2007 ye 11 ACCELERANTS HALF YEARLY

QUESTION 1.
a) $\sqrt[3]{\frac{625}{76+41}}=\underline{1.75(2 d p)}$
b)

$$
\begin{aligned}
& 5 x^{2}-4 x(1-x) . \\
= & 5 x^{2}-4 x+4 x^{2} . \\
= & 9 x^{2}-4 x .
\end{aligned}
$$

c)

$$
\begin{aligned}
\frac{2 x-1}{4} & =1-\frac{x}{3} \\
\frac{2 x-1}{4} & =\frac{3-x}{3} \\
\frac{3(2 x-1)}{12} & =\frac{4(3-x)}{12} \\
6 x-3 & =12-4 x \\
10 x & =15 \\
x & =3 / 2 \\
x & =1 \frac{1}{2}
\end{aligned}
$$

t).

$$
\begin{aligned}
& 3 x^{2}=6 x . \\
& 3 x^{2}-6 x=0 . \\
& 3 x(x-2)=0 . \\
& x=0 \text { or } 2
\end{aligned}
$$

$\Rightarrow \frac{3 \pi^{c}}{5} \Rightarrow 108^{\circ}$
$\Rightarrow 0.30=\frac{37}{99}$
g) $\tan 225^{\circ}-\cos 120^{\circ}$

$$
\begin{aligned}
& =1-(-0.5) \\
& =1.5
\end{aligned}
$$

h).

$$
\begin{aligned}
& 4 x^{2}-9 \\
= & (2 x-3)(2 x+3)
\end{aligned}
$$

i)

$$
5-2 x<8
$$

$$
-2 x<3
$$

j)

$$
\begin{gather*}
2 x-3 y=5 \tag{1}\\
3 x+4 y=-1 \tag{2}\\
4 \times \text { (1) } \Rightarrow \quad 8 x-12 y=20 . \tag{3}\\
3 \times(2) \Rightarrow 9 x+12 y=-3 . \tag{4}\\
\text { (3) (4) } \quad 17 x=17 \\
\quad x=1 .
\end{gather*}
$$

Sub $x=1$ into (1).

$$
\begin{aligned}
2(1)-3 y & =5 \\
-3 y & =3 \\
y & =-1
\end{aligned}
$$

Solutions are $y=-1 x^{x=1}$

Year 11 Accelerated
Question 2
(a) $1.495 \times 10^{8} \mathrm{~km}$
(b) (i)

$$
\begin{aligned}
f(2) & =\frac{2^{2}+2^{-2}}{2} \\
& =\frac{17}{8}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
f(-x) & =\frac{2^{-x}+2^{-(-x)}}{-x} \\
& =-\frac{2^{-x}+2^{x}}{x} \\
& =-f(x)
\end{aligned}
$$

(c) $x^{3}+y^{3}=(x+y)\left(x^{2}-x y+y^{2}\right)$
(d) $|x-1|=4$

$$
\begin{aligned}
x-1 & =4 & & & -(x-1) & =4 \\
x & =5 & \text { or } & & x & =-3
\end{aligned}
$$

(e) (i) $y=x^{2}-1$

(ii) $y=\frac{1}{2}\left(3^{x}\right)$

(f)

Domain: $-3 \leq x \leq 3$
Range: $0 \leq f(x) \leq 3$
(g) $|2 x-5|<4$

$$
\begin{array}{lll}
2 x-5<4 & & -(2 x-5)<4 \\
x<\frac{9}{2} & \text { or } & x>\frac{1}{2}
\end{array}
$$

$$
\frac{1}{2}<x<\frac{9}{2}
$$

(h)
$2 \log _{5} 3=\log _{5} x-\log _{5} 6$

$$
\begin{aligned}
\log _{5} 9 & =\log _{5} \frac{x}{6} \\
9 & =\frac{x}{6} \\
x & =54
\end{aligned}
$$

Year 11 Accelerated Mathematics: Solutions Assessment Task \#1

Question 3 (15 Marks)

(a) For the parabola $4 y=x^{2}+2 x-7$ write down the
(i) equation of the axis of symmetry

Solution: $\quad 4 y=x^{2}+2 x+1-8$, $4(y+2)=(x+1)^{2}$.
\therefore The axis of symmetry is $x=-1$.
(ii) coordinates of the vertex

Solution: Vertex is $(-1,-2)$.
(iii) equation of the directrix and coordinates of the focus.

