

Sydney Boys High School

MOORE PARK, SURRY HILLS

YEAR 10 ADVANCED MATHEMATICS

Yearly Examination 2017

General Instructions:

- All questions may be attempted.
- Write using black pen.
- Marks may be deducted for careless or badly arranged work.
- All working and answers are to be written in this test booklet.
- If you wish to rewrite an answer, draw a line through your faulty answer and rewrite your answer on the back pages of this booklet. Show the number and part of the answer being rewritten
- Leave your answers in the simplest exact form, unless otherwise stated.
- Board approved calculators may be used.
- Clearly indicate your class by placing an \mathbf{X} next to your class.

Name:

Class	Teacher	
$10 \mathbf{A}$	Ms Kilmore	
$10 \mathbf{B}$	Ms Chan	
$10 \mathbf{C}$	Ms Evans \& Mr Elliott	
$10 \mathbf{P}$	Mr Dowdell \& Mr Kwong	
$10 \mathbf{L}$	Mr Choy	
$10 \mathbf{U}$	Mr Wang	
$10 \mathbf{S}$	Mr Gainford	

Section	Marks
A	$/ 10$
B	$/ 15$
C	$/ 15$
D	$/ 15$
E	$/ 15$
F	$/ 15$
G	$/ 15$
H	$/ 15$
Total	$/ 115$

1 Which of the following is the solution of the quadratic equation $(7-2 x)(3+x)=0$?
(A) $\quad x=3$ or $x=-\frac{7}{2}$
(B) $x=3$ or $x=-\frac{2}{7}$
(C) $\quad x=-3$ or $x=\frac{7}{2}$
(D) $x=-3$ or $x=\frac{2}{7}$

2 Which of the following could represent the graph of $y=(x-3)^{2}-9$?
(A)

(B)

(C)

(D)

Which of the following is the equation of the circle graphed above?
(A) $(x-3)^{2}+(y+3)^{2}=4$
(B) $(x-3)^{2}+(y+3)^{2}=2$
(C) $\quad(x+3)^{2}+(y-3)^{2}=4$
(D) $(x+3)^{2}+(y-3)^{2}=2$

4 In the diagram below, which of the following is a correct expression for $\cos \theta$?

(A) $\frac{5^{2}+6^{2}-7^{2}}{2 \times 5 \times 6}$
(B) $\frac{5^{2}+7^{2}-6^{2}}{2 \times 6 \times 7}$
(C) $\frac{5^{2}+6^{2}+7^{2}}{2 \times 5 \times 6}$
(D) $\frac{5^{2}+6^{2}-7^{2}}{2 \times 5 \times 7}$

5 Which of the following is the natural domain of $\frac{3}{\sqrt{2-x}}$?
(A) $x \leq 2$
(B) $\quad x \geq 2$
(C) $x<2$
(D) $x>2$

6 Which of the following is the solution to the equation $\tan \theta=-1$ for $0^{\circ} \leq \theta \leq 360^{\circ}$?
(A) $\theta=-45^{\circ}$ or $\theta=45^{\circ}$
(B) $\theta=-45^{\circ}$
(C) $\theta=135^{\circ}$ or $\theta=225^{\circ}$
(D) $\theta=135^{\circ}$ or $\theta=315^{\circ}$

7 Stewie Dent is collecting the following sets of data.
Which situation is a set of bivariate data?
(A) The time Stewie spends watching television each night.
(B) The height of each boy in Y10 and the length of his right foot.
(C) The best scores recorded by all Y10 students on a particular video game.
(D) The favourite TV show of each Y10 students.

8 Which of the following is the exact area of the triangle below?

(A) $6 \sqrt{2}$
(B) $\frac{3}{\sqrt{2}}$
(C) $3 \sqrt{2}$
(D) $\frac{12}{\sqrt{2}}$

9 Which of the following has the y-axis as an axis of symmetry?
(A) $y=\sin x$
(B) $y=x^{2}-2 x$
(C) $y=\frac{1}{x+1}$
(D) $y=\sqrt{16-x^{2}}$

10 If the discriminant of a quadratic equation is a square number, which of the following statements about the roots is true?
(A) Equal real roots
(B) Real and rational roots
(C) No real roots
(D) Real and irrational roots

Section B (15 marks)

(a) Expand and simplify $(2 x-1)^{2}+4 x$.
\square
(b) Simplify $3 \sqrt{2}+\sqrt{2}$.
\square
(c) Calculate the final value of an investment of $\$ 5000$ which has been earning interest of 4% pa, compounded annually for four years.
Give your answer correct to the nearest cent.
\square
(d) Write down the equation of the vertical asymptote of $y=\frac{2}{3-x}$.
\square
(e) Solve $2^{x}=\frac{1}{2}$.
\square
(f) Express $y=\log _{2} x$ in index form.
\square

Section B continued

(g) A bag contains 2 blue marbles and 3 green marbles. Two marbles are drawn from the bag, one after the other, without replacement.
(i) Write the probability of each outcome on the branches below.

