

SYDNEY BOYS HIGH SCHOOL MOORE PARK, SURRY HILLS

2006 YEAR 11 ACCELERATED HALF YEARLY EXAM

Mathematics Accelerated

General Instructions

- Reading Time 5 Minutes
- Working time 90 Minutes
- Write using black or blue pen. Pencil may be used for diagrams.
- Board approved calculators maybe used.
- Each Section is to be returned in a separate bundle.
- Marks may NOT be awarded for messy or badly arranged work...
- All necessary working should be shown in every question.

Total Marks - 89

- Attempt questions 1-6
- Hand up in 3 sections clearly marked A,B & C

Examiner: P.Bigelow

SECTION A

Question 1 (12 marks)		Marks
a)	Convert $\frac{13\pi}{6}$ to degrees	1
b)	If $f(x) = 3x^2 + 11x - 1$, evaluate $f(3) - f(-3)$	2
c)	If $\sqrt{45} + \sqrt{80} = a\sqrt{5}$, find a	1
d)	How many significant zeros in 0.0040701?	1
e)	Find, without a calculator, 4.13 as a fraction (in simplest form)	2
f)	Simplify $\log_7 98 - \log_7 2$	2
g)	Write $\frac{1}{\sqrt[3]{x^4}}$ in index form	1
h)	Given the parabola $(x-4)^2 = 8(y+1)$ write down the co-ordinates of the focus	2

and the equation of the directrix.

Question 2 (15 Marks)

a) Factorise:

- i) $49 y^2$
- ii) $6a^2 a 2$
- iii) $8a^3 + 1$

b) Find:

i)
$$\lim_{x \to 4} \frac{16 - x^2}{4 - x}$$

ii)
$$\lim_{x \to \infty} \frac{4 + x - x^2}{3x^2 + 2x - 1}$$

c) Solve, then graph, the solution on a number line:

- i) $x^2 \le 4x$
- ii) |x-5| > 9
- d) Sketch $y = \cos x$ for $0^\circ \le x \le 360^\circ$
- e) Differentiate $f(x) = 1 2x + x^2$ from first principles
- f) Find, algebraically, the points of intersection of the curve $y = x^2$ and 2 the line x - y + 20 = 0.

Marks

3

2

4

2

SECTION B (start a new booklet)

Question 3 (15 marks)

Marks

a) Differentiate the following: 3

i)
$$y = 4 - 5x + 6x^{3}$$

ii) $f(x) = (3 - 5x)^{10}$
iii) $y = 1 - \frac{1}{\sqrt{x}}$

b) Write down the exact value of $\sin 240^{\circ}$

c) Simplify
$$a - \frac{1}{a}$$
 if $a = \sqrt{2} + 1$ 2

d) Solve for x,
$$(0.2)^{x+1} = (0.008)^{x-1}$$
 2

i)
$$y = 2^{-x}$$

ii) $x^2 - 2x + y^2 + 4y - 4 = 0$

f) Between which two consecutive integers does $\log_7 100$ lie? 1

g) State whether the following are ODD, EVEN or NEITHER (justify your answer with necessary working):

i)
$$f(x) = \frac{1}{1 + x^2}$$

ii) $f(x) = \frac{1}{1 - x^2}$

iii)
$$f(x) = \frac{-x}{1+x^2}$$

(Question 4 on next page)

Question 4 (15 Marks)		Marks
a)	Show that the points (-4,-5), (2,7) and (5,13) are collinear	2
b)	Find, using the "k method", the equation of the line, passing through the intersection of the lines $2x - y + 1 = 0$ and $3x + y - 6 = 0$ and containing the point (-2,3)	3
c)	Show that the line $4x - 3y + 15 = 0$ is a tangent to the curve $x^2 + y^2 - 9 = 0$	2
d)	Find the size of each internal angle in a regular 14 sided polygon	1
e)	Differentiate $y = \frac{x^2 + c}{x^2 - c}$ and hence find the value of c, if $\frac{dy}{dx} = 1$ at $x = -3$	3
f)	A parabola $y = ax^2 + bx + c$ passes through A(-1,4), B(0,7) and C(1,8). Determine the values of <i>a</i> , <i>b</i> , and <i>c</i>	2
g)	Given the quadratic expression $x^2 + (k-3)x + k$, for what values of <i>k</i> is the expression positive for all values of <i>x</i> ?	2

SECTION C (start a new booklet)