Solution: Focal length is 1.
\therefore Directrix is $y=-3$.
Focus is $(-1,-1)$.
(b)

The diagram above shows the points $A(-1,0), B(0,8)$, and $C(-7,4)$. Copy the diagram to your answer booklet.

(i) Find the gradient of the line $A C$.

$$
\text { Solution: } \begin{aligned}
m_{A C} & =\frac{0-4}{-1--7} \\
& =\frac{-4}{6} \\
& =-\frac{2}{3}
\end{aligned}
$$

(ii) Calculate the size of the angle $C A O$ to the nearest degree.

Solution: $\tan C \widehat{A} O=-\frac{2}{3}$.

$$
\begin{aligned}
\therefore C \widehat{A} O & =\tan ^{-1}\left(-\frac{2}{3}\right) \text { in } 2^{\text {nd }} \text { quadrant } \\
& \approx-33.69^{\circ}+180^{\circ} \\
& \approx 146^{\circ}
\end{aligned}
$$

(iii) Find the equation of the line $A C$.

$$
\text { Solution: } \begin{aligned}
y-0 & =-\frac{2}{3}(x+1) \\
2 x+3 y+2 & =0
\end{aligned}
$$

(iv) Find the coordinates of D, the midpoint of $A C$.

Solution: $\left(\frac{-7-1}{2}, \frac{4+0}{2}\right)=(-4,2)$.
(v) Show that $A C$ is perpendicular to $B D$.

$$
\text { Solution: } \begin{aligned}
m_{B D} & =\frac{2-8}{-4-0}, \\
& =\frac{-6}{-4} \\
& =\frac{3}{2} \\
m_{A C} \times m_{B D} & =-\frac{2}{3} \times \frac{3}{2} \\
& =-1 \\
\therefore A C & \perp B D
\end{aligned}
$$

(vi) What does part (V) show about $\triangle A B C$?

Solution: $\triangle A B C$ is isosceles and $B C=B A$.
(vii) Find the area of $\triangle A B C$.

Solution: Length of $A C=\sqrt{(-1+7)^{2}+(0-4)^{2}}$,

$$
=\sqrt{16+36}
$$

$$
=2 \sqrt{13}
$$

Length of $B D=\sqrt{(0+4)^{2}+(8-2)^{2}}$,
$=\sqrt{36+16}$,
$=2 \sqrt{13}$.
\therefore Area of $\triangle A B C=\frac{1}{2} \times 2 \sqrt{13} \times 2 \sqrt{13}$, $=26$.
(viii) Write down the coordinates of the point E such that $A B C E$ is a rhombus.

Solution: $(-4+(-4-0), 2+(2-8))=(-8,-4)$.
4).a)i)

$$
\begin{gather*}
y=x+1 \tag{1}\\
y=(x-1)^{2} \tag{2}
\end{gather*}
$$

sub (1) into (2)

$$
\begin{aligned}
& x+1=x^{2}-2 x+1 \\
& x^{2}-3 x=0 \\
& x(x-3)=0 \\
& x=0, x=3
\end{aligned}
$$

sub into (1)

$$
\begin{array}{ll}
y=(0)+1 & y=(3)+1 \\
y=1 & y=4
\end{array}
$$

points of intersection $(0,1)$ \& $(3,4)$

since

$$
\begin{aligned}
& A B=A D+D B \\
& 8=6+D B \\
& D B=2 \mathrm{~cm}
\end{aligned}
$$

$$
\begin{gathered}
\text { c)i) }(x+2)^{2}=9 x^{2} \\
(x+2)^{2}-9 x^{2}=0 \\
{[(x+2)+3 x][(x+2)-3 x]=0} \\
{[4 x+2][-2 x+2]=0} \\
4(2 x+1)(-x+1)=0 \\
x=-\frac{1}{2}, x=1
\end{gathered}
$$

ii) $4^{x}-20\left(2^{x}\right)+64=0$

$$
2^{2 x}-20\left(2^{x}\right)+64=0
$$

$$
\text { let } m=2^{x}
$$

$$
m^{2}-20 m+64=0
$$

$$
\begin{array}{cc}
m-20 m+0 & \times \\
(m-16)(m-4)=0 & +\frac{64}{-20} \\
m=16, m=4 & \frac{-16}{-4}
\end{array}
$$

$$
2^{x}=16 \quad 2^{x}=4
$$

$$
2^{x}=2^{4} \quad 2^{x}=2^{2}
$$

$$
\therefore x=4, \quad x=2
$$

d)

$$
\begin{aligned}
1-6 x-x^{2} & =-\left(x^{2}+6 x-1\right) \\
& =-\left(x^{2}+6 x+9-10\right) \\
& =-\left(x^{2}+6 x+9\right)+10 \\
& =-(x+3)^{2}+10
\end{aligned}
$$

