

## Sydney Boys High School MOORE PARK, SURRY HILLS

## YEAR 10 ADVANCED MATHEMATICS

### Yearly Examination 2016

#### **General Instructions:**

- All questions may be attempted.
- Marks may be deducted for careless or badly arranged work.
- All working and answers are to be written in this test booklet.
- If you wish to rewrite an answer, draw a line through your faulty answer and rewrite your answer on the back pages of this booklet.
   Show the number and part of the answer being rewritten.
- Leave your answers in the simplest exact form, unless otherwise stated.
- Board approved calculators may be used.
- Clearly indicate your class by placing an X next to your class.

**Time Allowed:** 120 minutes **Reading Time:** 5 minutes Write using black or blue pen.

#### Examiner: RB

#### Name:

| Class       | Teacher                |  |
|-------------|------------------------|--|
| 10 <b>A</b> | Ms Kilmore             |  |
| 10 <b>B</b> | Mr Choy & Mr Elliott   |  |
| 10 <b>C</b> | Ms Millar & Ms Evans   |  |
| 10 <b>D</b> | Mr Wang                |  |
| 10 <b>E</b> | Mr Fuller              |  |
| 10 <b>F</b> | Ms Ward                |  |
| 10 <b>G</b> | Mr Parker & Mr Elliott |  |

| Section | Marks |
|---------|-------|
| А       | / 10  |
| В       | / 18  |
| С       | / 17  |
| D       | / 22  |
| E       | / 18  |
| F       | / 16  |
| G       | / 13  |
| Н       | / 11  |
| Total   | / 125 |

| SEC |                                          | DICE (10 MARKS)<br>e the correct letter <i>A, B,</i> | C D in these questions                     |                                        |  |  |  |  |
|-----|------------------------------------------|------------------------------------------------------|--------------------------------------------|----------------------------------------|--|--|--|--|
| 1   | A customer pays \$714 in                 | cash for an article on w                             |                                            | 6% discount. What is                   |  |  |  |  |
|     | the selling price of the article?        |                                                      |                                            |                                        |  |  |  |  |
|     |                                          |                                                      |                                            |                                        |  |  |  |  |
|     |                                          |                                                      |                                            |                                        |  |  |  |  |
|     | A. \$599.76                              | B. \$615.50                                          | C. \$850                                   | D. \$865                               |  |  |  |  |
|     | A. \$399.70                              | <b>В.</b> \$015.30                                   | C. \$850                                   | D. \$805                               |  |  |  |  |
| 2   | The balance of an invest                 | ment at compound intere                              | st on $\$P$ for 20 years at r              | % per annum payable                    |  |  |  |  |
| 2   | half yearly is:                          | ment at compound intere                              | st on \$1 101 20 years at 7                | 70 per annum payable                   |  |  |  |  |
|     |                                          |                                                      |                                            |                                        |  |  |  |  |
|     |                                          |                                                      |                                            |                                        |  |  |  |  |
|     | $(r)^{20}$                               | $\left(\begin{array}{c}r\end{array}\right)^{40}$     | $(r)^{20}$                                 | $\mathbf{p} \neq \mathbf{p}(1, 40r)$   |  |  |  |  |
|     | A. $P\left(1+\frac{1}{100}\right)$       | B. $P\left(1+\frac{1}{200}\right)$                   | $C.  \$P\left(1+\frac{r}{200}\right)^{20}$ | D. $\$P\left(1+\frac{40r}{100}\right)$ |  |  |  |  |
|     |                                          |                                                      |                                            |                                        |  |  |  |  |
| 3   | A cylinder and a cone ha                 | we the same height. If the                           | e ratio of their base radii                | is 1 : 2, find the ratio of            |  |  |  |  |
|     | their volumes.                           |                                                      |                                            |                                        |  |  |  |  |
|     |                                          |                                                      |                                            |                                        |  |  |  |  |
|     |                                          |                                                      |                                            |                                        |  |  |  |  |
|     | A. 3:4                                   | B. 4:5                                               | C. 1:2                                     | D. 1:4                                 |  |  |  |  |
|     |                                          |                                                      |                                            |                                        |  |  |  |  |
| 4   | $4P^2$ .                                 | 1.                                                   |                                            |                                        |  |  |  |  |
|     | If $4P = 9Q$ then $\frac{4P^2}{9Q^2}$ is | equal to                                             |                                            |                                        |  |  |  |  |
|     |                                          |                                                      |                                            |                                        |  |  |  |  |
|     |                                          |                                                      |                                            |                                        |  |  |  |  |
|     |                                          |                                                      |                                            |                                        |  |  |  |  |
|     | A. $\frac{4}{9}$                         | B. $\frac{81}{16}$                                   | C. 1                                       | D. $\frac{9}{4}$                       |  |  |  |  |
|     | 9                                        | 16                                                   |                                            | 4                                      |  |  |  |  |
| 5   | The square of $-2x + x^2$ i              | e                                                    |                                            |                                        |  |  |  |  |
|     | The square of $-2x + x$ i                | 8                                                    |                                            |                                        |  |  |  |  |
|     |                                          |                                                      |                                            |                                        |  |  |  |  |
|     |                                          |                                                      |                                            |                                        |  |  |  |  |
|     | A. $4x^2 + x^4$                          | B. $4x^2 - 4x^3 + x^4$                               | C. $4x^2 + 4x^3 + x^4$                     | D. $4x - 4x^2 + x^3$                   |  |  |  |  |
|     |                                          |                                                      |                                            |                                        |  |  |  |  |
|     |                                          |                                                      |                                            |                                        |  |  |  |  |



| SEC | TION B (18 Marks)                                                                 | Marks |
|-----|-----------------------------------------------------------------------------------|-------|
| 1   | Find the cube root of $-64x^9$                                                    | 1     |
| 2   | Find the square root of $1\frac{7}{9}$ in exact form                              | 1     |
| 3   | Find the exact value of cos150°                                                   | 1     |
| 4   | Find the circumference of a circle with diameter 13.8cm. Answer correct to 3 S.F. | 2     |
| 5   | Find x, correct to 4 D.P.<br>x<br>$37^{\circ}$<br>8cm                             | 2     |
| 6   | What is the supplement of 83°                                                     | 1     |
| 7   | What is 6308992 written in scientific notation correct to 2 S.F.                  | 1     |

