

SYDNEY BOYS HIGH SCHOOL MOORE PARK, SURRY HILLS

2005 YEAR 11 ACCELERATED

ASSESSMENT TASK #1

Mathematics

General Instructions

- Reading Time 5 Minutes
- Working time 90 Minutes
- Write using black or blue pen. Pencil may be used for diagrams.
- Board approved calculators maybe used.
- Each section is to be returned in a separate bundle.
- All necessary working should be shown in every question.

Total Marks - 96

- Attempt questions 1 − 8
- All questions are of equal value.

Examiner: AM Gainford

Section A

(Start a new booklet.)

Question 1. (12 Marks)

(a) Calculate
$$\sqrt{\frac{185}{5 \cdot 4 \times 3 \cdot 7}}$$
 correct to two decimal places.

(b) Simplify
$$a-3(2-a)$$
. 1

Solve the equation
$$\frac{x+2}{3} - 1 = \frac{x}{4}$$
.

(d) Simplify
$$\sqrt{243} - \sqrt{27}$$
.

(e) Find
$$x$$
 if $\log_2 x = 5$.

(f) Find
$$\theta$$
 to the nearest minute if $0^0 \le \theta \le 90^0$ and $\cos \theta = 0.147$.

(g) Solve the equation
$$4x^2 = 12x$$
.

(h) Graph on a number line the solution of the inequality
$$\frac{x-1}{2} < 3$$
.

Question 2. (12 Marks)

- (a) Simplify $\frac{\left(x^2y\right)^3}{\left(xy^3\right)^2}$.
- (b) Find the exact value of $\sin 315^{\circ} \tan 150^{\circ}$. Express your answer as a single fraction with rational denominator.
- (c) Given that $f(x) = \frac{4x^2}{\sqrt{9-x^2}}$:
 - (i) Find f(2).
 - (ii) Show that f(x) is an even function.
- (d) Simplify $\frac{x^2 y^2}{(x+y)^2}$.
- (e) Calculate $(2 \cdot 4371 \times 10^{23}) \div (7 \cdot 148 \times 10^{-12})$, expressing your answer in scientific notation.
- (f) Sketch the graphs of the following, showing their principal features: 4
 - (i) $y = 1 x^2$
 - (ii) $y = -\sqrt{x}$
- (g) Express the recurring decimal 0.27777... as a common fraction.

Section B

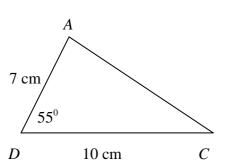
(Start a new booklet.)

4

2

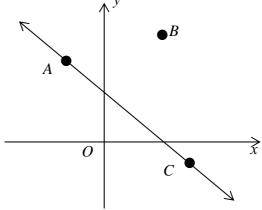
Question 3. (12 Marks)

(a) Given the triangle ACD:



- (i) Find the length of the side AC, correct to 2 decimal places.
- (ii) Calculate the measure of $\angle ACD$ correct to the nearest minute.
- (b) State the natural domain and range of the function $f(x) = \frac{x}{\sqrt{4-x^2}}$.
- (c) Solve |3-2x| < 4 and graph the solution on the number line.

(d) v



The diagram above shows the points A(-2,4), B(3,5), and C(4,-1).

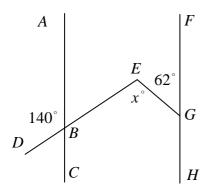
Copy the diagram to your answer booklet.

- (i) Find the equation of the line through the points A and C.
- (ii) Write the equation of the line through B perpendicular to AC.
- (iii) Find the distance from B to AC.

Question 4. (12 Marks)

(a) Given the line y = 4 - x and the parabola $y = x^2 - 2$

- 3
- (i) Find the points of intersection of the line and the parabola.
- (ii) Hence sketch the region where $y \le 4-x$ and $y > x^2-2$ hold simultaneously.
- (b)



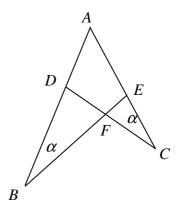
AC||FH

FH 1

Find the measure of x.

(c) In the diagram AB = 10 cm, AC = 8 cm, and BE = 6 cm. $\angle DBF = \angle ECF$.

Find the length of *DC*, giving brief reasons.