In $\triangle S A D E \neq A B C$
$\angle B A C$ is common
$\angle A D E=\angle A B C$ (corresponding angles)
$\therefore \triangle A D E \| \triangle \triangle A B C$ (equiangular)
ii)

$$
\begin{aligned}
\frac{A B}{A D} & =\frac{A C}{A E} \\
\frac{8}{A D} & =\frac{12}{9} \\
A D & =6
\end{aligned}
$$

(corresponding sides) of simitar tratingles)
i)

$$
\begin{aligned}
f(-1)+f(2) & =(-1)^{2}-1+1-(2) \\
& =-1
\end{aligned}
$$

ii) $\begin{aligned} f\left(a^{2}+1\right) & =1-\left(a^{2}+1\right) \text { since } a^{2}+1 \geqslant 1\end{aligned}$
(YRII ACCizer.)
Questrons a (a) $y=2 x^{3}-x^{2}+6$

$$
y^{\prime}=6 x^{2}-2 x
$$

(ii) $y=(x+2)^{\frac{1}{3}}$
(III)

$$
y^{\prime}=\frac{\frac{1}{3}(x+2)^{-\frac{2}{3}}}{-2}
$$

$$
\begin{aligned}
& y=\frac{1}{3} x^{-2} \\
& y^{\prime}=-\frac{2}{3} x^{-3} \text { or }
\end{aligned}
$$

$\frac{-2}{3 x^{3}}$
b (1) $y=(x+1)(x-2)^{7}$

$$
\begin{aligned}
y^{\prime} & =1 \cdot(x-2)^{7}+7(x+1)(x-2)^{6} \\
& =(x-2)^{6}[x-2+7(x+1)] \\
& =(x-2)^{6}(8 x+5)
\end{aligned}
$$

(II)

$$
\begin{aligned}
y & =\frac{x}{3 x+1} \\
y^{\prime} & =\frac{(3 x+1) \cdot 1-x \cdot 3}{(3 x+1)^{2}} \\
& =\frac{1}{(3 x+1)^{2}}
\end{aligned}
$$

(${ }^{\prime \prime}$)

$$
\begin{aligned}
& f(x)=x+x^{\frac{1}{2}} \\
& f^{\prime}(x)=1+\frac{1}{2} x^{-\frac{1}{2}}
\end{aligned}
$$

(α)

$$
\begin{aligned}
f^{\prime}(1) & =1+\frac{1}{2} & (\beta) \quad f^{\prime}(-2)=-2+\sqrt{-2} \\
& =\frac{3}{2} . & \text { Not RIAL }
\end{aligned}
$$

(c) (N) $\mid \Delta=4-12 k$.
(II) Forneal reets $\Delta \geqslant 0$.

$$
\begin{aligned}
& 4-12 k \geqslant 0 \\
& 12 k \leqslant 4 \\
& k \leqslant \frac{1}{3}
\end{aligned}
$$

(d)

$$
\begin{gathered}
y=x^{3}-2 x-1 \\
y^{\prime}=3 x^{2}-2 \\
\because m_{T}=3 \times 2^{2}-2 \\
=12-2 \\
\operatorname{rin}_{T}=10
\end{gathered}
$$

$$
m_{4}=-\frac{1}{10}
$$

$$
\therefore N: \quad \frac{y-3}{x-2}=-\frac{1}{10}
$$

$$
\begin{aligned}
10(y-3) & =-(x-2) \\
& =-x+2 .
\end{aligned}
$$

$$
10 y-30=-x+2
$$

$$
x+10 y-32=0
$$

Question 6
(a)
(i)

(ii)

$$
\begin{aligned}
\frac{5 P}{\sin 95^{\circ}} & =\frac{12}{\sin 58^{\circ}} \\
S P & =\frac{12 \sin 95^{\circ}}{\sin 58^{\circ}} \\
S P & =14.1 \mathrm{~km}
\end{aligned}
$$

(b)

$$
\begin{aligned}
\text { RHS } & =\frac{1}{1-\cos \theta}-\frac{1}{1+\cos \theta} \\
& =\frac{(1+\cos \theta)-(1-\cos \theta)}{(1-\cos \theta)(1+\cos \theta)} \\
& =\frac{2 \cos \theta}{\sin ^{2} \theta} \\
\text { LHS } & =2 \cot \theta \operatorname{cosec} \theta \\
& =\frac{2 \cos \theta}{\sin \theta} \cdot \frac{1}{\sin \theta} \\
& =\frac{2 \cos \theta}{\sin ^{2} \theta} \\
\text { LHS } & =\text { RHS }
\end{aligned}
$$