Draw 1 Draw 2

(ii) Find the probability that one blue and one green marble are drawn from the bag.
(h) The diagram below shows a glass. The bowl of the glass has a cylindrical top and a hemispherical base.

(i) Show that the volume of the bowl of the glass is $45 \pi \mathrm{~cm}^{3}$.

(ii) Find the height of liquid in the glass when it is half full.

Section C (15 marks)

(a) Express $\frac{2}{\sqrt{5}}$ with a rational denominator.
\square
(b) Yohc paid $\$ 420$ as a deposit on a lap-top computer.

Find the price of the computer if the deposit was 15% of the total cost.
\square
(c) What is the value of angle θ in the diagram below?

Give a geometric reason for your answer.

\square
(d) Five years ago, Lledwod bought a car which has been depreciating at the rate of $15 \% \mathrm{pa}$.

If it's current value is $\$ 10205$, how much did he pay for the car? Answer to the nearest dollar.
\square
(e) Given that k is a positive number specify the largest and the smallest of the following numbers:

$$
2^{-\frac{1}{2} k}, 2^{\frac{1}{2} k}, 2^{k}, 2^{-k}
$$

Section C continued
(f) Use the diagram below to answer the following.

(i) Prove $\triangle A C D\|\| A B C$
\square
(ii) Hence show $A C$ bisects $\angle D A B$.
\qquad
(g) If $3 p^{2}-2=10$, find the value of p^{4}.
\square
(h) Determine whether the point $(2,3)$ lies inside, outside or on the circle

$$
(x-1)^{2}+(y+1)^{2}=8
$$

Justify your answer.
\square

Section D (15 marks)

(a) The results from a class test are displayed in the table below

x	f	$c f$
8	1	1
10	1	2
11	1	3
12	2	5
13	1	6
14	2	8
15	4	12
16	2	14
17	3	17
18	1	18
19	1	19

Use your calculator and the table to help answer the following questions.
(i) State the mode. \square
(ii) Find \bar{x} and σ_{n}.

Express correct to one decimal place.

$\bar{x}=$
$\sigma_{n}=$

(iii) Rekrap awards a prize to those who get more than $\bar{x}+\sigma_{n}$ in the test.
How many prizes are awarded?
(iv) State the median. \square
(b) Solve $\log _{3}(x+2)=2$.

(c) Write down a pair of inequalities that define the shaded region below

Note The shaded region is bounded by the lines $y=x+2$ and $y=2$.

Section D (continued)
(d) On separate diagrams, draw neat sketches of each of the following, showing intercepts, asymptotes and any other important features.
(i) $\begin{aligned} &(x+2)(y-1)=-2 \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ &\end{aligned}$
(ii) $\quad y=-(x+1)^{3}+8$

(iii) $x^{2}+2 x+y^{2}=9$

Section E (15 marks)

(a) $\quad O$ is the centre of the circle below. What is the value of angles α and β in the diagram below? Give geometric reasons for your answer.

(b) A parabola has equation $y=x^{2}+4 x+5$
(i) Write down the y-intercept of the parabola

(ii) By completing the square, express the parabola in the form $y=(x-h)^{2}+k$.
(iii) Write down the coordinates of the vertex.

(iv) Sketch the parabola, using the information above.

(c) Eromlik has just received her Yearly test result of 80%. She feels disappointed as her HY test result was 84%. Her teacher gave her the following details to show that she had improved.

	\bar{x}	σ	Eromlik's marks
HY	60	12	84
Yrly	65	6	80

Show, with calculations, why Eromlik has improved.

Section E (continued)
(d) In the diagram below, $O G=O K$ and $\angle H G O=\angle J K O=90^{\circ}$.

(i) Prove $\triangle O G H \equiv \triangle O K J$, giving clear geometric reasons
\square
(ii) Hence give a reason why $a=b$.
\qquad

Section F (15 marks)

(a) State the number of solutions to the equation $\sin x=0$ for $0^{\circ} \leq x \leq 720^{\circ}$?
\qquad
(b) Two lines have equations $k x+y=2$ and $3 x+8 y=15$.

Find the value of k if the lines do not intersect.
\square
(c) A frustum is made by making a horizontal slice through the pyramid, and removing the small pyramid.