| 8  | Given $\tan \theta = 0.8$ and $\cos \theta < 0$ , find $\theta$ correct to the nearest degree. $0^{\circ} \le \theta \le 360^{\circ}$ | 2 |
|----|---------------------------------------------------------------------------------------------------------------------------------------|---|
|    |                                                                                                                                       |   |
|    |                                                                                                                                       |   |
|    |                                                                                                                                       |   |
|    |                                                                                                                                       |   |
|    |                                                                                                                                       |   |
|    |                                                                                                                                       |   |
|    |                                                                                                                                       |   |
| 9  | A number is picked at random from the set {1, 2, 3, 4,, 11}. Find the probability                                                     | 1 |
|    | that the number picked is not prime.                                                                                                  |   |
|    |                                                                                                                                       |   |
|    |                                                                                                                                       |   |
|    |                                                                                                                                       |   |
|    |                                                                                                                                       |   |
|    |                                                                                                                                       |   |
|    |                                                                                                                                       |   |
|    |                                                                                                                                       |   |
| 10 | Make A the subject in $T = \begin{bmatrix} B \end{bmatrix}$                                                                           | 1 |
|    | Make A the subject in $T = \sqrt{\frac{B}{A}}$                                                                                        |   |
|    |                                                                                                                                       |   |
|    |                                                                                                                                       |   |
|    |                                                                                                                                       |   |
|    |                                                                                                                                       |   |
|    |                                                                                                                                       |   |
|    |                                                                                                                                       |   |
| 11 | Find $\theta$ , correct to the nearest minute.                                                                                        | 2 |
|    | 8cm7                                                                                                                                  |   |
|    |                                                                                                                                       |   |
|    |                                                                                                                                       |   |
|    |                                                                                                                                       |   |
|    | /4cm                                                                                                                                  |   |
|    | 5cm                                                                                                                                   |   |
|    |                                                                                                                                       |   |
|    | $\overline{\Theta}$                                                                                                                   |   |
|    |                                                                                                                                       |   |
| 12 | A student invests \$200 into a savings account earning interest at 7% compounded                                                      |   |
|    | annually.                                                                                                                             |   |
|    |                                                                                                                                       |   |
|    | (a) How much does he have in the account (to the nearest cent), after 2 years?                                                        | 1 |
|    |                                                                                                                                       |   |
|    |                                                                                                                                       |   |
|    |                                                                                                                                       |   |
|    |                                                                                                                                       |   |
|    |                                                                                                                                       |   |
|    | (b) After how many complete years will he first have more than \$3000?                                                                | 2 |
|    |                                                                                                                                       | _ |
|    |                                                                                                                                       |   |
|    |                                                                                                                                       |   |
|    |                                                                                                                                       |   |
|    |                                                                                                                                       |   |
|    |                                                                                                                                       |   |
|    | <u> </u>                                                                                                                              |   |

| SEC | TION C (17 Marks)                                                                                                                                                                   | Marks |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 1   | In a game, 1 red die and 1 blue die are used. Both dice are unbiased but the faces of the red die are numbered 1, 1, 2, 3, 4, 5 and the faces of the blue die are numbered 1, 1, 2, |       |
|     | 2, 4, 4.                                                                                                                                                                            |       |
|     | The 2 dice are thrown together. Find the probability that:                                                                                                                          |       |
|     | (a) the number on the red die is odd.                                                                                                                                               | 1     |
|     |                                                                                                                                                                                     | 1     |
|     |                                                                                                                                                                                     |       |
|     |                                                                                                                                                                                     |       |
|     |                                                                                                                                                                                     |       |
|     |                                                                                                                                                                                     |       |
|     | (b) the number on the blue die is greater than the number on the red die                                                                                                            | 2     |
|     |                                                                                                                                                                                     |       |
|     |                                                                                                                                                                                     |       |
|     |                                                                                                                                                                                     |       |
|     |                                                                                                                                                                                     |       |
|     | (c) the numbers on the dice are identical.                                                                                                                                          | 1     |
|     |                                                                                                                                                                                     | 1     |
|     |                                                                                                                                                                                     |       |
|     |                                                                                                                                                                                     |       |
|     |                                                                                                                                                                                     |       |
|     |                                                                                                                                                                                     |       |
|     |                                                                                                                                                                                     |       |
| 2   | Given the points $A(-2,1)$ , $B(5,-1)$ and $C(3,3)$ . Find                                                                                                                          |       |
|     | (a) the equation of the line through $A$ percelled to $PC$ (Angular in general form)                                                                                                | 2     |
|     | (a) the equation of the line through <i>A</i> , parallel to <i>BC</i> . (Answer in general form)                                                                                    | 2     |
|     |                                                                                                                                                                                     |       |
|     |                                                                                                                                                                                     |       |
|     |                                                                                                                                                                                     |       |
|     |                                                                                                                                                                                     |       |
|     |                                                                                                                                                                                     |       |
|     | (b) the equation of the perpendicular bisector of <i>BC</i> . (written in gradient/intercept form)                                                                                  | 2     |
|     |                                                                                                                                                                                     |       |
|     |                                                                                                                                                                                     |       |
|     |                                                                                                                                                                                     |       |
|     |                                                                                                                                                                                     |       |
|     |                                                                                                                                                                                     |       |
|     |                                                                                                                                                                                     |       |
|     |                                                                                                                                                                                     |       |

