SYDNEY BOYS HIGH SCHOOL MOORE PARI, SURRY HILLS

2006

YEAR 11 ACCELERATED
HALF YEARLY EXAM

Mathematics Accelerated

General Instructions

- Reading Time - 5 Minutes
- Working time - 90 Minutes
- Write using black or blue pen. Pencil may be used for diagrams.
- Board approved calculators maybe used.
- Each Section is to be returned in a separate bundle.
- Marks may NOT be awarded for messy or badly arranged work.
- All necessary working should be shown in every question.

Total Marks - 89

- Attempt questions 1-6
- Hand up in 3 sections clearly marked A, B \& C

Examiner: P.Bigelow

SECTION A

Question 1 (12 marks)

Marks
a) Convert $\frac{13 \pi}{6}$ to degrees

1
b) If $f(x)=3 x^{2}+11 x-1$, evaluate $f(3)-f(-3)$
c) If $\sqrt{45}+\sqrt{80}=a \sqrt{5}$, find a
d) How many significant zeros in 0.0040701 ?
e) Find, without a calculator, 4.13 as a fraction (in simplest form)
f) \quad Simplify $\log _{7} 98-\log _{7} 2$
g) Write $\frac{1}{\sqrt[3]{x^{4}}}$ in index form
h) Given the parabola $(x-4)^{2}=8(y+1)$ write down the co-ordinates of the focus and the equation of the directrix.
a) Factorise: 3
i) $49-y^{2}$
ii) $6 a^{2}-a-2$
iii) $\quad 8 a^{3}+1$
b) Find:
i) $\quad \lim _{x \rightarrow 4} \frac{16-x^{2}}{4-x}$
ii) $\quad \lim _{x \rightarrow \infty} \frac{4+x-x^{2}}{3 x^{2}+2 x-1}$
c) Solve, then graph, the solution on a number line:
i) $\quad x^{2} \leq 4 x$
ii) $\quad|x-5|>9$
d) Sketch $y=\cos x$ for $0^{\circ} \leq x \leq 360^{\circ}$
e) Differentiate $f(x)=1-2 x+x^{2}$ from first principles
f) Find, algebraically, the points of intersection of the curve $y=x^{2}$ and the line $x-y+20=0$.

SECTION B (start a new booklet)

Question 3 (15 marks)

Marks
a) Differentiate the following:
i) $y=4-5 x+6 x^{3}$
ii) $f(x)=(3-5 x)^{10}$
iii) $y=1-\frac{1}{\sqrt{x}}$
b) Write down the exact value of $\sin 240^{\circ}$
c) \quad Simplify $a-\frac{1}{a}$ if $a=\sqrt{2}+1$
d) Solve for $x,(0.2)^{x+1}=(0.008)^{x-1}$
e) Sketch:
i) $y=2^{-x}$
ii) $x^{2}-2 x+y^{2}+4 y-4=0$
f) Between which two consecutive integers does $\log _{7} 100 \mathrm{lie}$?
g) State whether the following are ODD, EVEN or NEITHER (justify your answer with necessary working):
i) $f(x)=\frac{1}{1+x^{2}}$
ii) $f(x)=\frac{1}{1-x^{2}}$
iii) $f(x)=\frac{-x}{1+x^{2}}$
(Question 4 on next page)
a) Show that the points $(-4,-5),(2,7)$ and $(5,13)$ are collinear
b) Find, using the " k method", the equation of the line, passing through the intersection of the lines $2 x-y+1=0$ and $3 x+y-6=0$ and containing the point $(-2,3)$
c) Show that the line $4 x-3 y+15=0$ is a tangent to the curve $x^{2}+y^{2}-9=0$
d) Find the size of each internal angle in a regular 14 sided polygon
e) Differentiate $y=\frac{x^{2}+c}{x^{2}-c}$ and hence find the value of c , if $\frac{d y}{d x}=1$ at $x=-3$
f) A parabola $y=a x^{2}+b x+c$ passes through $\mathrm{A}(-1,4), \mathrm{B}(0,7)$ and $\mathrm{C}(1,8)$.