By using similarity, or otherwise, find the volume of the frustum.
\square
(d) (i) Factorise $x^{2}+4 x+4$.
\square
(ii) Hence factorise $x^{4}-x^{2}-4 x-4$.
\square

Section F (continued)

(e) By first factorising $a^{5}-a^{4} b-a b^{4}+b^{5}$, show that $a^{5}-a^{4} b \geq a b^{4}-b^{5}$ for all positive numbers a and b.
\square
(f) Let $f(x)=\sqrt{9-x^{2}}$
(i) Find $f(-1)$. \square
(ii) Find $f\left(m^{2}\right)$. \square
(iii) What is the domain of $f(x)$?

(iv) Sketch $y=f(x+1)+1$

Section G (15 marks)

(a) Given that $f(x)=2-\frac{1}{x-1}$
(i) Explain why $f^{-1}(x)$ exists.
$\square 1$
(ii) What is the domain and range of $f^{-1}(x)$. \square
(iii) Find the equation of $f^{-1}(x)$.
(b) For $x>0$, which expression is NOT equivalent to $a^{\log _{a} x}$.
(A) $\log _{a}\left(a^{x}\right)$
(B) $x^{\log _{a} a}$
(C) $\quad\left(\log _{a} a\right)^{x}$
(D) $\frac{1}{a^{\log _{a} \frac{1}{x}}}$
(c) For the scatterplot below, which of the following is closest to the equation for the line of best fit?

(A) $y=30-x$
(B) $y=30-4 x$
(C) $y=30-10 x$
(D) $y=30-20 x$
(d) By letting $u=x^{2}+2$, or otherwise, solve $\left(x^{2}+2\right)^{2}-4\left(x^{2}+2\right)+3=0$
(e) Consider the formula: $t=\frac{6-r}{r x-x}$.
(i) Make x the subject of the formula.
(ii) State any restrictions which may apply to the variables r and x. $\mathbf{1}$
\square
(f) Find the bearing of C from A, correct to the nearest degree.

Section H (15 marks)

(a) If $0^{\circ}<\phi<90^{\circ}$, simplify $\frac{\sin \phi \sin \left(180^{\circ}-\phi\right)}{\cos \left(90^{\circ}+\phi\right)}$
\square
(b) Solve $2 \times 5^{x+1}=17$. Express your answer correct to two decimal places.
\square
(c) A point P is chosen at random in a square $A B C D$.

What is the probability that $\angle D P C$ is not acute. Justify your result.
(d) A sphere has radius 5 cm and a cone has height 10 cm and its base has radius 5 cm .

The sphere and cone sit on a horizontal surface.
Find the height above the horizontal plane such that the circular cross section of the two solids have equal area.
(e)

The points A, B and P lie on a circle.
The chord $A B$ produced and the tangent at P intersect at the point T, as shown in the diagram. The point N is the foot of the perpendicular to $A B$ through P, and the point M is the foot of the perpendicular to $P T$ through B.
(i) Explain why $B N P M$ is a cyclic quadrilateral.
\qquad
(ii) Prove that $M N$ is parallel to $P A$.
(e) Let $T B=p, B N=q, T M=r, M P=s, M B=t$ and $N A=u$.

(iii) Show that $\frac{s}{u}<\frac{r}{p}$.

If needed, just state why two triangles are similar. Proof of similarity not needed.
(iv) Deduce that $s<u$.

SYDNEY BOYS HIGH SCHOOL MOORE PARK, SURRY HILLS

2017

Year 10 Yearly

Advanced Mathematics

Suggested Solutions

Sections	Marker
A	VL
B	
C	MK
D	AW
E	EC
F	TE
G	JC
H	BK

Multiple Choice Answers:

1. C
2. A
3. B
4. B
5. A
6. C
7. C
8. C
9. D
10. D

1 Which of the following is the solution of the quadratic equation $(7-2 x)(3+x)=0$?
(A) $x=3$ or $x=-\frac{7}{2}$
(B) $\quad x=3$ or $x=-\frac{2}{7}$
(C) $x=-3$ or $x=\frac{7}{2}$
(D) $\quad x=-3$ or $x=\frac{2}{7}$

2 Which of the following could represent the graph of $y=(x-3)^{2}-9$?
(A)

(B)

(C)

(D)

Which of the following is the equation of the circle graphed above?
(A) $(x-3)^{2}+(y+3)^{2}=4$
(B) $(x-3)^{2}+(y+3)^{2}=2$
(C) $(x+3)^{2}+(y-3)^{2}=4$
(D) $(x+3)^{2}+(y-3)^{2}=2$

In the diagram below, which of the following is a correct expression for $\cos \theta$?