| 3 | A glass sphere has a radius of 5.75cm.                                                                                                                                                                                                 |   |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|   | (a) Calculate its volume correct to 2 D.P.                                                                                                                                                                                             | 2 |
|   | (b) The glass sphere is tightly packed into a cylindrical gift box such that it just touches the curved surface of the box and the top and bottom of the box. Find the total surface area of the interior of the box correct to 2 D.P. | 2 |
| 4 | Find the exact value of (10 000 000 001) <sup>2</sup> – (9 999 999 999) <sup>2</sup>                                                                                                                                                   | 2 |
| 5 | Given $\log_{10} Z = \log_{10} A + \log_{10} B - \log_{10} C$ , express Z in terms of A, B and C.                                                                                                                                      | 1 |
| 6 | Solve for x, $\log_{10}(10x^2 + 12x - 3) = 1 + 2\log_{10} x$                                                                                                                                                                           | 2 |

| SEC | TION D (22 Marks)                                                      | Marks |
|-----|------------------------------------------------------------------------|-------|
| 1   | Given $f(x) = 3 - 2x$ , find                                           |       |
|     | (a) $f(-1)$                                                            | 1     |
|     | (b) $f^{-1}(x)$                                                        | 1     |
|     | (c) $f^{-1}(2)$                                                        | 1     |
|     | (d) a positive number q such that $f(q) = q^2$                         | 2     |
|     | (e) find <i>r</i> such that $f(2^r) < -5$                              | 2     |
| 2   | We are told that <i>AB</i> is a diameter and $\angle ABC = 70^{\circ}$ |       |
|     |                                                                        |       |
|     | Find:<br>(a) $\angle BCA$                                              | 1     |
|     | (b) <i>∠ADC</i>                                                        | 1     |
|     |                                                                        |       |

| 3 | For the equat              | ion $y = x^2 - x^2$ | 1               |                         |                |                |           |   |
|---|----------------------------|---------------------|-----------------|-------------------------|----------------|----------------|-----------|---|
|   | (a) Sketch<br>symm         |                     | showing its     | important fe            | atures (interc | cepts, vertex, | axis of   | 2 |
|   | 591111                     | ieu y)              |                 |                         |                |                |           |   |
|   |                            |                     |                 |                         |                |                |           |   |
|   |                            |                     |                 |                         |                |                |           |   |
|   |                            |                     |                 |                         |                |                |           |   |
|   |                            | 1 4 4 .             | <i>.</i>        | с <i>і</i> :            | , <b>.</b> .   |                |           | 1 |
|   | (b) State                  | whether this        | equation is a   | a function of           | not, giving    | reasons.       |           |   |
|   |                            |                     |                 |                         |                |                |           |   |
|   | (c) Is the                 | inverse relat       | tion of this e  | quation a fu            | nction? Why    | /Why not?      |           | 1 |
|   |                            |                     |                 |                         |                |                |           |   |
|   |                            |                     |                 |                         |                |                |           |   |
|   | <b>F</b> ' 14              |                     | 1 , ,1          |                         |                |                |           |   |
| 4 | Find the area              | of the triang       | gie, to the nea | arest cm <sup>2</sup> . |                |                |           | 2 |
|   | 12cm                       |                     |                 |                         |                |                |           |   |
|   | 60°                        |                     | \               |                         |                |                |           |   |
|   | 1                          | 4cm                 |                 |                         |                |                |           |   |
|   |                            |                     |                 |                         |                |                |           |   |
| 5 | The marks sh               | own in the t        | able were ob    | tained by 20            | boys in a sp   | elling test.   |           |   |
|   | Score                      | 2 correct           | 3 correct       | 4 correct               | 5 correct      | 6 correct      | 7 correct |   |
|   | Frequency                  | 4                   | 5               | 0                       | 1              | 3              | 7         | 1 |
|   | Find, from th<br>(a) range |                     |                 |                         |                |                |           |   |
|   | (b) media                  |                     |                 |                         |                |                |           | 1 |
|   |                            |                     |                 |                         |                |                |           | 1 |
|   | (c) mode                   |                     |                 |                         |                |                |           | 2 |
|   |                            | correct to 21       |                 |                         |                |                |           | 2 |
|   | (e) standa                 | ard deviation       | a correct to 2  | D.P.                    |                |                |           |   |
|   |                            |                     |                 |                         |                |                |           |   |











| 5 | Over the last few years, NSW car number plates were made up of 3 letters followed by 3 digits eg ABC307.<br>New registration plates now have 3 letters, 2 digits and then another letter eg PQR72X (a) How many plates were available under the old scheme? | 1 |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|   | (b) How many plates are available under the new scheme?                                                                                                                                                                                                     | 1 |
| 6 | Here are 2 similar boomerangs. <i>X</i> is 18cm long and has an area of 108cm <sup>2</sup> .<br><i>Y</i> has an area of 48cm <sup>2</sup> . What is the length of <i>Y</i> ?<br><b>X Y</b>                                                                  | 2 |

| TION G (1<br>Here are the |         |               | l Englis | h marks   | for 10 s         | elected  | student  | s. |    |    | Ma |
|---------------------------|---------|---------------|----------|-----------|------------------|----------|----------|----|----|----|----|
| Maths                     | 72      | 63            | 87       | 94        | 55               | 46       | 66       | 81 | 62 | 84 |    |
| English                   | 61      | 39            | 52       | 45        | 79               | 59       | 51       | 63 | 71 | 75 |    |
| Ron score<br>(a) Ca       |         |               |          | % in En   |                  | n for ea | ch test. |    |    |    |    |
|                           |         |               |          | /e result |                  |          | reasons  |    |    |    |    |
| In ∆ABC,                  | AB = 1  | l 5m, BC      | C = 10m  | ,∠BA0     | $C = 40^{\circ}$ |          |          |    |    |    |    |
| Find the v                | alue(s) | of $\angle B$ | CA to th | e neares  | st degree        | 2.       |          |    |    |    |    |
|                           |         |               |          |           |                  |          |          |    |    |    |    |
|                           |         |               |          |           |                  |          |          |    |    |    |    |
|                           |         |               |          |           |                  |          |          |    |    |    |    |
|                           |         |               |          |           |                  |          |          |    |    |    |    |
|                           |         |               |          |           |                  |          |          |    |    |    |    |
|                           |         |               |          |           |                  |          |          |    |    |    |    |
|                           |         |               |          |           |                  |          |          |    |    |    |    |
|                           |         |               |          |           |                  |          |          |    |    |    |    |
|                           |         |               |          |           |                  |          |          |    |    |    |    |
|                           |         |               |          |           |                  |          |          |    |    |    |    |
|                           |         |               |          |           |                  |          |          |    |    |    |    |
|                           |         |               |          |           |                  |          |          |    |    |    |    |
|                           |         |               |          |           |                  |          |          |    |    |    |    |
|                           |         |               |          |           |                  |          |          |    |    |    |    |
|                           |         |               |          |           |                  |          |          |    |    |    |    |
|                           |         |               |          |           |                  |          |          |    |    |    |    |
|                           |         |               |          |           |                  |          |          |    |    |    |    |
|                           |         |               |          |           |                  |          |          |    |    |    |    |
|                           |         |               |          |           |                  |          |          |    |    |    |    |
|                           |         |               |          |           |                  |          |          |    |    |    | 1  |