(d) Solve the following equations:

4

2

- (i) $x^4 13x^2 + 36 = 0$
- (ii) $4^x 9(2^x) + 8 = 0$
- (e) Find the centre and radius of the circle $x^2 + y^2 4x + 6y = 3$.

Section C

(Start a new booklet.)

Question 5 (12 Marks)

(a) Differentiate the following with respect to *x*: 3

- $x^3 3x^2 + 7$ (i)
- (ii) $4\sqrt{x-1}$
- (iii) $\frac{1}{2x^3}$
- (b)
- Use the product rule to find $\frac{dy}{dx}$ if $y = 3x(x-1)^9$. (i)

- Differentiate $y = \frac{x+1}{1-2x}$ by using the quotient rule. (ii)
- (iii) If $f(x) = x + \frac{1}{x}$, find
 - (α) f'(2)
 - (β) f'(-3)
- (c) The fourth term of a geometric sequence is $-\frac{27}{8}$, and the seventh term is $\frac{729}{64}$. 3

- (i) Find the values of the first term and the common ratio.
- Find the sum of the first 10 terms. (ii)

Question 6 (12 Marks)

- For the curve $y = x x^3$, find the gradient of the tangent to the curve at the point (a) (2,-6). Also find the gradient of the normal to the curve at this point.
 - 2

(b) Given that f(x) is defined as below 2

$$f(x) = \begin{cases} -5 & \text{for } x \le -3\\ 2x & \text{for } -3 < x < 0\\ x^2 & \text{for } x \ge 0 \end{cases}$$

- Find the value of f(-3) + f(4) + f(-1). (i)
- Find $f(a^2)$. (ii)
- For the parabola $x^2 4x 8y 4 = 0$ write down the (c)

- equation of the axis of symmetry (i)
- (ii) coordinates of the vertex
- equation of the directrix and coordinates of the focus. (iii)
- Two cadets on a compass march proceed from their campsite at A a distance of 1300 4 (d) m on a bearing of $275^{\circ}T$ to a point B, then travel 2100 m on a bearing of $170^{\circ}T$ to a point *C*.
 - (i) Draw a neat diagram to represent this situation.
 - Determine the bearing and distance for their final leg from C back to (ii) camp at A.

Section D

(Start a new booklet)

Question 7 (12 Marks)

- Let α and β be the roots of the equation $x^2 7x + 2 = 0$. Find the values of: (a)
 - 4

- (i) $\alpha + \beta$
- (ii) $\alpha\beta$
- (iii) $(\alpha+1)(\beta+1)$
- (b) Solve the following equations simultaneously:

2

$$2a - 3b = -21$$

$$4a + 2b = -2$$

(c) It is given that the series $\log_2 64 + \log_2 32 + \log_2 16 + \dots$ is either geometric or arithmetic.

4

- (i) Determine whether the series is geometric or arithmetic, and state its common ratio, or difference.
- Find the value of the seventh term. (ii)
- (iii) Determine how many terms must be taken to produce a sum of zero.
- Prove the trigonometric identity (d)

$$\frac{1}{\sec A - \tan A} = \sec A + \tan A$$

Question 8 (12 Marks)

- On a number plane diagram sketch the locus of all points equidistant (a) (i) from the co-ordinate axes.
 - (ii) Write down an equation to describe this locus.
- If one root of the quadratic equation $x^2 + bx + c = 0$ is twice the other, show that (b) $2b^2 = 9c.$

3

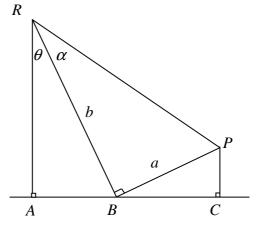
4

2

- In the diagram prove that (c)
 - (i) $AC = a\cos\theta + b\sin\theta$

(ii)
$$AC = \sqrt{a^2 + b^2} \sin(\theta + \alpha)$$

- (iii) Hence deduce that
- $\sin(\theta + \alpha) = \cos\theta \sin\alpha + \sin\theta \cos\alpha$



Show that if x and y are positive and unequal then (d) (i)

$$x^2 + y^2 > 2xy.$$

Hence or otherwise show that if a and b are positive and unequal then (ii)

$$a+b > 2\sqrt{ab}$$
.

This is the end of the paper.