(A) $\frac{5^{2}+6^{2}-7^{2}}{2 \times 5 \times 6}$
(B) $\frac{5^{2}+7^{2}-6^{2}}{2 \times 6 \times 7}$
(C) $\frac{5^{2}+6^{2}+7^{2}}{2 \times 5 \times 6}$
(D) $\frac{5^{2}+6^{2}-7^{2}}{2 \times 5 \times 7}$

5 Which of the following is the natural domain of $\frac{3}{\sqrt{2-x}}$?
(A) $x \leq 2$
(B) $x \geq 2$
(C) $x<2$
(D) $x>2$

6 Which of the following is the solution to the equation $\tan \theta=-1$ for $0^{\circ} \leq \theta \leq 360^{\circ}$?
(A) $\theta=-45^{\circ}$ or $\theta=45^{\circ}$
(B) $\theta=-45^{\circ}$
(C) $\theta=135^{\circ}$ or $\theta=225^{\circ}$
(D) $\theta=135^{\circ}$ or $\theta=315^{\circ}$
$7 \quad$ Stewie Dent is collecting the following sets of data.
Which situation is a set of bivariate data?
(A) The time Stewie spends watching television each night.
(B) The height of each boy in Y10 and the length of his right foot.
(C) The best scores recorded by all Y10 students on a particular video game.
(D) The favourite TV show of each Y10 students.

8 Which of the following is the exact area of the triangle below?

(A) $6 \sqrt{2}$
(B) $\frac{3}{\sqrt{2}}$
(C) $3 \sqrt{2}$
(D) $\frac{12}{\sqrt{2}}$

9 Which of the following has the y-axis as an axis of symmetry?
(A) $y=\sin x$
(B) $y=x^{2}-2 x$
(C) $y=\frac{1}{x+1}$
(D) $y=\sqrt{16-x^{2}}$

10 If the discriminant of a quadratic equation is a square number, which of the following statements about the roots is true?
(A) Equal real roots
(B) Real and rational roots
(D) Real and irrational roots

Section B (15 marks)
(a) Expand and simplify $(2 x-1)^{2}+4 x$.

$$
\begin{aligned}
& 4 x^{2}-4 x+1+4 x \vee 1 \text { mark } \\
= & 4 x^{2}+1 \sqrt{ } 1 \text { mark }
\end{aligned}
$$

(b) Simplify $3 \sqrt{2}+\sqrt{2}$.

$$
4 \sqrt{2} \sqrt{ } 1 \text { mark }
$$

(c) Calculate the final value of an investment of $\$ 5000$ which has been earning interest of $4 \% \mathrm{pa}$, compounded annually for four years. Give your answer correct to the nearest cent.

$$
5000(1.04)^{4} \frac{1}{2} \text { mark }
$$

$$
\text { final value is } \$ 5849.29 \frac{1}{2} \text { mark }
$$

$$
3-x \neq 0 \quad \text { vertical asymptote }: x=3 / 1 \text { mark }
$$

(e) \quad Solve $2^{x}=\frac{1}{2}$.

$$
\begin{aligned}
& 2^{x}=2^{-1} \frac{1}{2} \text { mark } \\
& \therefore x=-1 \quad \frac{1}{2} \text { mark }
\end{aligned}
$$

(f) Express $y=\log _{2} x$ in index form.

$$
x=2^{y} \checkmark 1 \text { mark }
$$

(g) A bag contains 2 blue marbles and 3 green marbles. Two marbles are drawn from the bag, one after the other, without replacement.
(i) Write the probability of each outcome on he branches below.

Draw 1 Draw 2

(ii) Find the probability that one blue and one green marble are drawn from the bag.

(h) The diagram below shows a glass. The bowl of the glass has a cylindrical top and a hemispherical base.
$\frac{1}{2}$ mark deducted if final answer was not simplified
(i) Show that the volume of the bowl of the glass is $45 \pi \mathrm{~cm}^{3}$.

$$
\begin{aligned}
\text { V of bowl } & =V \text { of cylindrical top }+V \text { of hemispherical base } \\
& =\pi r^{2} h+\frac{1}{2} \times \frac{4}{3} \pi r^{3} \quad 1 \text { mark } \\
& =(27 \pi+18 \pi) \mathrm{cm}^{3} \checkmark 1 \text { mark } \\
& =45 \pi \mathrm{~cm}^{3}
\end{aligned}
$$

(ii) Find the height of liquid in the glass when it is half full.