(b) If *x* and *y* are positive, prove that the sum of their squares is greater than or equal to twice their product.

2

(c) Using 4(b) or otherwise, find the minimum value of  $\frac{x}{y} + \frac{y}{x}$  when x and y are positive.

| SEC | TION H (11 Marks)                                                                                          | Marks |
|-----|------------------------------------------------------------------------------------------------------------|-------|
| 1   | abc and cba represent 2 separate 3 digit numbers with the order of their digits reversed.                  |       |
|     | The first pronumeral stands for the hundreds.                                                              |       |
|     | The second pronumeral stands for the tens.                                                                 |       |
|     | The third pronumeral stands for the units.                                                                 |       |
|     | Further, it is given that $0 < c < a < 10$ and $a, b, c$ are all positive integers.                        |       |
|     | (a) Prove that $abc - cba$ is a multiple of 99.                                                            | 2     |
|     |                                                                                                            |       |
|     |                                                                                                            |       |
|     |                                                                                                            |       |
|     |                                                                                                            |       |
|     |                                                                                                            |       |
|     |                                                                                                            |       |
|     |                                                                                                            |       |
|     |                                                                                                            |       |
|     |                                                                                                            |       |
|     | (b) Since $abc - cba$ is a multiple of 99, it can be written in the form 99 <i>n</i> , where <i>n</i> is a |       |
|     | positive integer. Find the value of <i>n</i> .                                                             | 2     |
|     |                                                                                                            |       |
|     |                                                                                                            |       |
|     |                                                                                                            |       |
|     |                                                                                                            |       |
|     |                                                                                                            |       |
|     |                                                                                                            |       |
|     |                                                                                                            |       |
|     |                                                                                                            |       |
|     |                                                                                                            |       |
|     |                                                                                                            |       |
|     |                                                                                                            |       |
|     |                                                                                                            |       |
|     |                                                                                                            |       |
|     |                                                                                                            |       |
|     |                                                                                                            |       |
|     |                                                                                                            |       |
|     |                                                                                                            |       |

| <ul> <li>A father, in his will, left all of his money to his children in the following manner:</li> <li>\$1000 to the first born and then 1/10 of what then remains; \$2000 to the second born and 1/10 of what then remains; then \$3000 to the third born and 1/10 of what then remains and so on. When this is done, it was found that each child had the same amount.</li> <li>(a) Let the total amount of money to be distributed be SP. Write an equation to find how much the first child would receive.</li> <li>(b) Using 2(a) write down an equation to find out how much the second child would receive.</li> <li>(c) By making your equation in 2(a) and 2(b) equal to each other, find (i) SP (ii) How many children are in the family?</li> </ul>                       |   |                                                                                                        |   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|--------------------------------------------------------------------------------------------------------|---|
| and $\frac{1}{10}$ of what then remains; then \$3000 to the third born and $\frac{1}{10}$ of what then remains and so on. When this is done, it was found that each child had the same amount.       (a) Let the total amount of money to be distributed be \$ <i>P</i> . Write an equation to find how much the first child would receive.       1         (a) Let the total amount of money to be distributed be \$ <i>P</i> . Write an equation to find how much the first child would receive.       1         (b) Using 2(a) write down an equation to find out how much the second child would receive.       2         (c) By making your equation in 2(a) and 2(b) equal to each other, find (i) \$ <i>P</i> 1         (ii) How much do the first 2 children receive?       1 | 2 | A father, in his will, left all of his money to his children in the following manner:                  |   |
| remains and so on. When this is done, it was found that each child had the same amount.       (a) Let the total amount of money to be distributed be \$P. Write an equation to find how much the first child would receive.       1         (a) Let the total amount of money to be distributed be \$P. Write an equation to find how much the first child would receive.       1         (b) Using 2(a) write down an equation to find out how much the second child would receive.       2         (c) By making your equation in 2(a) and 2(b) equal to each other, find       2         (i) \$P       (ii) How much do the first 2 children receive?                                                                                                                              |   | \$1000 to the first born and then $\frac{1}{10}$ of what then remains; \$2000 to the second born       |   |
| remains and so on. When this is done, it was found that each child had the same amount.       (a) Let the total amount of money to be distributed be \$P. Write an equation to find how much the first child would receive.       1         (a) Let the total amount of money to be distributed be \$P. Write an equation to find how much the first child would receive.       1         (b) Using 2(a) write down an equation to find out how much the second child would receive.       2         (c) By making your equation in 2(a) and 2(b) equal to each other, find       2         (i) \$P       (ii) How much do the first 2 children receive?                                                                                                                              |   | and $\frac{1}{10}$ of what then remains; then \$3000 to the third born and $\frac{1}{10}$ of what then |   |
| how much the first child would receive.       2         (b) Using 2(a) write down an equation to find out how much the second child would receive.       2         (c) By making your equation in 2(a) and 2(b) equal to each other, find <ul> <li>(i) \$P</li> <li>(ii) How much do the first 2 children receive?</li> </ul> 2                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   | remains and so on. When this is done, it was found that each child had the same                        |   |
| <ul> <li>(b) Using 2(a) write down an equation to find out how much the second child would receive.</li> <li>(c) By making your equation in 2(a) and 2(b) equal to each other, find <ul> <li>(i) \$P</li> <li>(ii) How much do the first 2 children receive?</li> </ul> </li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |                                                                                                        | 1 |
| would receive.         (c) By making your equation in 2(a) and 2(b) equal to each other, find         (i) \$P         (ii) How much do the first 2 children receive?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   | (b) Using 2(a) write down an equation to find out how much the second child                            | 2 |
| (c) By making your equation in 2(a) and 2(b) equal to each other, find1(i) \$P1(ii) How much do the first 2 children receive?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   |                                                                                                        | 2 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   | <ul><li>(i) \$P</li><li>(ii) How much do the first 2 children receive?</li></ul>                       |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |                                                                                                        |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |                                                                                                        |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   |                                                                                                        |   |