Determine the values of a, b, and c
g) Given the quadratic expression $x^{2}+(k-3) x+k$, for what values

SECTION C (start a new booklet)

Question 5 (17 marks)

Marks
a) The points A, B and C are equally spaced on the circumference of a circle radius 6 cm .
Find the exact area of the triangle ABC .
b) Solve $5^{x}=160$ (correct to 4 significant figures)
c) Find the point or points on the curve $f(x)=x^{2}+\frac{1}{3} x^{3}$ where the tangent is inclined at 135° to the positive direction of the x -axis.
d) Sketch the following regions:
i) $y<\frac{1}{x}$
ii) $y \leq \sqrt{4-x^{2}}$
e)

Triangle XYZ is a right-angled triangle at X .
W is a point on XZ such that $\mathrm{XW}=2 \mathrm{WZ}$.
Prove that $5 \mathrm{WZ}^{2}=\mathrm{YZ}^{2}-\mathrm{YW}^{2}$
f) Given that α and β are roots of $2 x^{2}-6 x+1=0$ evaluate:
i) $\frac{1}{\alpha}+\frac{1}{\beta}$
ii) $\alpha^{2}+\beta^{2}$
iii) $\alpha^{3}+\beta^{3}$

Question 6 (15 marks)

a) State the domain and range of:
i) $y=1-4 x-2 x^{2}$
ii) $y=\sqrt{1-4 x}$
b) Find the points on the curve $y=x+\frac{1}{x}$ where the normal is parallel to the line $2 x+y-13=0$
c)
$U V W X$ is a quadrilateral in which $U \hat{V} W=W \hat{X} U$ and $V \hat{W} X=3 V \hat{U} X$.
Prove that $U V=V Y$.
d) In $\triangle A B C, \hat{A}=38^{\circ} 21^{\prime}, b=11.6 \mathrm{~cm}$ and $a=7.9 \mathrm{~cm}$.

Find the size of \hat{B}. (to the nearest degree)
e) The quadratic equation $x^{2}+p x+q=0$, has one root twice the other.

Prove:
i) $2 p^{2}=9 q$
ii) That the roots are rational whenever p is rational

This is the end of the paper.

YRII 200b Accelerated Half, Yeary exam.
Section'A Q(1)
(a) $\frac{13 \times 180}{6}=390$
(1)
(b)

$$
\begin{align*}
& f(x)=3 x^{2}+11 x-1 \\
& f(3)=27+33-1=59 \tag{1}\\
& f(-3)=27-33-1=-7 \\
& f(3)-f(-3)=59--7=66 \tag{1}
\end{align*}
$$

(0)

$$
\begin{align*}
\sqrt{45} & =\sqrt{9 \times 5}=3 \sqrt{5} \\
\sqrt{80} & =\sqrt{16 \times 5}=\frac{4 \sqrt{5}}{7 \sqrt{5}} \tag{0}\\
& \Rightarrow a=7 \tag{i}
\end{align*}
$$

(h) $(x-4)^{2}=4 \times 2(y+1)$

$$
V(4,-1)
$$

$$
a=2
$$

Focus $(4,1)$

$$
y=-3
$$

(d) 2 (i)
(e)

$$
\begin{align*}
& \text { let } x=4.13333 \ldots \\
& \frac{10}{} x=41.333 \ldots \tag{2}\\
& 9 x=37.2 \\
& x=\frac{37.2}{9}=\frac{372}{90}=4 \frac{2}{15}
\end{align*}
$$

(f)

$$
\begin{gather*}
\log _{7}\left(\frac{98}{2}\right)^{7}=\log _{7} 49=x \\
7=49 \\
x=2 \tag{2}
\end{gather*}
$$

a) Factorise:
i) $49-y^{2}=(7+y)(7-y)$.
ii) $6 a^{2}-a-2=(a-2)(2 a+1)$
iii) $8 a^{3}+1=(2 a+1)\left(4 a^{2}-2 a+1\right)$
b) Find:
i) $\lim _{x \rightarrow 4} \frac{16-x^{2}}{4-x}=\lim _{x \rightarrow 4}(x+4)=8$.
ii) $\lim _{x \rightarrow \infty} \frac{4+x-x^{2}}{3 x^{2}+2 x-1}=\lim _{x \rightarrow \infty} \frac{\frac{4}{x^{2}}+\frac{1}{x}-1}{3+\frac{2}{x}-\frac{1}{x^{2}}}=-\frac{1}{3}$
c) Solve, then graph, the solution on a number line:
i) $x^{2} \leq 4 x$
ii) $\quad|x-5|>9$