$$
\left.\begin{array}{rl}
\text { V when half full } & =\frac{45 \pi}{2} \rightarrow \frac{1}{2} \text { mark } \\
\frac{45 \pi}{2} & =18 \pi+x] \frac{1}{2} \text { mark } \\
x & =4.5 \pi \\
4.5 \pi & =\pi(3)^{2} \mathrm{~h} \\
h & =0.5 \longrightarrow \frac{1}{2} \text { mark } \\
\text { height of liquid } & =(0.5+3) \mathrm{cm}
\end{array}\right) 3.5 \mathrm{~cm} \frac{1}{2} \text { mark }
$$

Section C (15 marks)
(a) Express $\frac{2}{\sqrt{5}}$ with a rational denominator.

$$
\frac{2}{\sqrt{5}} \times \frac{\sqrt{5}}{\sqrt{5}}=\frac{2 \sqrt{5}}{5}
$$

(b) Yohc paid $\$ 420$ as a deposit on a lap-top computer.

Find the price of the computer if the deposit was 15% of the total cost.

$$
\begin{aligned}
420 & =15 \% \\
28 & =1 \% \\
\therefore 2800=100 \% & \therefore \text { Price of computer is } \\
\therefore & \$ 2800
\end{aligned}
$$

(c) What is the value of angle θ in the diagram below?

Give a geometric reason for your answer.

$$
\begin{array}{r}
\theta=50^{\circ} \text { (opposite } \angle 5 \text { are supplementary } \\
\text { for a cyclic quad (atonal) } \\
\text { Must have } \\
\text { reason far } \\
\text { full marks }
\end{array}
$$

(d) Five years ago, Lledwod bought a car which has been depreciating at the rate of $15 \% \mathrm{pa}$. If it's current value is $\$ 10205$, how much did he pay for the car? Answer to the nearest dollar.

$$
\begin{aligned}
& A=P(1-r)^{n} \\
& 10205=P(1-15 \%)^{5} \\
& \therefore P=22999 \\
&=\$ 22999 \text { (nearest dollars) }
\end{aligned}
$$

(e) Given that k is a positive number specify the largest and the smallest of the following numbers:

Section C continued
(f) Use the diagram below to answer the following.

(i) Prove $\triangle A C D|\mid \triangle A B C$

$$
\begin{aligned}
& \frac{A D}{A C}=\frac{A C}{A B}=\frac{D C}{B C}=0.8=\frac{4}{5}, \begin{array}{c}
\text { Mast have } \\
\text { correct reason } \\
\text { and show } \\
\text { value of } \\
\text { allyngis }
\end{array} \\
& \text { Since are in propption, }
\end{aligned}
$$

(ii) Hence show $A C$ bisects $\angle D A B$.

For correct reasoning and Since $\triangle A C D\|\| \triangle A B C$, abbreviation, to
please refer
le he 'Reasons in Geometry' booklet on R-dive.; $A C$ bisects $\angle D A B$
are equal) Must have correct reasoning since we already know that $A C$ bisects $\angle D A B$.
(g) If $3 p^{2}-2=10$, find the value of p^{4}. only partial marks since Q states 'Hence'

$$
\begin{aligned}
3 p^{2}-2 & =10 \quad \therefore p^{4}=16 \\
3 p^{2} & =12 \\
p^{2} & =4
\end{aligned}
$$

Note that $p^{4} \neq \pm 16$ since p^{4} is ALWAYS positive
(h) Determine whether the point $(2,3)$ lies inside, outside or on the circle

$$
(x-1)^{2}+(y+1)^{2}=8
$$

Justify your answer.
sub $(2,3)$:

$$
1^{2}+4^{2}=17
$$

\therefore lies outside the

Section D (15 marks)

(a) The results from a class test are displayed in the table below

x	f	$c f$
8	1	1
10	1	2
11	1	3
12	2	5
13	1	6
14	2	8
15	4	12
16	2	14
17	3	17
18	1	18
19	1	19

Use your calculator and the table to help answer the following questions.
(i) State the mode. \square
(ii) Find \bar{x} and σ_{n}.

Express correct to one decimal place.

$$
\begin{aligned}
& \bar{x}=14.4 \\
& \sigma_{n}=2.8
\end{aligned}
$$

(iii) Rekrap awards a prize to those who get more than $\bar{x}+\sigma_{n}$ in the test.
How many prizes are awarded?