#### **EXTRA WORKING PAGE:**

#### **EXTRA WORKING PAGE:**

#### **EXTRA WORKING PAGE:**

**BLANK PAGE** 



# Sydney Boys High School MOORE PARK, SURRY HILLS

# YEAR 10 ADVANCED MATHEMATICS

## Yearly Examination 2016

# **Suggested Solutions**

| Sections | Marker |
|----------|--------|
| A        | -      |
| В        | PSP    |
| C        | AW     |
| D        | AF     |
| E        | AYW    |
| F        | JM     |
| G        | EC/JD  |
| Н        | BK     |

#### Multiple Choice Answers (Section A):

| 1. | С | <b>3.</b> A | 5. B        | <b>7.</b> A | <b>9.</b> D  |
|----|---|-------------|-------------|-------------|--------------|
| 2. | В | <b>4.</b> D | <b>6.</b> D | 8. C        | <b>10.</b> A |

and a state of the s

6 The solution to the equation 
$$2x^2 = 7x$$
 is  $x = -\frac{5}{2}$  Solution:  
 $2x^2 = 7x$ , immediately See  
 $0$  is a solution  
 $x = \frac{7}{72}$ . So  $x = \frac{3}{2} \frac{1}{2}$  or  $0$   
 $= \frac{3}{2}\sqrt{2}$ .  
A.  $3\frac{1}{2}$  only B. 0 or  $-3\frac{1}{2}$  C.  $3\frac{1}{2}$  or  $-3\frac{1}{2}$  (D) 0 or  $3\frac{1}{2}$   
7 Which of the following could be the equation of the given graph. Roots of the function  
and  $x = 3, 0$ .  
 $\therefore f(x) = 0$  ( $x = 3 \times x$ ) =  $4x^2 - 3ax$   
The graph on  
 $(3,0)$   $x$  conclust down, used  
 $(3,0)$   $x$  conclust  $x = a_{1}x^{2}$ .  
 $(3,0)$   $x$  conclust  $x = a_{2}x^{2}$ .  
 $(3,0)$   $x = a_{2}x^{2}$ .  
 $(3,0)$   $x = a_{2}x^{2}$ .  
 $(3,0)$   $x^{2}$   $(3,0)$   $x^{2}$ .  
 $(3,0)$   $x^{2}$ .  
 $(3,0)$   $x^{2}$   $(3,0)$   $x^{2}$ .  
 $(3,0)$   $x^{2}$   $(3,0)$   $x^{2}$ .  
 $(3,0)$ 

΄.

. ว

| SE | CTION B SOLUTIONS                                                                                                                                                                                                                                                                                                | Marks |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 1  | Find the cube root of $-64x^9$<br>$\sqrt[3]{-64x^9} = (-64x^9)^{\frac{1}{3}}$<br>$= -4x^{\frac{9\times\frac{1}{3}}{3}}$<br>$= -4x^3$<br>No marks were awarded if you <u>only</u> got<br>the cube root of -64 correct.                                                                                            | 1     |
| 2  | Find the square root of $1\frac{7}{9}$ in exact form<br>$\sqrt{1\frac{7}{9}} = \sqrt{\frac{16}{9}}$<br>$= \frac{\sqrt{16}}{\sqrt{9}}$<br>$= \frac{4}{3}$<br>Note: $\sqrt{16}$ means the (positive) square root of 16 i.e. $\sqrt{16} = 4$<br>However, the square roots of $1\frac{7}{9}$ are $\pm \frac{4}{3}$ . | 1     |
| 3  | Find the exact value of cos 150°.<br>$cos 150° = cos(180 - 30)° \qquad [Second quadrant]$ $= -cos 30°$ $= -\frac{\sqrt{3}}{2}$                                                                                                                                                                                   | 1     |
| 4  | Find the circumference of a circle with diameter 13.8 cm. Answer correct to 3 S.F.<br>Circumference = $\pi \times$ diameter<br>= $\pi \times 13.8$<br>= 43.35397862<br>= 43.4 (3 sig. fig.)                                                                                                                      | 2     |
| 5  | Find x, correct to 4 D.P.<br>$\tan 37^{\circ} = \frac{x}{8}$ $\therefore x = 8 \tan 37^{\circ}$ $= 6.028432401$ $= 6.0284 (4 \text{ dp})$                                                                                                                                                                        | 2     |
| 6  | What is the supplement of $83^{\circ}$ Supplement = $180^{\circ} - 83^{\circ} = 97^{\circ}$                                                                                                                                                                                                                      | 1     |
| 7  | What is 6 308 992 written in scientific notation correct to 2 S.F.<br>$6 308 992 = 6.308 992 \times 10^{6}$ $= 6.3 \times 10^{6}$ (2 sig. fig.)                                                                                                                                                                  | 1     |