Sum of roots $2 \alpha-1=-b$
Prod. of roots $\alpha(\alpha-1)=c$
From (1) $\alpha=\frac{1-b}{2}$
Subst into (2)

$$
\Rightarrow\left(\frac{1-b}{2}\right)\left(\frac{1-b}{2}-1\right)=c
$$

on reorranging

$$
b^{2}=4 c+1
$$

(i)

(ii) $\cos \theta=\frac{A D}{A B}$
$\therefore \quad A D=A B \cdot \cos \theta$

$$
\begin{align*}
\quad \tan \theta & =\frac{B C}{A B} \\
\therefore \quad \dot{B C} & =A B \tan \theta \tag{8}
\end{align*}
$$

$$
\begin{aligned}
\sec \theta & =\frac{A C}{A B} \\
\therefore \quad A C & =A B \sec \theta
\end{aligned}
$$

Since $\quad 6 A D+B C=5 A C$,

$$
6 A B \cos \theta+A B \tan \theta=5 A B \sec \theta
$$

$$
\therefore \quad 6 \cos \theta+\tan \theta=5 \sec \theta
$$

(iii)

$$
\begin{align*}
6 \cos \theta+\frac{\sin \theta}{\cos \theta} & =\frac{5}{\cos \theta} \\
6 \cos ^{2} \theta+\sin \theta & =5 \tag{10}\\
\therefore \quad 6\left(1-\sin ^{2} \theta\right)+\sin \theta & =5 \\
6 \sin ^{2} \theta-\sin \theta-1 & =0 .
\end{align*}
$$

(iv) $(2 \sin \theta-1)(3 \sin \theta+1)=0$
$\sin \theta=\frac{1}{2}$ or $-\frac{1}{3}$
(1)
and $0^{\circ} \leq \theta \leq 90^{\circ}$ because θ is a
right-angled triangle,
$\therefore \theta=30^{\circ}$.

SYDNEY BOYS HIGH
SCHOOL
MOORE PARK, SURRY HILLS

2007

YEAR 11 ACCELERATED ASSESSMENT TASK \#1

Mathematics

General Instructions

- Reading Time - 5 Minutes
- Working time - 90 Minutes
- Write using black or blue pen. Pencil may be used for diagrams.
- Board approved calculators maybe used.
- Each question is to be returned in a separate bundle.
- All necessary working should be shown in every question.

Total Marks - 90

- Attempt questions 1 - 6
- All questions are of equal value.

Examiner: AM Gainford

Question 1. (15 Marks) (Start a new booklet.)

(a) Calculate $\sqrt[3]{\frac{625}{76+41}}$ correct to two decimal places.
(b) Simplify $5 x^{2}-4 x(1-x)$.
(c) Solve the equation $\frac{2 x-1}{4}=1-\frac{x}{3}$.
(d) Solve the equation $3 x^{2}=6 x$.
(e) Convert $\frac{3 \pi}{5}$ radians to degrees.
(f) Express $0 . \dot{3} 7$ as a common fraction.
(g) Find the exact value of $\tan 225^{\circ}-\cos 120^{\circ}$.
(h) Factorise $4 x^{2}-9$.
(i) Graph on a number line the solution of the inequality $5-2 x<8$.
(j) Find the point of intersection of the lines:

$$
\begin{aligned}
& 2 x-3 y=5 \\
& 3 x+4 y=-1
\end{aligned}
$$

Question 2. (15 Marks) (Start a new Booklet)

(a) The distance from the Earth to the Sun is approximately 149492000 km . Write this number in scientific notation, correct to four significant figures.
(b) Given that $f(x)=\frac{2^{x}+2^{-x}}{x}$:
(i) Find $f(2)$.
(ii) Show that $f(x)$ is an odd function.
(c) Factorise $x^{3}+y^{3}$.
(d) Solve $|x-1|=4$.
(e) Sketch the graphs of the following, showing their principal features:
(i) $y=x^{2}-1$
(ii) $y=\frac{1}{2}\left(3^{x}\right)$
(f) State the natural domain and range of the function $f(x)=\sqrt{9-x^{2}}$.
(g) Solve $|2 x-5|<4$ and graph the solution on the number line.
(h) Solve $2 \log _{5} 3=\log _{5} x-\log _{5} 6$.

