ Base $\angle 1$ s of an isosceles \triangle) $\therefore \omega=30^{\circ} \quad 1$ mark for $w=30$ degrees	2

Sketch the graph of $y=\log _{10}(1+x)$ showing all of its important features.

Section F (16 marks)

1. (a) $\quad|x-3|=2 x-4$

Method 1: (square both sides).

$$
\begin{aligned}
& (x-3)^{2}=(2 x-4)^{2} \\
& x^{2}-6 x+9=4 x^{2}-16 x+16 \\
& 3 x^{2}-10 x+7=0 \\
& \left.\begin{array}{c}
p: 21 \\
s:-10
\end{array}\right\}(-7,-3) \\
& \therefore \frac{(3 x-3)(3 x-7)}{3}=0 \\
& \frac{3(x-1)(3 x-7)}{3}=0 \\
& \therefore x-1=0 \text { or } 3 x-7=0 \\
& x=1 \quad 3 x=7 \\
& x=\frac{7}{3}
\end{aligned}
$$

Method 2: (take cases)
(1) inside the absolute value is positive

$$
\begin{aligned}
x-3 & =2 x-4 \\
x & =2 x-1 \\
-x & =-1 \\
x & =1
\end{aligned}
$$

(2) inside the absolute value is negative

$$
\begin{aligned}
-(x-3) & =2 x-4 \\
-x+3 & =2 x-4 \\
-x & =2 x-7 \\
-3 x & =-7 \\
x & =\frac{7}{3}
\end{aligned}
$$

(b) Checking:

$$
\text { When } \begin{aligned}
x=\frac{7}{3}: \text { LHS } & \left.=\left|\frac{7}{3}-3\right|-\quad \begin{array}{rl}
\text { RHS } & =2\left(\frac{7}{3}\right)-4 \\
& =\left|-\frac{2}{3}\right| \\
& =\frac{2}{3}
\end{array} \quad \begin{array}{rl}
& =\frac{2}{3} \\
& =\text { LHS }
\end{array}\right)=\$ \quad .
\end{aligned}
$$

When $x=1$: LHS $=|1-3|$

$$
=|-2|
$$

$$
=2
$$

$$
\begin{aligned}
\text { RHS } & =2(1)-4 \\
& =-2 \\
& \neq \text { LHS }
\end{aligned}
$$

$\therefore x=1$, is not a solution.
2.

$$
\begin{array}{rlrl}
(x+4) \times 4 & =(8+5) \times 5 & \text { (inter } \\
& \text { inter } \\
4 x+16 & =65 \\
4 x & =49 \\
x & =\frac{49}{4} \text { or }\left(12 \frac{1}{4}\right)
\end{array}
$$

(intercepts of intersecting secants)
3. $V_{1}: V_{2}=8: 27$
(a) Base edges: $\sqrt[3]{8}: \sqrt[3]{27}$
(b) Areas: $2^{2}: 3^{2}$
$=4: 9$
4.

(NTS)
(a) In $\triangle A P Q$ and $\triangle A B C$

$$
\begin{equation*}
\angle A Q P=\angle A C B \text { (given) } \tag{1}
\end{equation*}
$$

$\angle B A C$ is common
$\therefore \triangle A P Q|\mid \triangle A B C$ (equiangular).

$$
\frac{A C}{A Q}=\frac{A B}{A P}=\frac{B C}{P Q}
$$

(matching sides of similar triangles).
(NTS)

$$
\begin{aligned}
& \frac{B C}{4}=\frac{9}{4 \frac{1}{2}} \\
& B C=2 \times 4
\end{aligned}
$$

$$
\begin{equation*}
(6+3) \quad \therefore B C=8 \tag{1}
\end{equation*}
$$

$$
\begin{aligned}
\frac{A C}{6} & =\frac{9}{4 \frac{1}{2}} \\
A C & =2 \times 6 \\
\therefore A C & =12
\end{aligned}
$$

$$
\begin{align*}
\Rightarrow \quad P C & =A C-A P \\
& =12-4 \frac{1}{2} \\
\therefore P C & =7 \frac{1}{2} \tag{1}
\end{align*}
$$