Question 5 (17 marks)Marksa)The points A, B and C are equally spaced on the circumference of a circle
radius 6cm.
Find the exact area of the triangle ABC.2b)Solve $5^x = 160$ (correct to 4 significant figures)2c)Find the point or points on the curve $f(x) = x^2 + \frac{1}{3}x^3$ where the tangent is
inclined at 135° to the positive direction of the x-axis.3

i)
$$y < \frac{1}{x}$$

ii) $y \le \sqrt{4 - x^2}$

Triangle XYZ is a right-angled triangle at X. W is a point on XZ such that XW = 2WZ. Prove that $5WZ^2 = YZ^2 - YW^2$

f) Given that α and β are roots of $2x^2 - 6x + 1 = 0$ evaluate:

i)
$$\frac{1}{\alpha} + \frac{1}{\beta}$$

ii) $\alpha^2 + \beta^2$
iii) $\alpha^3 + \beta^3$

Question 6 (15 marks)

Marks

3

2

3

i)
$$y = 1 - 4x - 2x^2$$

ii) $y = \sqrt{1 - 4x}$

b) Find the points on the curve $y = x + \frac{1}{x}$ where the normal is parallel to the line 2x + y - 13 = 0

UVWX is a quadrilateral in which $U\hat{V}W = W\hat{X}U$ and $V\hat{W}X = 3V\hat{U}X$. Prove that UV = VY.

d) In $\triangle ABC$, $\hat{A} = 38^{\circ}21'$, b = 11.6cm and a = 7.9cm.

Find the size of \hat{B} . (to the nearest degree)

e) The quadratic equation $x^2 + px + q = 0$, has one root twice the other. Prove:

i)
$$2p^2 = 9q$$

ii) That the roots are rational whenever p is rational

This is the end of the paper.

YR 11 2006 accelerated Half Karry exam (g) $\chi^{-\frac{4}{3}}$ Section A Q() (1)(a) $\frac{13 \times 180}{r} = 390^{\circ}$ (r) (h) $(x-4)^{2} = 4x2(y+1)$ (b) $f(x) = 3x^{2} + 1/x - 1$ V(4, -1)F(3) = 27 + 33 - 1 = 59 F(3) = 27 - 33 - 1 = -7a = 2F(3)-F(-3)= 59--7=66 () 145= J9x5 = 3 J5 c)180 = VI6x5 = 4,5= Focus (4,1) 7.15 y= -3 =7 a=7 (j) (1)2 x= 4.13333.... let 10 02=41.333 - --92 = 37.2 (2) $x = \frac{37.2}{9} = \frac{372}{90} = \frac{4}{15}$ $log_7(\frac{98}{2}) = log_7 49 = \chi$ 7 = 49 $\chi = 2$

Question 2 (15 Marks)

a) Factorise:
i)
$$49-y^2 = (1+y)(1-y)^{1/2}$$

ii) $6a^2-a-2 = (a-2)(2a+1)$
iii) $8a^3+1 = (2a+1)(4a^2-2a+1)$
b) Find:
i) $\lim_{x \to 4} \frac{16-x^2}{4-x} = \lim_{x \to +} (n+4) = 8^{1/2}$
ii) $\lim_{x \to +} \frac{4+x-x^2}{3x^2+2x-1} = \lim_{x \to -\infty} \frac{4}{x} + \frac{1}{x} - \frac{1}{x} = -\frac{1}{3}$
c) Solve, then graph, the solution on a number line:
i) $x^2 \le 4x$ $y^2 - 4y \le 0$ $x(y-4) \le 0$ $\frac{4}{\sqrt{3}}$
ii) $|x-5| > 9$ $x - 5 < -9^{1/2}$ $\frac{4}{\sqrt{3}}$ $\frac{1}{\sqrt{2}} - \frac{1}{\sqrt{3}}$
c) Solve, then graph, the solution on a number line:
i) $x^2 \le 4x$ $y^2 - 4y \le 0$ $x(y-4) \le 0$ $\frac{4}{\sqrt{3}}$
ii) $|x-5| > 9$ $x - 5 > 4$ $y - 5 < -9^{1/2}$ $\frac{4}{\sqrt{3}}$
iii) $|x-5| > 9$ $x - 5 > 4$ $y - 5 < -9^{1/2}$ $\frac{4}{\sqrt{3}}$
iii) $|x-5| > 9$ $x - 5 > 4$ $y - 5 < -9^{1/2}$ $\frac{4}{\sqrt{3}}$
iii) $|x-5| > 9$ $\frac{1}{\sqrt{3}} + \frac{1}{\sqrt{3}} + \frac$