Question 3. (15 Marks) (Start a new booklet.)

(a) For the parabola $4 y=x^{2}+2 x-7$ write down the
(i) equation of the axis of symmetry
(ii) coordinates of the vertex
(iii) equation of the directrix and coordinates of the focus.
(b)

The diagram above shows the points $A(-1,0), B(0,8)$, and $C(-7,4)$.
Copy the diagram to your answer booklet.
(i) Find the gradient of the line $A C$.
(ii) Calculate the size of the angle $C A O$ to the nearest degree.
(iii) Find the equation of the line $A C$.
(iv) Find the coordinates of D, the midpoint of $A C$.
(v) Show that $A C$ is perpendicular to $B D$.
(vi) What does part (v) show about $\triangle A B C$?
(vii) Find the area of $\triangle A B C$.
(viii) Write down the coordinates of the point E such that $A B C E$ is a rhombus.

Question 4. (15 Marks) (Start a new booklet)

(a) Given the line $y=x+1$ and the parabola $y=(x-1)^{2}$
(i) Find the points of intersection of the line and the parabola.
(ii) Hence sketch the region where $y \leq x+1$ and $y>(x-1)^{2}$ hold simultaneously.
(b) In the diagram $A B=8 \mathrm{~cm}, A E=9 \mathrm{~cm}$, and $E C=3 \mathrm{~cm} . D E \| B C$.
(i) Prove that $\triangle A D E$ is similar to $\triangle A B C$.
(ii) Find the length of $D B$.

(c) Solve the following equations:
(i) $(x+2)^{2}=9 x^{2}$
(ii) $\quad 4^{x}-20\left(2^{x}\right)+64=0$
(d) By completing the square, find the greatest value of the expression $1-6 x-x^{2}$, state the x value for which it occurs.
(e) Given that $f(x)$ is defined as below

$$
f(x)=\left\{\begin{array}{lll}
x^{2}-1 & \text { for } & x<1 \\
1-x & \text { for } & x \geq 1
\end{array}\right.
$$

(i) Find the value of $f(-1)+f(2)$.
(ii) Find $f\left(a^{2}+1\right)$.

Question 5 (15 Marks) (Start a new booklet.)

(a) Differentiate the following with respect to x :
(i) $2 x^{3}-x^{2}+6$
(ii) $\sqrt[3]{x+2}$
(iii) $\frac{1}{3 x^{2}}$
(b) (i) Use the product rule to find $\frac{d y}{d x}$ if $y=(x+1)(x-2)^{7}$.
(ii) Differentiate $y=\frac{x}{3 x+1}$ by using the quotient rule.
(iii) If $f(x)=x+\sqrt{x}$, find $(\alpha) \quad f^{\prime}(1)$ $(\beta) \quad f^{\prime}(-2)$
(c) (i) Write down the discriminant of $3 x^{2}+2 x+k$.
(ii) For what values of k does $3 x^{2}+2 x+k=0$ have real roots.
(d) For the curve $y=x^{3}-2 x-1$, find the gradient of the tangent to the curve at the point 3 on the curve where $x=2$. Also find the equation of the normal to the curve at this point.

Question 6 (15 Marks) (Start a new booklet)

(a) The bearing of a lighthouse (L) from a ship (S) is $50^{\circ} \mathrm{T}$. A port (P) is 12 km due South- 3 East of the lighthouse, and is on a bearing of $108^{\circ} \mathrm{T}$ from the ship.
(i) Draw a neat diagram to represent this situation.
(ii) Find the distance $(S P)$ of the ship from the port.
(b) Prove the trigonometric identity

$$
2 \cot \theta \operatorname{cosec} \theta=\frac{1}{1-\cos \theta}-\frac{1}{1+\cos \theta}
$$

(c) (i) On a number plane diagram sketch the locus of all points equidistant from the points $A(0,2)$ and $B(-2,0)$.
(ii) Write down an equation to describe this locus.
(d) The roots of the quadratic equation $x^{2}+b x+c=0$ differ by 1 .

Show that $b^{2}=4 c+1$.
(e) A triangle $A B C$ is right-angled at B. D is the point on $A C$ such that $B D$ is perpendicular to $A C$. Let $\angle B A C=\theta$.
(i) Draw a diagram showing this information.

It is given that $6 A D+B C=5 A C$.
(ii) Show that $6 \cos \theta+\tan \theta=5 \sec \theta$.
(iii) Deduce that $6 \sin ^{2} \theta-\sin \theta-1=0$.
(iv) Find θ.