1
(iv) State the median.
(b) Solve $\log _{3}(x+2)=2$.

$$
\begin{aligned}
& x+2=3^{2} \\
& x+2=9 \\
& x=7 \text { (1) mark }
\end{aligned}
$$

(c) Write down a pair of inequalities that define the shaded region below

(1) mark for correct

Section D (continued)
(d) On separate diagrams, draw neat sketches of each of the following, showing intercepts, asymptotes and any other important features.
(i) $(x+2)(y-1)=-2$

$$
\begin{aligned}
& y-1=\frac{-2}{x+2} \\
& y=\frac{-2}{(x+2)}+1
\end{aligned}
$$

Asymptotic:

$$
\begin{aligned}
& y=1 \\
& x=-2 \\
& x \text {-intercept }=(0,0)
\end{aligned}
$$

(ii) $y=-(x+1)^{3}+8$
y-intercept: $(0,7)$
x-intercept:

$$
(1,0)
$$

(iii) $x^{2}+2 x+y^{2}=9$
$x^{2}+2 x+1+y^{2}=9+1$

$$
(x+1)^{2}+y^{2}=10
$$

$$
\text { Centre }=(-1,0)
$$

radius $=\sqrt{10}$

* Need to see cornet:
$\rightarrow x$-intercept
$\rightarrow y$-intercept
\rightarrow inflexion at $(-1,8)$
\rightarrow Correct shape

Section E (15, marks)
(a) $\quad O$ is the centre of the circle below. What is the value of angles α and β in the diagram below? Give geometric reasons for your answer.

(b) A parabola has equation $y=x^{2}+4 x+5$
(i) Write down the y-intercept of the parabola \square
5 13
(ii) By completing the square, express the parabola in the form $y=(x-h)^{2}+k$.

$$
\begin{aligned}
& (x-h)^{2}+k \\
& y=(x+2)^{2}+1
\end{aligned}
$$

(iii) Write down the coordinates of the vertex.

(iv) Sketch the parabola, using the information above.

- Vertex
- axis or prinabede
, $a_{1}-1 n+0+1$
9 Simesthness

Section E (continued)
(d) In the diagram below, $O G=O K$ and $\angle H G O=\angle J K O=90^{\circ}$.

(i) Prove $\triangle O G H \equiv \triangle O K J$, giving clear geometric reasons

$$
\begin{aligned}
& \angle 1+04=\angle \operatorname{Jok} \text { (yarticaly } \\
& \text { opp <'s are equal } \\
& \angle O G H=\angle J K O=q 0 \text { (given. } \\
& 0 G=0 k \text { iran } \\
& \therefore \Delta 40 H \equiv \Delta 0 J(A A S) \text {. }
\end{aligned}
$$

(ii) Hence give a reason why $a=b$.

(c) Eromlik has just received her Yearly test result of 80%. She feels disappointed as her HY test result was 84%. Her teacher gave her the following details to show that she had improved.

	\bar{x}	σ	Eromlik's marks		
MY	60	12	84	(2)	
Yrly	65	6	80	15	(2).5

Show, with calculations, why Eromlik has improved.

$$
\begin{aligned}
& \begin{array}{l}
84-60=24,24 \div 12=2515 \text { abonex } \\
80-65=1515=2.5 \text { sD bono } x
\end{array} \\
& \therefore \text { improved lib Yearly } \because 2.5>2
\end{aligned}
$$

Section F (15 marks)

(a) State the number of solutions to the equation $\sin x=0$ for $0^{\circ} \leq x \leq 720^{\circ}$?

$$
\begin{aligned}
& \text { GRADIGNT OF KINES ARE -K AND }-\frac{3}{8} \\
& \therefore-K=-\frac{3}{8} \text { (PARACIE } \angle \text { NES } \\
& \therefore K=-\frac{3}{8}
\end{aligned}
$$

(c) A frustum is made by making a horizontal slice through the pyramid, and removing the small pyramid.

By using similarity, or otherwise, find the volume of the fustum.
(d)
(i) Factorise $x^{2}+4 x+4$.

1

$$
\text { (ii) }{ }_{\text {Hence factorise } x^{4}-x^{2}-4 x-4}^{(x+2)^{2}}
$$

$$
\begin{aligned}
x^{4}-x^{2}-4 x-4 & =x^{4}-(x+2)^{2} \\
& =\left(x^{2}-(x+2)\right)\left(x^{2}+(x+2)\right. \\
& =\left(x^{2}-x-2\right)\left(x^{2}+x+2\right)
\end{aligned}
$$

Section F (continued)
(e) By first factorising $a^{5}-a^{4} b-a b^{4}+b^{5}$, show that $a^{5}-a^{4} b \geq a b^{4}-b^{5}$ for al! positive numbers a and b.

$$
\begin{aligned}
& a^{5}-a^{4} b \geqslant a b^{4}-b^{5} \\
& a^{5}-a^{4} b-a b^{4}+b^{2} \geqslant 0 \\
& a^{4}(a-b)-b^{4}(a-b) \geqslant 0 \\
& \left(a^{4}-b^{4}\right)(a-b) \geqslant 0 \\
& \left(a^{2}+b^{2}\right)\left(a^{2}-b^{2}\right)(a-b) \geqslant 0 \\
& \left(a^{2}+b^{2}\right)(a-b)^{2}(a+b) \geqslant 0 \\
& \text { Eac of these } 3 \text { temun } \rightarrow \geqslant 0 \text { For al } a, b \\
& \cdot a \in D
\end{aligned}
$$

*

(1) Let $f(x)=\sqrt{9-x^{2}}$
(i) Find $f(-\mathrm{j})$.
(ii) Find $f\left(m^{2}\right)$.