| SE | CTION B SOLUTIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Marks |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 8  | Given $\tan \theta = 0.8$ and $\cos \theta < 0$ , find $\theta$ correct to the nearest degree. $0^{\circ} \le \theta \le 360^{\circ}$<br>$\tan \theta = 0.8 > 0$<br>$\therefore 1^{\text{st}}$ and $3^{\text{rd}}$ quadrants<br>$\cos \theta < 0$<br>$\therefore 2^{\text{nd}}$ and $3^{\text{rd}}$ quadrants<br>$\therefore \theta$ lies in the $3^{\text{rd}}$ quadrant.<br>$\therefore \theta = \tan^{-1} 0.8 + 180^{\circ}$<br>$\Rightarrow 219^{\circ}$<br>Note: In general, $-90^{\circ} < \tan^{-1} \theta < 90^{\circ}$<br>Most students are misusing the notation.<br>Students who presented two solutions could only get a maximum of 1 mark.<br>Students who only presented the solution $\tan^{-1} 0.8$ or equivalent only got $\frac{1}{2}$ mark. | 2     |
| 9  | A number is picked at random from the set {1, 2, 3, 4,, 11}. Find the probability<br>that the number picked is not prime.<br><b>Note:</b> 1 is NOT a prime number and 2 is a prime number<br>Primes = {2, 3, 5, 7, 11}<br>P(Not prime) = 1 - P(prime)<br>$=1-\frac{5}{11}$ $=\frac{6}{11}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1     |
| 10 | Make A the subject in $T = \sqrt{\frac{B}{A}}$<br>$T^2 = \frac{B}{A} \qquad (\Rightarrow AT^2 = B)$<br>$\therefore A = \frac{T^2}{B}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1     |
| 11 | Find $\theta$ , correct to the nearest<br>minute.<br>8cm<br>5cm<br>$\theta$<br>Using the cosine rule:<br>$\cos \theta = \frac{4^2 + 5^2 - 8^2}{2 \times 4 \times 5} = -\frac{23}{40}$<br>$\therefore \theta \doteq 125^{\circ}6'$<br>The diagram is not to scale, so students putting<br>down acute angles were penalised.<br>Also students who wrote a reflex angle were<br>penalised.<br>The answer needs to be the nearest minute,<br>otherwise students were penalised.                                                                                                                                                                                                                                                                                    | 2     |

| SEC | CTION B                                                                                    | SOLUTIONS                                                    | Marks |  |  |
|-----|--------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------|--|--|
|     | A student invests \$200 into a savings account earning interest at 7% compounded annually. |                                                              |       |  |  |
|     | (a) How much does he have in the account (to the nearest cent), after 2 years?             |                                                              |       |  |  |
|     | After two years, the student has $(1.07)^2 = (228.98)^2$                                   |                                                              |       |  |  |
|     | (b) After how many comp                                                                    | now many complete years will he first have more than \$3000? |       |  |  |
| 12  | Let $n$ be the number of years to get \$3000.                                              |                                                              |       |  |  |
| 12  | $3000 = 200(1.07)^n$                                                                       |                                                              |       |  |  |
|     | $\therefore 1.07^n = 15$                                                                   | Students who used trial and error or who                     |       |  |  |
|     | $\therefore n = \log_{1.07} 15$                                                            | showed no working got no marks if their answer was wrong.    |       |  |  |
|     | $=\frac{\log_{10} 15}{\log_{10} 1.07}$                                                     |                                                              |       |  |  |
|     | = 40.02518912                                                                              |                                                              |       |  |  |
|     | So after 41 years the student will have more than \$3000.                                  |                                                              |       |  |  |



3 A glass sphere has a radius of 5.75cm.  
(a) Calculate its volume correct to 2 D.P.  

$$V = \frac{1}{3} \pi r^{3}$$

$$= 796.3282818 = \overline{196.33} cm^{3}(24p)$$
(b) The glass sphere is tightly packed into a cylindrical gift box such that it just touches the curved surface of the box and the top and bottom of the box. Find the total surface area of the interior of the box correct to 2 D.P.  

$$Q = 2\pi r^{2} + 2\pi r r^{3}$$

$$Q = 2\pi r^{2} + 2\pi r r^{3}$$
(b) The glass sphere is tightly packed into a cylindrical gift box such that it just touches the curved surface of the box and the top and bottom of the box. Find the total surface area of the interior of the box correct to 2 D.P.  

$$Q = 2\pi r^{2} + 2\pi r r^{3}$$

$$Q = 2\pi r^{2} + 2\pi r r^{3}$$

$$Q = 2\pi r^{2} + 2\pi r r^{3} + 2\pi (5 \cdot 75)(115) = 623 \cdot 213 \text{ stars}^{2} (234p)$$
4 Find the exact value of (10 000 000 001)^{2} - (9 999 999 999) = (1000, com, 000) - (9 999 999 999) = (1000, com, 000) - (9 999 999 999) = (1000, com, 000) - (9 999 999 999) = (1000, com, 000) - (9 999 999 999) = (1000, com, 000) - (9 999 999 999) = (1000, com, 000) - (9 999 999 999) = (1000, com, 000) - (9 999 999 999) = (1000, com, 000) - (9 999 999 999) = (1000, com, 000) - (9 999 999 999) = (1000, com, 000) - (9 999 999 999) = (1000, com, 000) - (9 999 999 999) = (1000, com, 000) - (9 999 999 999) = (1000, com, 000) - (9 999 999 999) = (1000, com, 000) - (9 999 999 999) = (1000, com, 000) - (9 999 999 999) = (1000, com, 000) - (1000, com, 000) = (1000, com,