$$
0 \leq x \leq 4
$$

$$
\begin{array}{rl}
x-5>9 & x-5<-9 \\
x>14 & \text { or } \\
x<-4
\end{array}
$$

d) Sketch $y=\cos x$ for $0^{\circ} \leq x \leq 360^{\circ}$

e) Differentiate $f(x)=1-2 x+x^{2}$ from first principles

$$
\begin{aligned}
& \lim _{h \rightarrow 0} \frac{f(x+h)-f(h)}{h}=\lim _{h \rightarrow 0} \frac{(x+h)^{2}-2(x+h)+1-\left(x^{2}-2 x+l\right)}{h}
\end{aligned}
$$

f) Find, algebraically, the points of intersection of the curve $y=x^{2}$ and

$$
=2 x-2 .{ }^{2}
$$

the line $x-y+20=0$.

$$
\left\{\begin{array}{l}
y=x^{2} \\
y=x+20
\end{array}\right.
$$

$$
\begin{aligned}
& x^{2}-x-20=0 \\
& (x-5)(x+4)=0 \\
& \therefore \quad x=5 \quad x=-4 \quad(5,25) \\
& \quad y=25 \quad y=16 \quad(-4,16
\end{aligned}
$$

Question 3
(a) (i) $y^{\prime}=-5+18 x^{2}$
(ii) $f(x)=10(3-5 x)^{9} x-5$
(f) $\frac{\ln 100}{\ln 7}=2.367$

$$
=-50(3-5 x)^{9}
$$

between 2 ad 3
(iii)

$$
\begin{aligned}
y & =-x^{-\frac{-1}{2}} \\
y^{\prime} & =\frac{1}{2} x^{-\frac{3}{2}} \\
& =\frac{1}{2 \sqrt{x^{3}}}
\end{aligned}
$$

(g)(i)

$$
\begin{aligned}
f(-x)=\frac{1}{1+(-x)^{2}} & \frac{1}{1+x^{2}} \\
& =f x
\end{aligned}
$$

(b) $\sin 180^{\circ}+60^{\circ}=-\sin 60^{\circ}$
\therefore EVEN

$$
=-\frac{\sqrt{3}}{2}
$$

(c)

$$
\begin{aligned}
& \sqrt{2}+1-\frac{1}{\sqrt{2}+1} \times \frac{\sqrt{2}-1}{\sqrt{2}-1} \\
& =\sqrt{2}+1-\sqrt{2}+1 \\
& =2
\end{aligned}
$$

(d)

$$
\begin{aligned}
(0.2)^{x+1} & =(0.2)^{3 x-3} \\
x+1 & =3 x-3 \\
x & =2
\end{aligned}
$$

(e) (i)

(ii)

$$
(x-1)^{2}+(y+2)^{2}=9
$$

circle, centre $(1,-2) r=3$

Question 4
(a) $A(-4,-5) \quad B(2,7) \quad C(5,13)$ $\operatorname{grad}_{A B}$ line $=\frac{7--5}{2-4}=2$

$$
\begin{aligned}
E q^{n} A B \nRightarrow y+5 & =2(x+4) \\
y & =2 x+3
\end{aligned}
$$

$$
C(5,13) \Rightarrow 13=2(5)+3
$$

or

$$
m_{A B}=2 \quad \& \quad M_{B C}=2
$$

and store common pt B

$$
\begin{gathered}
\text { b) }(2 x-y+1)+k(3 x+y-6)=0 \\
\therefore(-4-3+1)+k(-6+3-6)=0 \\
\therefore-9 k=6 \quad \Rightarrow k=\frac{2}{3}
\end{gathered}
$$