(iii) What is the domain of $f(x)$?

$$
\begin{gathered}
9-x^{2} \geqslant 0 \\
-3 \leqslant x \leqslant 3
\end{gathered}
$$

(iv) Sketch $y=f(x+1)+1$

Section G (15 marks)

(b) For $x>0$, which expression is NOT equivalent to $a^{\log _{g} x}$.
(A) $\quad \log _{a}\left(a^{x}\right)$
(B) $x^{\log _{\Omega} a}$
(CC)
(D) $\frac{1}{a^{\log _{\alpha} \frac{1}{x}}}$
(c) For the scatterplot below, which of the following is closest to the equation for the line of best fit?

$$
\begin{aligned}
& m=\frac{-20}{5}=-4 \\
& b=30 \\
& y=-4 x+30
\end{aligned}
$$

(A) $y=30-x$
(C) $y=30-10 x$
(D) $y=30-20 x$
(d) By letting $u=x^{2}+2$, or otherwise, solve $\left(x^{2}+2\right)^{2}-4\left(x^{2}+2\right)+3=0$

$$
\begin{aligned}
& u^{2}-4 u+3=0 \\
& (u-3)(u-1)=0 \\
& u=3, \quad u=1 \\
& x^{2}+2=3 \\
& x^{2}=1 \\
& x= \pm 1
\end{aligned} \quad x^{2}+2=1 \quad\left\{\begin{array}{l}
x^{2}=-1 \\
\frac{1}{2} \text { mark } \\
\text { if stuedes } \\
\text { igione } \\
x^{2}=-1
\end{array}\right.
$$

Section G (continued).
(e) Consider the formula: $t=\frac{6-r}{r x-x}$.
(i) Make x the subject of the formula.

$$
t=\frac{6-r}{x(r-1)}
$$

$$
t x=\frac{6-r}{r-1}
$$

$$
x=\frac{6-r}{t(r-1)}
$$

(ii) State any restrictions which may apply to the variables r and x.

$r \neq 1$	$\frac{1}{2}$ each.
$x \neq 0$	

(f) Find the bearing of C from A, correct to the nearest degree.

$$
0.273552685
$$

$$
\begin{aligned}
& A C=\sqrt{3^{2}+5^{2}-2 \times 3 \times 5 \times c 05137^{\circ}} \\
& A C=\sqrt{55.94061105} \\
& A C=7.47934563 \mathrm{~km} \\
& \begin{aligned}
& \sin \angle B A C \\
& 5= \\
&=27^{\circ} \text { (nearest degree) }
\end{aligned}
\end{aligned}
$$

Bearing C from $A=153^{\circ}$

$$
\therefore x= \pm 1
$$

Section H (15 marks)
(a) If $0^{\circ}<\phi<90^{\circ}$, simplify $\frac{\sin \phi \sin \left(180^{\circ}-\phi\right)}{\cos \left(90^{\circ}+\phi\right)}$

$$
J=\frac{1}{2} \text { mach }
$$

$$
\frac{\sin ^{2} \phi V}{-\sin \phi V}=-\sin \phi \checkmark \checkmark
$$

(b) Solve $2 \times 5^{x+1}=17$. Express your answer correct to two decimal places.

$$
\begin{aligned}
& 5^{x+1}=8.5 \\
& (x+1) \log 5=\log 8.5 \\
& x=\frac{\log -8.5}{\log 5}=0.1=0.32969 \\
& =0.33 p)
\end{aligned}
$$

(c) A point P is chosen at random in a square $A B C D$.

Not to scale
Let side of square $=r$
\Rightarrow radius of semicircle $=1 / 2$
What is the probability that $\angle D P C$ is not acute. Justify your result. \qquad
Consider semi-cirche DPC
If P lies on semi-arcle $\Rightarrow \angle D P C=90^{\circ}$.
\therefore Inside Area of semi-circle, $\angle D P C$ is obtuse.

$$
\therefore P(\text { not acute })=\frac{\text { Area semi-cirde }}{\text { Area Square }}=\frac{\frac{1}{8} \pi r^{2}}{r^{2}}
$$

Section H (continued)
(d) A sphere has radius 5 cm and a cone has height 10 cm and its base has radius 5 cm .