| SECTION D (22         | Marks)                                                                                           | Marks |
|-----------------------|--------------------------------------------------------------------------------------------------|-------|
| <b>1</b> Given $f(x)$ | =3-2x, find                                                                                      |       |
| (a) f(-               | (-1) = 3 - 2(-1)<br>= 5                                                                          | 1     |
| (b) f <sup>-1</sup>   | (x) $x = 3 - 2y$<br>2y = 3 - x<br>$y = \frac{3 - x}{2}$ $\therefore f^{-1}(x) = \frac{3 - x}{2}$ | 1     |
| (c) $f^{-1}$          | (2) $f^{-1}(2) = \frac{3-(2)}{2}$                                                                | 1     |
| (d) a po              | positive number q such that $f(q) = q^2$<br>$q^2 = 3 - 2q$<br>$q^2 + 2q - 3 = 0$                 | 2     |
| (e) find              | $(q+3)(q-1)=0$ $q=1,-3$ $3-2(2^{r})<-5$ $-2^{r+1}<-8$ $2^{r+1}>3$ $2^{r+1}>2^{3}$ $r>2$          | 1 2   |
| 2 We are told         | d that AB is a diameter and $\angle ABC = 70^{\circ}$                                            |       |
|                       |                                                                                                  |       |
| Find:<br>(a) ∠I       | BCA = 90° (angle in semi-circle)                                                                 | 1     |
| • (b) ZA              | IDC = 70° (angles in some segment)                                                               | 1     |
|                       |                                                                                                  |       |

•

٠.

ì

For the equation  $y = x^2 - 1$ 3 2 (a) Sketch the graph, showing its important features (intercepts, vertex, axis of symmetry) ζ, Note: the axis of symmetry is the y-axis. 1 (b) State whether this equation is a function or not, giving reasons. y=x-1 is a function as it satisfies the vertical whe test. (a vertical like only cuts the curre once) 1 (c) Is the inverse relation of this equation a function? Why/Why not? No. The original function y=x2-1 does not satisfy the horizontal line test. Note: This is equivalent to testing whether the inverse relation satisfies the vertical line test 4 Find the area of the triangle, to the nearest cm<sup>2</sup>. 2 A= = (12)(14) sin 60° 12cm ~ 73 cm² ∠60° 14cm The marks shown in the table were obtained by 20 boys in a spelling test. 5 Score 2 correct 3 correct 4 correct 5 correct 6 correct 7 correct Frequency 4 5 0 3 7 1 Find, from this table the: 7-2 = 5 (a) range 5.5 (the average of the 10th & 11th score) 1 (b) median 1 (c) mode 2 4.75 (d) mean correct to 2D.P. 2 (e) standard deviation correct to 2D.P.  $2 \sim 0.7$ 

A half mark was deducted for the entire section E if the axes of any graph is not labelled.

| not labelled.                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <u> </u>                                                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| ECTION E (18 Marks)                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Marks                                                                             |
| 1 Simplify $\frac{a^{-\frac{1}{2}b^{\frac{3}{2}} \times b^{-\frac{7}{8}}a^3}}{a^{\frac{3}{2}b^{-\frac{3}{2}}}}$                                                                                                                                | $\begin{vmatrix} a^{-\frac{1}{2}+3} - \frac{3}{2} \\ b^{3/2} - \frac{1}{2} + \frac{3}{2} \\ b^{3/2} - \frac{1}{2} + \frac{3}{2} \\ b^{3/2} - \frac{1}{2} \\ b^{3/2} - \frac{1}{$ | 2                                                                                 |
| $\frac{a^{1/2}a^3b^{3/2}b^{-7/2}}{a^{1/2}b^{-3/2}}$ $\frac{a^{1/2}b^{-3/2}}{a^{1/2}b^{-3/2}}$ 1 mark                                                                                                                                           | Full marks awarded for correct<br>working and correct answer.<br>No marks will be awarded if students<br>rewrote the question but in terms of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                   |
| 2 Graph $y = 2^x - 5$ showing all the in                                                                                                                                                                                                       | surds.<br>nportant features, given $-1 \le x \le 4$<br>Full marks awarded<br>(4,11) all the information<br>given on the graph.<br>This included both<br>boundary points (as<br>domain is given),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | is                                                                                |
| (-1,-4.5<br>(-1,-4.5                                                                                                                                                                                                                           | 2 32<br>log <sub>2</sub> S<br>y intercepts and con<br>shape graph.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | and                                                                               |
| 3                                                                                                                                                                                                                                              | <ul> <li>B</li> <li>C</li> <li>C</li> <li>A</li> <li>3 marks for correction of the c</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ect reasoning<br>appropriate<br>he circle geom<br>herwise marks<br>ed. Also neces |
| PA is a tangent to the circle, centre<br>$\angle PAB = 60^{\circ}$ . Find angles a, b, c, d<br>$\angle OAP = 90^{\circ}$ [Tangent po<br>to radiu<br>$a = 90 - 60^{\circ}$ [adjacent co<br>angles<br>$d = 60^{\circ}$ [angle in alt<br>Segment. | I giving a reason for each answer.<br>av pendicular<br>Ab = 180 - 120 - 30<br>(Angle sum of a $\Delta$ )<br>mplementar<br>$b = 30^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6                                                                                 |
| (= 120° (angles at the                                                                                                                                                                                                                         | angle at<br>ence subtended                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                   |





 $\chi = 2$ . 1 mark for correct answer.

Section F (16 marks)  
1.(a) 
$$|x-3| = 2x-4$$
 [2]  
Method 1: (square both sides).  
 $(x-3)^2 = (2x-4)^2$   
 $x^2 - 6x + 9 = 4x^2 - 16x + 16$   
 $3x^2 - 10x + 7 = 0$   
 $p: 21 - 7, -3$   
 $s: -10 - 7, -3$   
 $s: -10 - 7, -3$   
 $x = 1 - 3x = 7$   
 $x = 1 - 3x = 7$   
 $x = 1 - 3x = 7$   
 $x = 7$   
 $x = 7$   
 $x = 7$   
 $x = 1 - 3x = 7$   
 $x = 7$   
 $x = 1 - 3x = 7$   
 $x = 1$   
(2) inside the absolute value is negative  
 $-(x-3) = 2x - 4$   
 $-x = 3x = 7$   
 $x = 1$   
 $x = 7$   
 $x = 7$   