$\therefore E q^{n}$ of line is $y=3$

) Radius of circle $=3$ unto
1 Dist from centre $(0,0)$ to $4 x-3 y+15=0$
is $\frac{|4(0)-3(0)+15|}{\sqrt{4^{2}+3^{2}}}=\frac{15}{5}=3$
Since this equals the radius last \Rightarrow line touches circle (once)
\therefore tangent. (1)
(d) $\frac{(14-2) \times 180}{14154^{\circ} 17^{1} 1544^{\circ} 0}$
(e) $\quad y=\frac{x^{2}+c}{x^{2}-c}$
$(9-c)^{2}=12 c$

$$
\begin{aligned}
& c^{2}-30 c+81=0 \\
& (c-27)(c-3)=0 \\
& c=27 \text { or } c=3
\end{aligned}
$$

(1)

$$
\begin{align*}
& y^{\prime}=\frac{\left(x^{2}-c\right) \cdot 2 x-\left(x^{2}+c\right) \cdot 2 x}{\left(x^{2}-c\right)^{2}} \\
& y^{\prime}=\frac{-4 x c}{\left(x^{2}-c\right)^{2}} \\
& 1=\frac{12 c}{(9-c)^{2}}
\end{align*}
$$

(f)

$$
\begin{gather*}
7=a+0+c \Rightarrow a=c=7 \\
4=a-b+c\left\{\begin{array} { l }
{ a - b = - 3 } \\
{ 8 = a + b + c }
\end{array} \left\{\begin{array}{l}
a+b=1 \\
a=-1 \\
b=2
\end{array}\right.\right.
\end{gather*}
$$

(f) quad >0 if (i) corf $x^{2}>0$ and (ii) $\Delta<0$
(i) coif of x^{2} is 1
(ii) $\Delta=b^{2}-4 a c$

$$
\begin{equation*}
=(k-3)^{2}-4(1)(k) \tag{1}
\end{equation*}
$$

ii $\Delta=k^{2}-10 k+9<0$
ie $(k-9)(k-1)<0$
$\therefore 1<k<9$

Seetion C
Question 5
a)

Area $A B C=3 \times\left(\frac{1}{1} \times 6 \times 6\right.$ Ain $\left.120^{\circ}\right)$

$$
\begin{aligned}
& =3 \times 18 \times \frac{\sqrt{3}}{2} \\
& =27 \sqrt{3} \\
& (\pm 46.77)
\end{aligned}
$$

b) $5^{x}=160$

$$
\begin{aligned}
\log \left(5^{x}\right) & =\log 160 \\
x \log 5 & = \\
x & =\frac{\log 160}{\log 5} \\
& =3.153
\end{aligned}
$$

c)

$$
\begin{gathered}
f(x)=x^{2}+\frac{1}{3} x^{3} \\
f^{\prime}(x)=2 x+x^{2} \\
m=\tan 135^{-0} \\
=-1 \\
f^{\prime}(x)=-1 \text { When } \\
x^{2}+2 x=-1 \\
x^{2}+2 x+1=0 \\
(x+1)^{2}=0 \\
x=-1
\end{gathered}
$$

\therefore Pont is $\left.\left(-1, \frac{4}{3}\right)[]\right]$.
d) (i) $y<\frac{1}{x}$

$$
[2]
$$

(1) $y x^{2}+4 z w^{2}=Y w^{2}$ (Pytnag.)
(2)
$y x^{2}+9 z w^{2}=y z^{2}\left(\quad{ }^{2}\right)$
(2) - (1)

$$
[3]
$$

Q5 (Continued)
f)

$$
\begin{aligned}
& 2 x^{2}-6 x+1=0 \\
& \alpha+\beta=\frac{-(-6)}{2} ; \alpha \beta=\frac{1}{2} \\
& =3
\end{aligned}
$$

(i)

$$
\begin{aligned}
\frac{1}{\alpha}+\frac{1}{\beta} & =\frac{\alpha+\beta}{\alpha \beta} \\
& =\frac{3}{1 / 2}[] \\
& =6
\end{aligned}
$$

