

BAULKHAM HILLS HIGH SCHOOL

Half -Yearly 2013 YEAR 11 TASK 1

Mathematics

General Instructions

- Reading time 5 minutes
- Working time 2 hours
- Write using black or blue pen
- Board-approved calculators may be used
- Show all necessary working in Questions 11-14
- Marks may be deducted for careless or badly arranged work

Total marks – 70 Exam consists of 5 pages.

This paper consists of TWO sections.

Section 1 – Page 2 (10 marks) Questions 1-10

- Attempt Question 1-10
- Answer on answer sheet provided

Section II – Pages 3-5 (60 marks)

• Attempt questions 11-14

Section I - 10 marks Use the multiple choice answer sheet for question 1-10

Use the multiple choice answer sheet for question 1-10								
1.	x - 4 is a factor of							
	(A) $x^2 - 4$	(B) $x^2 + 4$		(C) $4x^2 - 2$	16	(D) $x^2 - 16$		
2.	The solution of $6 - \frac{x}{3} >$	<i>x</i> is						
	(A) $9 > x$	(B) $x < \frac{3}{2}$		(C) $x < 4.5$	5	(D) $x > \frac{18}{4}$		
3.	D>	The area of the parallelogram <i>ABCD</i> is						
	3	*	(A) $6 \times \frac{\sqrt{3}}{3}$	(A) $6 \times \frac{\sqrt{3}}{2}$ (B) $6\sqrt{3}$				
	60°		(C) 6		(D) 12			
	A 4	B			() 12			
4.	Which statement is correct?							
	(A) $\tan 330^\circ = -\cot 30^\circ$ (C) $\tan 330^\circ = -\tan 30^\circ$			(B) $\tan 330^\circ = \tan 30^\circ$ (D) $\tan 330^\circ = \cot 30^\circ$				
5.	The range of $f(x) = \sqrt{9}$	$0-x^2$ is						
	(A) all real <i>y</i>	(B) $-3 \le y$	≤ 3	(C) $0 \le y \le y$	≤ 3	(D) $0 \ge y \ge -3$		
6.	The bearing of B from A is 150 ° , <i>C</i> from B is 070°. What is the bearing of B from C					c		
	(A) 030° (C) 110°	(B) 250° (D) 280°		A				
	(C) 110 ⁻ (D) 280 ⁻							
-	() $() $ $()$				В			
7.	$f(x) = (x + 4)^2$ is (A) an even function			(P) Noitho	r an auan r	or odd function		
	(C) an odd function			(B) Neither an even nor odd function(D) it's not a function				
8.	If $g(x) = \frac{x}{x^2 + 1}$ what is	$g\left(\frac{1}{x}\right)$ equal to)?					
	(A) $\frac{x^2+1}{x}$	(B) $\frac{x^2}{x^2+1}$		(C) $\frac{x}{1+x^2}$		(D) $\frac{x^2}{x+x^2}$		
9.	$\left(x-\frac{1}{x}\right)^2 =$							
		(B) $x^2 - 2$	$+\frac{1}{u^2}$	(C) $x^2 + 2$	$+\frac{1}{u^2}$	(D) $x^2 + \frac{1}{x^2}$		
10.	x-		<i></i>			~		
	The shaded region is represented simultaneously by the following inequalities $y = (x-2)^2$ (A) $y \le (x-2)^2$ and $y < x + 4$							
	(B) $y \ge (x-2)^2$ and $y > x+4$ (C) $y \ge (x-2)^2$ and $y < x+4$							
	(c) $y \ge (x-2)^2$ and $y < x+4$ (D) $y \le (x-2)^2$ and $y > x+4$							
	-		End of S	ection 1				

<u>Section II</u> – Extended Response Attempt questions 11-14. All necessary working should be shown in every question.

	empt questions 11-14. All necessary working should be shown in every question.	
Que	stion 11 (15 marks)	Marks
a)	Simplify $(4x - 1)^2 - 3(x - 5)$	2
b)	Evaluate correct to 3 significant figures	2
	$\frac{14.951 - 11.3}{\sqrt[3]{72}}$	2
c)	Solve a + 3b = 1 a + 53b = 101	2
d)	Rationalise the denominator $\frac{2+\sqrt{3}}{3-2\sqrt{3}}$	2
e)	Factorise and simplify $\frac{x^2 + x}{x^2 - 9} \times \frac{x^3 - 27}{x^2 - x - 2}$	3
f)	Consider the function $f(x) = \begin{cases} -3 & \text{if } x \le -2 \\ x^2 & \text{if } -2 < x < 2 \\ 2x - 3 & \text{if } x \ge 2 \end{cases}$ (i) Evaluate $f(-1) + f(1)$	1
	(i) Find $f(a^2 + 2)$	1
	(iii) Sketch the graph of $f(x)$	1 2
		4
Que	stion 12 (15 marks)	
a)	$If G(x) = 4x - x^2$	
	(i) Find the value of $G(-3)$	1
	(ii) Find the values of x for which $G(x) = 0$	1
	(iii) Sketch the graph of $G(x)$ showing all intercepts and the vertex.	2
b)	Find all values of θ such that	
	$2\cos^2\theta = 1$ for $0^\circ \le \theta \le 360^\circ$	2
c)	(i) Sketch $f(x) = \frac{3}{x-1} - 1$ showing all intercepts	3
	(ii) Find the domain and range of $f(x)$	2
d)	If $\sin \theta = -\frac{1}{5}$ and $\tan \theta > 0$, find the exact value of $\cos \theta$	2
e)	Given that $(2\sqrt{3} + 1)(3 - \sqrt{3}) = a\sqrt{3} + b$, find <i>a</i> and <i>b</i>	2