| (b) <u>Checking</u> :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | [1]                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| When $\chi = \frac{7}{3}$ : $LHS = \begin{vmatrix} \frac{7}{3} \\ 3 \end{vmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $-3 - \frac{RHS}{2} = 2\left(\frac{7}{3}\right) - 4$ |
| $= \begin{vmatrix} -\frac{2}{3} \\ = \frac{2}{3} \\ 3 \\ = \frac{2}{3} \\ = \frac{2}{3} \\ 3 \\ =$ | $= \frac{2}{3}$ $= LHS$                              |
| When $x = 1 : LHS =  1 - 3 $<br>= $ -2 $<br>= 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RHS = 2(1) - 4<br>= -2<br>$\neq LHS$                 |
| $\therefore x = 1$ , is not a solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | )n.                                                  |
| 2.<br>x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | [2]                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4                                                    |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5                                                    |
| $(x+4) \times 4 = (8+5) \times 5$<br>4x+16 = 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (intercepts of intersecting secants)                 |
| 4x = 49<br>x = 49 or (<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                      |
| 3. $V_1 : V_2 = 8 : 27$<br>(a) Base edges: $\sqrt[3]{8} : \sqrt[3]{27}$<br>= 2 : 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                      |
| (b) Areas: $2^2: 3^2$<br>= 4:9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | [1]                                                  |



| 6. | $A_{x} : A_{y} =$ | 108:48     | $\Rightarrow l_{x} : l_{y} =$                                                                          | $     \sqrt{108} : \sqrt{48}   $ $     6\sqrt{3} : 4\sqrt{3}   $ |
|----|-------------------|------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|
|    | •                 | : Ly<br>Lx | $\Rightarrow \frac{l_{Y}}{18} = \frac{4}{6}$ $\frac{l_{Y}}{18} = \frac{4}{5} \times 18$ $\frac{18}{6}$ |                                                                  |
|    |                   |            | $l_y = 12 \text{ cm}$                                                                                  |                                                                  |
|    |                   |            |                                                                                                        |                                                                  |
|    |                   |            |                                                                                                        |                                                                  |
|    |                   |            |                                                                                                        |                                                                  |
|    |                   |            |                                                                                                        |                                                                  |
|    |                   |            |                                                                                                        |                                                                  |
|    |                   |            |                                                                                                        |                                                                  |
|    |                   |            | 3                                                                                                      |                                                                  |
|    | •                 |            |                                                                                                        |                                                                  |

2016 MATHEMATICS YEARLY YEAR 10 ADVANCED SECTION G 1) Calculator work,  $\overline{x} = mean, \ o_n = standard deviation$ for fofulation. on = comple standard deviation On-1> ON I Marks = 71 On Marks = 14.51 [Tmark. [ Marked Ceriently ] \* English = 59.5 On English = 12.36 Abnost all accres are within = 3 on in a rormol dictorbulion. The more on above sean, the better the people RON 72% - Holls = 71+ 069× 14.51 = x + .069 on 71% on English = 59.5 + . 93 × 12.36 = x + .930n English is the NORMAK "heter score ANTRIBUTION 2 + 5~ + 20~ + 30~ ) x -30- -20- -0-Made English list and the correct ensuer English list with the wrong REASON samed NIL A ù  $\frac{Aen C}{15} = \frac{An 40}{10}$ /40 Students with the wrong disigram Auc = 154 40 but consit wohing 10 .hcored 2/3 = . 96 . . . Thangle is NOT C× 75° E 2monto/3 SAS OA 105° (Anterquous care) 1 estas north Many students drew the wrong diagram end then used the conine rule getting the wrong ensuer to this question but having the connect working for their dragram.

,

Year 10 Yearly Section H  $\frac{a}{abc} = 100a + 10b + c$ cba = 100c + 10b + a100/a-Then abc - cba =<u>100/a-č</u> <u>99 Ya-c</u> where kEZ since a >c = q q x k(abc-cba) is a multiple of 99 Students who used place values to express Commento abc and clog as expanded numbers the question. Otherwise were able to do It was not done successfully Proving sum of digits was a m is divisible by 9 tells us it not by 11 and ; by 9 99n = 99/a ahc - cba =Since answer is at most a Sdigit  $n_{0}$ values of n between and But largest value of a = 99n Sichallest value of c 1 : smallest a-k 99 n=8 value 98 2 29 3 396 Ψ IENEL 495 5 594 Comment: 6 ALL the values of *n* need to be shown to get full ··6 93 marks. Writing down 1 value scored 0 marks. 92 8

Section H (a) Let Ai be amount it child gets Then  $A_1 = $1000 + \frac{p-1000}{10}$ b)  $A_2 = $2000 + \frac{1}{10}(P - A_1 - 2000)$  $= 2000 + \frac{1}{10} \left( P - \left( 1000 + \frac{P - 1000}{10} \right) \right)$ 2000  $= 2000 + \frac{p}{10} - 100 - \frac{p - 1000}{100}$  $= 1700 + \frac{p}{10} - \frac{p}{100} + 10$  $= 1710 + \frac{qp}{100}$  $\frac{1000 + \frac{p - 1000}{10}}{10} = 1710 + \frac{qp}{100}$  $10P - 10000 = 710 + \frac{9P}{100}$ 100  $\frac{P}{100} - 100 = 710$  $\frac{P}{100} = 810$  $\rho = \$81000$ 

ection 1 (iii) 81000 - 9000 = 9 children Comments (i) Most students got the amount the first child b) If students had the correc expression prior to simplifying they got full marks. to of the coho I were able to correctly - que the expression for the child's amount Since the question tol (a) and o equate ! 6 erel no marks for <u>Simpler incorrect</u> expressions being wo their expressions resulted in a much easie no makes were awarded 7 students had incorreg answers from (i) and did check amounts were equa no marks both children then for were quer ni) I incorrect a student regulted in a non-positive integer then no marks were given as result was ( |Oclearly wrong.