The sphere and cone sit on a horizontal surface.
Find the height above the horizontal plane such that the circular cross section of the two solids have equal area.

Circle at height

$$
\begin{aligned}
\frac{r}{5} & =\frac{x}{10} \\
5 x & =10 r \\
x & =2 r \\
\Rightarrow r & =x / 2
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Th} 0 \text { (})=2 \Rightarrow \frac{x^{2}}{4}=10-x^{2} \\
& \begin{array}{l}
=(2) \frac{x^{2}}{4}= \\
x^{2}=40 x-4 x^{2} \\
5 x^{2}-40 x=0 \\
5 x(x-8)=0 \Rightarrow \frac{x=0}{\text { atcirde }} \text { or } x=8 \\
=8, h=2 \mathrm{~cm} \text { i. } 2 \mathrm{~cm} \text { have plane }
\end{array} \\
& \begin{array}{l}
=(2) \frac{x^{2}}{4}= \\
x^{2}=40 x-4 x^{2} \\
5 x^{2}-40 x=0 \\
5 x(x-8)=0 \Rightarrow \frac{x=0}{\text { atcirde }} \text { or } x=8 \\
=8, h=2 \mathrm{~cm} \text { i. } 2 \mathrm{~cm} \text { have plane }
\end{array} \\
& \begin{array}{l}
=(2) \frac{x^{2}}{4}= \\
x^{2}=40 x-4 x^{2} \\
5 x^{2}-40 x=0 \\
5 x(x-8)=0 \Rightarrow \frac{x=0}{\text { atcirde }} \text { or } x=8 \\
=8, h=2 \mathrm{~cm} \text { i. } 2 \mathrm{~cm} \text { have plane }
\end{array} \\
& \begin{array}{c}
\text { ne cire } \\
\text { format }
\end{array} \\
& \text { If } x=8, h=2 \mathrm{~cm} \text { it } 2 \mathrm{~cm} \text { have place. }
\end{aligned}
$$

$\frac{\text { Circle at height, } h}{R^{2}}$

$$
\begin{aligned}
& \begin{array}{l}
R+\left(25-10 x+x^{2}\right) \\
R^{2}=25-\left(0 x-x^{2}\right. \\
R^{2}=10 \text { (2) } \\
\text { Acre }=\pi R^{2}
\end{array} \\
& \begin{array}{c}
\text { ne cire } \\
\text { format }
\end{array} \\
& R^{2}+(5-x)^{2}=5^{2} \text { (gythag, if } \\
& R^{2}=10 x-x^{2} \\
& \text { Acirde }=\pi R^{2} \\
& =\pi\left(10 x-x^{2}\right)(2)
\end{aligned}
$$

$$
\begin{gathered}
\Rightarrow r=12 \\
A_{c i} \text { rid }=\pi r^{2}=\pi \frac{x^{2}}{4}(1) \\
-r^{2}
\end{gathered}
$$

Section H (continued)
(e)

The points A, B and P lie on a circle.
The chord $A B$ produced and the tangent at P intersect at the point T, as shown in the diagram. The point N is the foot of the perpendicular to $A B$ through P, and the point M is the foot of the perpendicular to $P T$ through B.
(i) Explain why $B N P M$ is a cyclic quadrilateral.

$$
\sqrt{1}=\frac{1}{2} m
$$

$\angle P N B=90^{\circ}$
$\angle B M P=90^{\circ} \quad\binom{$ Angles on st line }{$\angle a m e ~ r e a s o n}$
\therefore opp L's in quad. are supplementary
$\Rightarrow B N P M$ is cyclic.
(ii) Prove that $M N$ is parallel to $P A$.

Let $\angle B N M=b$
Then $\angle B P M=b$ (Andes in same segment)

$$
V=\frac{1}{r} m
$$

$$
\begin{aligned}
& \text { Since } \frac{s}{\mu}<\frac{r}{p}
\end{aligned}
$$

Section H (continued)
(e) Let $T B=p, B N=q, T M=r, M P=s, M B=t$ and $N A=u$.

(iii) Show that $\frac{s}{u}<\frac{r}{p}$.

If needed, just state why two triangles are similar. Proof of similarity not needed.
a smaller denominator gives larger fraction.

From (2) (2)

Also $\angle B P M=\angle P A B(A 1+$ segment Theorem $) \cdot \sqrt{ }$
(iv) Deduce that $s<u$.
since hyodotenses ($($) is largest side in