Question 14 (15 marks)		
a)	Prove the identity $(\cos \alpha + \cot \alpha) \sec \alpha = 1 + \csc \alpha$	
b)	 Given y = x² and y = 4x - 3 (i) Find the points of intersection of the two graphs. (ii) On the same number plane, sketch y = 4x - 3 and y = x² showing the points of intersection. 	
	(iii) Hence or otherwise solve: $ 4x - 3 \ge x^2$	1
c)	The diagram shows an isosceles $\triangle ABC$ with $AC = BC$, $AB = 2cm$, $\angle BAC = 75^{\circ}$ and $\angle ACB = 30^{\circ}$. Not to scale	
	(i) Show that the exact value of $AC = \frac{2}{\sqrt{2-\sqrt{3}}}$	2
	(ii) Hence show that the exact value of $\sin 75^\circ = \frac{1}{2\sqrt{2-\sqrt{3}}}$	2
	(iii) Find the exact area of triangle <i>ABC</i>	1
	(iv) Using part (ii) or otherwise show that the exact value of $\cos 75^\circ = \frac{\sqrt{2}-\sqrt{3}}{2}$	2

End of Exam

~Q11 - page 1 ~

Section I – Multiple Choice

्रा•् ≩

41

Select the alternative A, B, C or D that best answers the question. Fill in the response oval completely.

		-	
Sample:	2 + 4 =	(A) 2	(B) 6
•		Â	È BÉ 🔴

If you think you have made a mistake, put a cross through the incorrect answer and fill in the new answer.

(C) 8 C (C) (D) 9 D 🔿

If you change your mind and have crossed out what you consider to be the correct answer, then indicate the correct answer by writing the word *correct* and drawing an arrow as follows.

Question // $\frac{2^{2}-3(x-5) = 16x^{2}-8x+1-3x+15}{= 16x^{2}-11x+16}$ n = 0.878 V 0.8776 6 · a+6=1 536 = 10 $\frac{1}{16} = 2$: a=-506 (z) =100 6+313+413+6 12+7/3 x+3x+9 22+2 20--9 -+3x+9 20 JC+3 _ = = 2a+1 - 3 a

~ Q1 f - page 2 ~ -<u>iii)</u> (-2,4 мY (214) 2 marks open/close -1 off - values 1n +x-1 off-wrong shapes - 3 (-2,-3) You may ask for extra writing paper if you need more space to answer question 13

M

~ Q12 - page 1 ~ **Question 12** $6(x) = 4x - x^{\nu}$ a -[-3)2 = -21 4/-3 G(-3) 6(x) $= 4\chi - \chi^2$ =0 $0 = \mathcal{X}(4 - \mathcal{X})$ For both corner YC =0 2=4 2,4 values 1) - shape 1) - intercepts and verter 2 }~ 4 05 0 ± 360° 2 cos Q = <u>b\</u> $\cos^2 \Theta = \frac{1}{2}$ $\cos \Theta = \pm \frac{1}{\sqrt{5}}$: $\Theta = 45^{\circ}, 135^{\circ}, 225^{\circ}, 315^{\circ}$ 3 £-, 10 x - 1 = 3 : x = 44 >ン D: all real x: except x: 1 (nsy up tote s - 1 VR: all real y except y= -1) both xey intere

~ Q12 - page 2 ~

. 4

٦,

You may ask for extra writing paper if you need more space to answer question 12

~ Q13 - page 1 ~

Question 13 Name: tan 60 = 10/3 10 26 = -... 5 482 102+ 152 - 2×10×15× cos 132 = 525.739 ... ignore 22.93 AB = 22. 929... = wrong rounding 8-0 -2-3 1-2,8 (x-3 5y = -8x + 24:. (8x+ 5y-24=0) . shown $\int 3x + y - 9 = 0$ 4x - y + 16 = 0 \ddot{n} 3x-1+12-9=0 D=0. Time Bliesousky-920 either by substitution: 3(-1,12, · . Blieson 425-4+16 by solvin (13 x44 -9=0 Si'un Haneously (2) 4x - 4 + 16 = 0 720 +7 =0: 2=--B-1 $\frac{1}{2} Y = -3x - 1 + 9 = 12$

~ Q13 - page 2 ~

~Q14 - page 1 ~

Question 14 Name: (COSA + cota) seca = 1+ coseca Prove COSK LHS= CO5 & + SINA COSA COSA -= 205d ... = 1 + cosec qClass Sind -*RHS* is prover 42-3 4= 6 4 = OR case(2) I'= -4x-3 -3 caseki x2+4x-3=0 X2-4K+3 =0 2 = - 4± 128_-4±2 (X-3)(x-1)=0 2(___ 5 2=-2+15 x=-2-15 Y=11-415 y=11+417 れろ 21.58 (-2-V7, 11+415) 0.42 (-ii-(3,3 ii) 15-11-AVF 1=x =3 (41) ᢣ᠊ᢣᡄ Ø 31 -2-12 3