Marks

4

QUESTION 3 $\frac{(f)}{\ln 100} = 2.367$ $(a)(1) Y' = -S + 18\chi^{2}$ $(11) \hat{F}(x) = 10(3-5x)^{9}x - 5$ between 2 ad 3. $= -50(3-5x)^9$ (11ii) $y = -x^{-2}$ $y' = \frac{1}{2}x^{-32}$ $\frac{(g)(i)}{1+(-x)^2} + \frac{1}{1+x^2}$ $\frac{1}{2\sqrt{\chi^3}}$ = fx (b) Sin 180°+60° = -Sin60° : EVEN (ii) $f(-x) = \frac{1}{1-(-\infty)} = \frac{1}{1-\infty} = f(x)$ = - 135 (c) $\sqrt{2} + 1 - \frac{1}{\sqrt{2} + 1} \times \frac{\sqrt{2} - 1}{\sqrt{2} + 1}$: EUEN $(f_{11}) \frac{f(-z)}{f(-z)} = \frac{z}{z} = -\frac{f(z)}{1+(-z)^{2}} \frac{z}{1+x^{2}} = -\frac{f(z)}{1+x^{2}}$ = 12+1-12+1 = 2 $(d) (0,2)^{2(+)} = (0,2)^{3\chi-3}$ $\chi_{+1} = 3\chi_{-3}$ $\chi = 2$ (e)(1) $\overline{\Lambda}$ (0,1) $(ii) (2(-1)^{2} + (y+2)^{2} = 9$ Circle, centre (1,-2) r=3 (1,1) (1,-2)

- Bont is (-1, 23) [1]. SECTION C Question 5 a) () y < 1 2c A a 1200 2] Area ABC = 3× (1/2×6×6 Am 120) = 3× 18×5 y≤√4-n2 2 = 27/3 b) $5^{2} = 160$ (\mathbf{I}) L^2 log (5x) = Log 160 x log 5 = $2c = \frac{\log 160}{\log 5}$ 2 = 3.153 e) $f(x) = x^2 + \frac{1}{3}x^3$ \hat{C} $f'(x) = 2n + \varkappa$ YX2+4ZW=YW2 (Pytnag.) $m = tan 135^{\circ}$ O [] > YX+9ZW=YZ (" = -| 52W2= Y22- YW2 1/(x) = - 1 when **I**-D 2"+2n=-1 [3] $\chi^{2} + 2\pi + 1 = 0$ (m+1)2=0 $\mathcal{H} = 1$

Q5 (Continued) (t, t)2x2-6x+1=0 $X + B = -\frac{(-6)}{2}; XB = \frac{1}{2}$ = 3 (i) $\bot + \bot = \frac{\chi + \beta}{\alpha \beta}$ Lij $=\frac{3}{V_2}$ = 6 (\tilde{M}) $\alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta$ $= (3)^{2} - 2(\frac{1}{2})$ = 9-1 [] (m), $a^{3} + \beta^{3} = (a + \beta)(a^{2} - 2\beta + \beta^{2})$ $= (\alpha + \beta) ((\alpha^{n} + \beta^{n}) - 2\alpha\beta)$ = 3 (8-12) = 3×15 $=\frac{45}{2}(=22^{\frac{1}{2}})$ [·]

đ

Question 6: (a) (i) y=1-4x-2x2 : LNYU = 180 - x - Q Domain = R = 20-0 Max value occurs at x = - - - - - 2x2 = 0 1. XNYU = XNUY --: DANN is isosceles .: y = 1+4-2 :. VV = VY= 3 12 : Range is y 53 $\frac{A}{38^{2}} + \frac{5 \ln B}{11.6} = \frac{5 \ln 38^{\circ} 21}{7.9}$ ω (ii) $y = \sqrt{1-4x}$ -: sin $D = \frac{11.6 \sin 38^{\circ} 21'}{7.9}$ Domain 1-4230 R · 2 5 4 2 = 2.91106 ---1 B = 65.6523 -OR 114.34--Range y≥0 ~ 66 OR 114° 1b y'= 1- 12 (e) $\chi^2 + px + q = 0$ For 2x+y-13=0 m=-2 Roots are a and 201 . Gradient of rormal = -2 : d+2d=-p i.e. 3d=-p :. Gradient of tangent = 12 d. 2 = q i.e 2 = q $\frac{1}{2}$ $n = \pm \sqrt{2}$ 2 (i) 2. $(-\frac{2}{5})^{2} = q$:. Bints are (V2, V2+++2) : <u>=</u> = p' and (-V2, -V2-t2) : 2p2 = 9g (ii) $\alpha = -\frac{1}{3}$ (2) 180-2-0 W SF p is rational, 30 $p = \frac{a}{b}$ where e = ab are integers $\alpha = -3b$ Y 180-2 = a when a and c are integers < Y = 180 - x - Q (X sum of A) $(180-d-0)+(180-d)=30(e_{X}+d OFAYWX)$ - Jf p is notional & is retional. : 360 - 2x = 40 : 180-d = 20 and 2d is national