SYDNEY BOYS HIGH SCHOOL
 MOORE PARK, SURRY HILLS

2010

Year 11 Half Yearly

Mathematics

Accelerated

General Instructions

- Reading Time - 5 Minutes
- Working time - 90 Minutes
- Write using black or blue pen. Pencil may be used for diagrams.
- Board approved calculators maybe used.
- Start each NEW question in a separate answer booklet.
- Marks may NOT be awarded for messy or badly arranged work.
- All answers must be given in exact simplified form unless otherwise stated.
- All necessary working should be shown in every question.

Total Marks - 83

- Attempt questions 1-7.

Start a new answer booklet

Question One (12 marks)

(a) Factorise $64 a^{6}-b^{3}$. 1
(b) Write $8 x^{2}-11 x+2$ in the form $A x(x-1)+B x+C$.
(c) Solve and graph $|x-5| \geq 3$.
(d) Solve the equation $x^{6}-3 x^{3}-40=0$.
(e) Find the equation of the line that passes through the point $(-1,1)$ and the intersection of $x+2 y=8$ and $3 x-4 y=4$.
(f) Is the function $f(x)=|x-2|-|x+2|$ ODD, EVEN or NEITHER. Justify your answer.

End of Question One

Start a new answer booklet

Question Two (11 marks)

(a) Sketch $y=\tan x$ for $-180^{\circ} \leq x \leq 180^{\circ}$.
(b) Solve
$a+b+c=6$
$5 a-b+4 c=32$
$a-3 b-2 c=-2$
(c) Find the exact value of
(i) $\sin \left(\frac{\pi}{4}\right)$
(ii) $\sec \left(-\frac{4 \pi}{3}\right)$
(d) Show that $\frac{1-\cos ^{4} A}{\sin ^{4} A}=2 \cot ^{2} A+1$

End of Question Two

Start a new answer booklet Question Three (12 marks)

(a) Graph the following functions indicating domain, range and other main features.
(i) $f(x)=x^{2}-3 x-10$
(ii) $h(x)=\sqrt{5-x}$
(iii) $g(x)=\frac{x+1}{x-1}$

End of Question Three

Start a new answer booklet Question Four (12 marks)

(a) Given the parabola $2 y=3+2 x-x^{2}$.
(i) Rewrite in the form $(x-h)^{2}=4 a(y-k)$.
(ii) Write down the
(α) Axis of symmetry
(β) Focus
(γ) Directrix
(b) Evaluate $\sum_{r=2}^{\infty} 3 \times\left(\frac{1}{2}\right)^{r}$.
(c) Given that $\cot \alpha=3$ for $180^{\circ} \leq \alpha \leq 360^{\circ}$ find the value of
(i) $\tan \alpha$
(ii) $\sin \alpha$
(d) Find all possible values of a, b and c if $12+a+b+c+3 \frac{51}{64}$ is a geometric series.

Start a new answer booklet

Question Five (13 marks)

(a) Find the sum of n terms of the series $\frac{n+1}{n}+\frac{n+2}{n}+\frac{n+3}{n}+\ldots$
(b) Use the triangle inequality to prove that $|x-y| \geq|x|-|y|$.
(c) Express the hypotenuse h of a right triangle in terms if its area A and its perimeter P.
(d) (i) Find the intersection of $x y=4$ and $y=x+3$.
(ii) Graph the region defined by the intersection of $x y<4$ and $y \geq x+3$.

Start a new answer booklet

Question Six (13 marks)

(a) Given the quadratic $2 x^{2}+k x+5$,
(i) For what range of values of k is the quadratic positive definite?
(ii) For what values of k does the quadratic have equal roots?
(iii) Find two integral values of k such that the quadratic has rational roots?
(b) Describe the region in the graph.