5.(a) $26 \times 26 \times 26 \times 10 \times 10 \times 10=17576000$

$$
\begin{equation*}
\text { (b) } 26 \times 26 \times 26 \times 10 \times 10 \times 26=45697600 \tag{1}
\end{equation*}
$$

6.

$$
\begin{gathered}
A_{x}: A_{y}=108: 48 \Rightarrow l_{x}: l_{y}=\sqrt{108}: \sqrt{48} \\
=6 \sqrt{3}: 4 \sqrt{3} \\
\therefore \frac{l_{y}}{l_{x}} \Rightarrow \frac{l_{y}}{18}=\frac{4}{6} \\
l_{y}=\frac{4}{6} \times 18 \\
l_{y}=12 \mathrm{~cm}
\end{gathered}
$$

year 10 aduancea mathematics yearly a iol6 SEction a

1) Colculator work, $\bar{x}=$ mear, $o_{n}=$ stanbiad bevation $\sigma_{n 1}=$ eample atandand devation for foluk $\sigma_{n-1}>\sigma_{n}$

$$
\left.\begin{array}{ll}
\bar{x}_{\text {Mouls }}=71 & \sigma_{n} \text { Mochs }=14.51 \\
\bar{x}_{\text {Enghich }}=59.5 & \sigma_{n_{\text {Englut }}}=12.36
\end{array}\right\}\left[\begin{array}{l}
\text { Tmath } \\
\text { Markeed leniently }
\end{array}\right]
$$

Absont all scores are wideni $\pm 3 \sigma_{n}$ in e vornol dictribuluon. The more on above nean, the better the score
RON 72% en Mads $=71+.069 \times 14.51$

$$
=\bar{x}+.0690_{n}
$$

$$
\begin{aligned}
71 \% \mathrm{~m} \text { Engluh } & =59.5+.93 \times 12.36 \\
& =\bar{x}+.930 \mathrm{n}
\end{aligned}
$$

Thangle es NOT
SAS

$$
\begin{aligned}
\frac{\operatorname{sen} c}{15} & =\frac{\operatorname{sen} 40}{10} \\
\operatorname{sen} c & =\frac{15 \operatorname{sen} 40}{10} \\
& =.96 \cdots
\end{aligned}
$$

$C \times 15^{\circ} \leftarrow 2$ mards $/ 3$
OR 105° (Ambuquous care)
1 estra mark
alay atudents drew the wrong diogram end then uned the corine ucle gecting the wrong ensuer l_{i}, des question but having the correct working for their drogram.
3)

Note

$$
\left[\begin{array}{l}
\text { Anea of aquare } \\
1 \text { maik } \\
\text { Sone frogien } \\
1 / 2,1 \text { mand } \\
1 \text { mosh it } \\
\text { anver ints }
\end{array}\right]_{1}^{A}
$$

$A \hat{C B}=90^{\circ}$ (angle in remi cercle)
$O P C Q$ us a aquare ande 1 unit \Rightarrow Area $=1 u^{2}$ Sector $P O Q$ is a quadrait \Rightarrow Area $=\frac{\pi}{4} \times 1^{2}$ Shaded $A_{\text {rea }}=1-\frac{\pi}{4}$ aquare unets.
4) e $(x-y)^{2}=x^{2}-2 x y+y^{2}$ (one agg a whong \pm acoved $1 / 2$)
b) $(x-y)^{2} \geqslant 0 \Leftarrow$ Perfect Sypare (Need G_{0}

$$
\begin{aligned}
x^{2}-2 x y+y^{2} & \geqslant 0 \\
x^{2}+y^{2} & \geqslant 2 x y
\end{aligned}
$$

c) $x^{2}+y^{2} \geqslant 2 x y<$ Must he shown fuel mads
[1 mach if correct $]$
$\operatorname{Sunie}_{x, y>0} \quad \frac{x^{2}}{x y}+\frac{y^{2}}{x y} \geqslant 2$

$$
\frac{x}{y}+\frac{y}{x} \geqslant 2
$$ weth no workink

$$
\left[\begin{array}{l}
\frac{x}{y}+\frac{y}{x}=\frac{x^{2}+y^{2}}{x y} \\
\text { reores 1/2 marh }
\end{array}\right]
$$