(ii)

$$
\begin{aligned}
\alpha^{2}+\beta^{2} & =(\alpha+\beta)^{2}-2 \alpha \beta \\
& =(3)^{2}-2\left(\frac{1}{2}\right) \\
& =9-1 \quad[1] \\
& =8
\end{aligned}
$$

$$
\begin{aligned}
&=8 \\
& \text { (iii) } \alpha^{3}+\beta^{3}=(\alpha+\beta)\left(\alpha^{2}-\alpha \beta+\beta^{2}\right) \\
&=(\alpha+\beta)\left(\left(\alpha^{2}+\beta^{2}\right)-\alpha \alpha\right) \\
&=3\left(8-\frac{1}{2}\right) \\
&=3 \times \frac{15}{2} \\
&=\frac{45}{2}\left(=22 \frac{1}{2}\right) \\
& {[1] }
\end{aligned}
$$

Quertion 6:
(a) (i) $y=1-4 x-2 x^{2}$

Domain $=\mathbb{R}$
Max value occurs at $x=-\frac{-4}{-2 \times 2}$

$$
=-1
$$

$$
\therefore y=1+4-2
$$

$$
=3 \quad 1^{1 / 2}
$$

\therefore Range is $y \leq 3$
(ii) $y=\sqrt{1-4 x}$

Domain $1-4 x \geqslant 0$

$$
\begin{array}{l|l}
1-4 x \geqslant 0 \\
\therefore x \leqslant \frac{1}{4} & \frac{1}{2}
\end{array}
$$

Range $y \geqslant 0$
(b) $y^{\prime}=1-\frac{1}{x^{2}}$

For $2 x+y-13=0, m=-2$
\therefore Aradient of noormal $=-2$
\therefore aradient of tangent $=\frac{1}{2}$

$$
\begin{align*}
\therefore 1-\frac{1}{x^{2}} & =\frac{1}{2} \\
\frac{1}{x^{2}} & =\frac{1}{2} \\
x & = \pm \sqrt{2} \tag{2}
\end{align*}
$$

\therefore Pointr are $\left(\sqrt{2}, \sqrt{2}+\frac{1}{\sqrt{2}}\right)$ and $\left(-\sqrt{2},-\sqrt{2}-\frac{1}{\sqrt{2}}\right)$
(c)

$$
\begin{aligned}
& <y=180-\alpha-\theta(<\text { sum of } \Delta) \\
& (180-\alpha-\theta)+(180-\alpha)=3 \theta\left(e_{x}+<\text { of } \Delta y \omega x\right) \\
& \therefore 360-2 \alpha=4 \theta \\
& \therefore 180-\alpha=2 \theta
\end{aligned}
$$

$$
\begin{aligned}
\therefore \angle V Y U & =180-\alpha-\theta \\
& =2 \theta-\theta \\
& =\theta
\end{aligned}
$$

$$
\therefore \angle V Y U=\angle V O Y
$$

$\therefore \Delta V Y U$ is isosceles

$$
\therefore u v=v 4
$$

$$
\begin{aligned}
& \text { (c) } \int_{38^{\circ}, 11.6} \frac{\sin B}{11.6}=\frac{\sin 38^{\circ} 21^{\prime}}{7.9} \\
& \therefore \sin B=\frac{11.6 \sin 58^{\circ} 21^{\prime}}{7 \cdot 9} \\
& =0.91106 \ldots \\
& \therefore B=65.6523-O R 114.34-\cdots \\
& \approx 66^{\circ} \text { OR } 114^{\circ}
\end{aligned}
$$

(c) $x^{2}+p x+q=0$

Roott are α and 2α

$$
\begin{aligned}
\therefore \alpha+2 \alpha=-p & \text { i.e } 3 \alpha=-p \\
\alpha \cdot 2 \alpha=q & \text { i.e } 2 \alpha^{2}=q
\end{aligned}
$$

(i) 2. $\left(-\frac{p}{3}\right)^{2}=q$

$$
\begin{aligned}
& \therefore \quad \frac{2 p^{2}}{9}=q \\
& \therefore \quad 2 p^{2}=9 q
\end{aligned}
$$

(ii) $\alpha=-\frac{p}{3}$

If p is rational,
$p=\frac{a}{b}$ where $a \operatorname{care}$

$$
\alpha=\frac{a}{-3 b}
$$

$=\frac{a}{c}$ wher acdcec integess
\therefore If pir rational α is retional. ade 2α is rational