(c) Write down the next two terms of the series

$$
\frac{1}{\sqrt{2}-1}+\frac{1}{3-2 \sqrt{2}}+\frac{1}{5 \sqrt{2}-7}+\ldots
$$

End of Question Six

Question Seven (10 marks)

(a) Anna borrows $\$ 3000$ from a bank at 1.4% per month reducible interest.
(i) She repays the loan in 36 equal monthly instalments. What are her repayments each month?
(ii) If she increases her repayments to $\$ 150$ per month how many instalments will it take to repay the loan.
(b)
(i) What is the expression for the perpendicular distance of the point $P(x, y)$ from the line $y=x$?

(ii) What is the equation of the locus of a point which moves so that its perpendicular distance from the line $y=x$ is equal to its perpendicular distance from the x-axis?

End of Exam

(a) $y=$

(b)

$$
\begin{aligned}
a+b+c & =6-(i) \\
5 a-b+4 c & =32-\text { (ii) } \\
a-3 b--2 c & =-2-\text {-(iii) }
\end{aligned}
$$

$$
\begin{aligned}
\int \text { (i) }+ \text { (ii) } \quad 6 a+5 c & =38 \\
3 \text { (ii) (iii) } \quad 14 a+14 c & =98 \\
a & \text { (iv) } \\
\text { (iv) } & =7
\end{aligned}
$$

sup (v) in (iv) $6(7-c)+5 c=38$

$$
\begin{aligned}
42-6 c+5 c & =38 \\
42-c & =38 \\
c & =4 \\
\therefore a & =3 \\
0 & =-1
\end{aligned}
$$

(c) (i) $\sin \left(\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}}$
(ii) $\sec \left(\frac{-4 \pi}{3}\right)=\sin \left(\frac{4 \pi}{3}\right)=\frac{1}{\cos \left(\frac{4 \pi}{3}\right)}=\frac{1}{-\left(\frac{1}{2}\right)}==$
(ii)

$$
\begin{aligned}
& \frac{1-\cos ^{4} A}{\sin ^{4} A}=2 \cot ^{2} A+1 \\
& \operatorname{LHS}=\frac{\left(1-\cos ^{2} A\right)\left(1+\cos ^{2} A\right)}{2 \sin ^{4} A} \\
&=\frac{\sin ^{2} A\left(1+\cos ^{2} A\right)}{\sin ^{4} A} \\
&=\frac{1+\cos ^{2} A}{\sin ^{2} A} \\
&=\cos ^{2} A+\cot ^{2} A \\
&=\left(1+\cot ^{2} A\right)+\cot ^{2} A \\
&=R H 5
\end{aligned}
$$

QUESTION 3
11

$$
\begin{aligned}
& f(x)=x^{2}-3 x-10 \\
& x^{2}-3 x-10=0 \quad(x-5)(x+2)=0
\end{aligned}
$$

Vertex $\left(\frac{3}{2},-12 \frac{1}{4}\right)$
Domain: $A 11$ real x
Range $y \geq-12 \frac{1}{4}$
(ii) $h(x)=\sqrt{5-x}$

Domain: $x \leq 5$
Range: $y \geqslant 0$

(iii) $g(x)=\frac{x+1}{x-1}$

Domain: All real $x, x \neq 1$
Range: it real $y, y \neq 1$

$$
\begin{array}{r}
\text { asymptotes at } x=1 \\
y=1
\end{array}
$$

Question 4
a) i)

$$
\begin{aligned}
& 2 y=3+2 x-x^{2} \\
& x^{2}-2 x=-2 y+3 \\
& x^{2}-2 x+1=-2 y+4 \\
& (x-1)^{2}=-2(y-2) \quad(x-1)^{2}=4\left(-\frac{1}{2}\right)(y-2)
\end{aligned}
$$