Section H
Year 10 Yearly

$$
\begin{aligned}
& a b c=100 a+10 b+c \\
& c b a=100 c+10 b+a
\end{aligned}
$$

$$
\begin{aligned}
\text { Then } a b c-c b a & =100(a-c)+(c-a) \\
& =100(a-c)-1(a-c) \\
& =99(a-c) \\
& =99 \times k \text { where } k \in Z^{+} \text {since } a>c
\end{aligned}
$$

$\therefore(a b c-c b a)$ is a multiple of 99.
Comments Students who used place values to express $a b c$ and cha as expanded numbers were able to do the question. Otherwise it was not dore successfully. Proving sum of digits was a multiple of
9 tells us it 4 divisible by 9 but 9 tell us it is divisible by 9 but not by 11 and i by 99 .
(b) $a b c-c b a=99 n=99(a-c)$

Since answer is at most a 3 digit no, then try values of n between 1 and 10
$\begin{aligned} & \text { But largest value of } a=9 \\ & \text { singlet value } c=1\end{aligned}$

n	$99 n$	
1	99	
2	198	
3	297	
4	396	
5	495	
6	594	
7	693	
8	792	

$$
\therefore \text { smallest }(a-\infty)=8
$$

$$
\Rightarrow n_{\text {is largest }}=8
$$

is largest value

$$
\therefore 1 \leqslant n \leqslant 8
$$

Section It
Q2 (a) Let A_{i} be amount it child gets

$$
\text { Then } A_{1}=\$ 1000+\frac{p=1000}{10}
$$

(b)

$$
\begin{aligned}
A_{2} & =\$ 2000+\frac{1}{10}\left(P-A_{1}-2000\right) \\
& =2000+\frac{1}{10}\left(P-\left(1000+\frac{p-1000}{10}\right)-2000\right) \\
& =2000+\frac{p}{10}-100-\frac{p=1000}{100}-200 \\
& =1700+\frac{p}{10}-\frac{p}{100}+10 \\
A_{2} & =1710+\frac{9 p}{100}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 2(c)(i) } A_{1}=A_{2} \\
& \Rightarrow 1000+\frac{p-1000}{10}=1710+\frac{9 p}{100} \\
& \quad \frac{10 p-10000}{100}=710+\frac{9 p}{100} \\
& \Rightarrow \quad \frac{p}{100}-100=710 \\
& \quad \frac{p}{100}=810 \\
& \rho=\$ 81000
\end{aligned}
$$

(ii) lIst child gets $1000+\frac{80000}{10}=\$ 9000$ $\begin{aligned} \text { and child gets } & 2000+8100-900-200 \\ = & \$ 9000\end{aligned}$ Each gets $\$ 9000$

Section H
Q $2($ c) (iii) $81000 \div 9000=9$ children
Comments (a) Most students got the amount for the first child
(b) If students had the correct expression prior to simplifying they got full marks.
Only about $\frac{1}{4}$ of the cohort were able to correctly give the expression for the 2 ad child's amount -
(c)(i) Since the question told students to equate (a) and (b) there were no marks for simpler incorrect expression being worked out. ie if their expressions resulted in a much easier equation
(ii) It students had incorrect answers from (i) and did not check amount were equal for both children then no marts
(iii) It are giver. students incorrect answer from a previous part resulted in a non-posurve integer then no males were given as result was
clearly wrong.