(ii) In the form $(x-h)^{2}=-4 a(y-k)$

$$
\text { vertex }(1,2)
$$

$$
\begin{aligned}
-4 a & =-2 \\
a & =\frac{i}{2}
\end{aligned}
$$

(α) axis of symmetry: $x=1$
(β) Focus: $\left(1, \frac{3}{2}\right)$
(γ) Directrix: $y=\frac{5}{2}$
b)

$$
\begin{aligned}
\sum_{r=2}^{\infty} 3 \times\left(\frac{1}{2}\right)^{r} & =3 \times\left(\frac{1}{2}\right)^{2}+3 \times\left(\frac{1}{2}\right)^{3}+3 \times\left(\frac{1}{2}\right)^{4}+\ldots \\
& =\frac{3}{4}+\frac{3}{8}+\frac{3}{16}+\cdots \\
S_{\infty} & =\frac{a}{1-r} \\
S_{\infty} & =\frac{\frac{3}{4}}{1-\frac{1}{2}} \\
& =\frac{3}{2}
\end{aligned}
$$

c)

$$
\cot \alpha=3,180^{\circ} \leqslant \alpha \leqslant 360^{\circ} \frac{s}{3}
$$

(i) $\tan \alpha=\frac{1}{3}$
(ii) $\sin \alpha=-\frac{1}{\sqrt{10}}$ or $-\frac{\sqrt{10}}{10}$
d)

$$
\text { d) } \begin{aligned}
& 12+a+b+c+3 \frac{51}{64} \\
& T_{1}=12(=A) \\
& T_{5}=3 \frac{51}{64} \\
& T_{N}=A R^{N-1} \\
& T_{5}=12 R^{4}=3 \frac{51}{64} \\
& R^{4}=\frac{81}{256} \\
& R= \pm \frac{3}{4} \\
& \left.\left.\begin{array}{l}
a=9 \\
b=6 \frac{3}{4} \\
c=5 \frac{1}{16}
\end{array}\right\} \begin{array}{l}
\begin{array}{l}
a=-9 \\
b=6 \frac{3}{4} \\
c=-5 \frac{1}{16}
\end{array}
\end{array}\right\}
\end{aligned}
$$

$Q_{2} S(a) T_{2}-T_{1}=\frac{n+2}{n}-\frac{n+1}{N}=\frac{1}{n}=T_{3}-T_{2}=$
ie the sines is aw AP inuits $a=\frac{n+1}{W}$ and $d=\frac{1}{N}$
Let the number of terns be N_{1}^{N}
Thew $S_{N}=\frac{N}{2}[2 a+(N-1) d]$

$$
\begin{aligned}
& =\frac{N}{2}\left[2 x \frac{n+1}{N}+(N-1) \frac{1}{N}\right] \\
& =\frac{N}{2 N}[2 n+2+N-1] \\
& =\frac{N}{2 w}[N+2 N+1]
\end{aligned}
$$

(b) The trixengle inequality is $|a+b| \leqslant|a|+|b|$

To establish the nequened inequality, let $a t b=x$
and $b=y$. Ale use these to rewrite the inequality in $x \alpha y$.
Thew the Firimgle inequality becomes: -

$$
\begin{aligned}
& \text { the triangle inequality becomes: - } \left.\begin{array}{rl}
{[x-y} & =(a+b)-b \\
& =a
\end{array}\right] \\
& |x| \leq|x-y|+|y|
\end{aligned}
$$

ie $|x-y|+|y| \geqslant|x| \quad$ inversinss inequality.

$$
\therefore \quad|x-y| \geq|x|-|y| .
$$

(C)
h/

$$
\begin{align*}
& A=\frac{1}{2} x y \longrightarrow 2 A=x y \\
& P=x+y+h \longrightarrow(x+y)=R-h \tag{B}
\end{align*}
$$

x New by Pythagoras' Theorems

$$
h^{2}=x^{2}+y^{2}
$$

$$
\therefore h^{2}=(x+y)^{2}-2 x y
$$

Substitutive frown (A) α (B) for $x y$ and $(x+y)$ inc ordain:-

$$
\begin{aligned}
h^{2} & =(P-h)^{2}-2 \times 2 A \\
\text { ie } \quad h^{2} & =P^{2}-2 P h+h^{2}-4 A \\
\therefore \quad 2 f h & =P^{2}+h^{2}-4 A-h^{2} \\
& =P^{2}-4 A \\
\text { ie } h & =\frac{P^{2}-4 A}{2 P}
\end{aligned}
$$

(d) $x y<4$ and $y \geqslant x+3$
(i) If $x y=4$ and me subs statute $y=x+3$ me get:-

$$
\begin{aligned}
& x(x+3)=4 \rightarrow \\
& x^{2}+3 x-4=0 \\
&(x-1)(x+4)=0 \\
& x=1 \rightarrow y=1+3 \\
& x=4
\end{aligned} \quad \begin{aligned}
& \text { and } x=-4 \rightarrow y=-4 \\
& =4+1
\end{aligned}
$$

ie. Intersections ane at $(1,4)$ and $(-4,-1)$
(ii) (TB In gaplives we must use dotted times for the hyper bola 5 dos $x y=4$ since the ingualty is < only

By substituting $(0,0)$ into eger inequality me find that:1) $0.0<4$ is true so the region of the plane where $x y<4$ is between the 2 arms of the hypescoo la $x-y \leqslant 4$
2) $0 \geqslant 0+3$ is not rue so the region for $y \geqslant x+3$ is to the left of the line $y=x+3$

Year 11 Accelerated Mathematics: Solutions Assessment Task \#1

Question 6 (13 Marks)

(a) Given the quadratic $2 x^{2}+k x+5$,
(i) For what range of values of k is the quadratic positive definite?

Solution: $\Delta=k^{2}-40$,
<0 when $k^{2}<40$,
i.e. $|k|<2 \sqrt{10}$ or $-2 \sqrt{10}<k<2 \sqrt{10}$.
(ii) For what values of k does the quadratic have equal roots?

Solution: $k= \pm 2 \sqrt{10}$.
(iii) Find two integral values of k such that the quadratic has rational roots.

Solution: We need \triangle to be a perfect square so, after some trial and error: $49-40=9$, $121-40=81$, Thus ± 7 or ± 11 are possible values.
(b) Describe the region in the graph.

Solution: Parabola: $y=a x(x-3), \quad$ Dashed line: $y=x-1$.
$2=a(1-3)$,
$a=-1$.
$\therefore y=x(3-x)$.
So the region is $\left\{(x, y): y \leqslant 3 x-x^{2}\right\} \cap\{(x, y): y>x-1\}$.

QuISTION SEVEN
a) (i)

$$
\begin{aligned}
& A_{n}=\rho R^{n}-\frac{M\left(R^{n}-1\right)}{R-1 .} \\
& R=1.014 \\
& n=36 . \\
& \rho=3000 \\
& A_{35}=0 .
\end{aligned}
$$

$$
\begin{aligned}
P R^{n} & =\frac{M\left(R^{n}-1\right)}{R-1} \\
M & =\frac{P R^{n}(R-1)}{R^{n}-1} \\
& =\frac{3000(1.014)^{36}(1.014-1)}{(1.014)^{36}-1} \\
& =\$ 106.66
\end{aligned}
$$

(ii). $\quad P_{R^{n}}=\frac{M R^{n}-M}{R-1}$

$$
n=23.63
$$

$$
\begin{gathered}
M R^{n}-\rho R^{n}(R-1)=M \\
R^{n}(M-\rho R+p)=M \\
R^{n}=\frac{M}{M-p R+\rho} \\
n \log R=\log \left(\frac{m}{m-p n+p}\right) \\
n=\frac{\log \left(\frac{m}{n-\rho n+\rho}\right)}{\log n}
\end{gathered}
$$

$\therefore . e .24$ repogents.
(b) (i) $\quad d=\frac{\left|a x_{1}+b_{y_{1}}+c\right|}{\sqrt{a^{2}+b^{2}}}$
$\begin{array}{ll} & a=1 \quad b=\theta \quad c=0 . \\ \Rightarrow & (x, y) .\end{array}$

$$
d=\frac{x-y}{\sqrt{2}}
$$

(ii)

$$
\begin{aligned}
& x=\frac{x-y}{\sqrt{2}} \\
& x \sqrt{2}=x-y \\
& y=x(1-\sqrt{2}) .
\end{aligned}
$$

