

BAULKHAM HILLS HIGH SCHOOL

Half -Yearly 2013

YEAR 11 TASK 1

Mathematics

General Instructions

- Reading time - 5 minutes
- Working time -2 hours
- Write using black or blue pen
- Board-approved calculators may be used
- Show all necessary working in Questions 11-14
- Marks may be deducted for careless or badly arranged work

Total marks - 70
Exam consists of 5 pages.
This paper consists of TWO sections.

Section 1 - Page 2 (10 marks)
Questions 1-10

- Attempt Question 1-10
- Answer on answer sheet provided

Section II - Pages 3-5 (60 marks)

- Attempt questions 11-14

Section I-10 marks

Use the multiple choice answer sheet for question 1-10

1. $x-4$ is a factor of
(A) $x^{2}-4$
(B) $x^{2}+4$
(C) $4 x^{2}-16$
(D) $x^{2}-16$
2. The solution of $6-\frac{x}{3}>x$ is
(A) $9>x$
(B) $x<\frac{3}{2}$
(C) $x<4.5$
(D) $x>\frac{18}{4}$
3.

 The area of the parallelogram $A B C D$ is
(A) $6 \times \frac{\sqrt{3}}{2}$
(B) $6 \sqrt{3}$
(C) 6
(D) 12
4. Which statement is correct?
(A) $\tan 330^{\circ}=-\cot 30^{\circ}$
(B) $\tan 330^{\circ}=\tan 30^{\circ}$
(C) $\tan 330^{\circ}=-\tan 30^{\circ}$
(D) $\tan 330^{\circ}=\cot 30^{\circ}$
5. The range of $f(x)=\sqrt{9-x^{2}}$ is
(A) all real y
(B) $-3 \leq y \leq 3$
(C) $0 \leq y \leq 3$
(D) $0 \geq y \geq-3$
6. The bearing of B from A is $150^{\circ}, C$ from B is 070°.

What is the bearing of B from C
(A) 030°
(B) 250°
(C) 110°
(D) 280°

7. $f(x)=(x+4)^{2}$ is
(A) an even function
(B) Neither an even nor odd function
(C) an odd function
(D) it's not a function
8. If $g(x)=\frac{x}{x^{2}+1}$ what is $g\left(\frac{1}{x}\right)$ equal to?
(A) $\frac{x^{2}+1}{x}$
(B) $\frac{x^{2}}{x^{2}+1}$
(C) $\frac{x}{1+x^{2}}$
(D) $\frac{x^{2}}{x+x^{2}}$
9. $\left(x-\frac{1}{x}\right)^{2}=$
(A) $x^{2}-\frac{1}{x^{2}}$
(B) $x^{2}-2+\frac{1}{x^{2}}$
(C) $x^{2}+2+\frac{1}{x^{2}}$
(D) $x^{2}+\frac{1}{x^{2}}$
10.

The shaded region is represented simultaneously by the following inequalities
(A) $y \leq(x-2)^{2}$ and $y<x+4$
(B) $y \geq(x-2)^{2}$ and $y>x+4$
(C) $y \geq(x-2)^{2}$ and $y<x+4$
(D) $y \leq(x-2)^{2}$ and $y>x+4$

End of Section 1

Section II - Extended Response

Attempt questions 11-14. All necessary working should be shown in every question.
Question 11 (15 marks)
a) Simplify $(4 x-1)^{2}-3(x-5)$
b) Evaluate correct to 3 significant figures

$$
\frac{14.951-11.3}{\sqrt[3]{72}}
$$

c) Solve

$$
\begin{align*}
a+3 b & =1 \tag{2}\\
a+53 b & =101
\end{align*}
$$

d) Rationalise the denominator

$$
\frac{2+\sqrt{3}}{3-2 \sqrt{3}}
$$

e) Factorise and simplify

$$
\frac{x^{2}+x}{x^{2}-9} \times \frac{x^{3}-27}{x^{2}-x-2}
$$

f) Consider the function

$$
f(x)=\left\{\begin{array}{cl}
-3 & \text { if } x \leq-2 \\
x^{2} & \text { if }-2<x<2 \\
2 x-3 & \text { if } x \geq 2
\end{array}\right.
$$

(i) Evaluate $f(-1)+f(1)$
(ii) Find $f\left(a^{2}+2\right) \quad 1$
(iii) Sketch the graph of $f(x)$

Question 12 (15 marks)
a) If $G(x)=4 x-x^{2}$
(i) Find the value of $G(-3) \quad 1$
(ii) Find the values of x for which $G(x)=0 \quad 1$
(iii) Sketch the graph of $G(x)$ showing all intercepts and the vertex.
b) Find all values of θ such that

$$
\begin{equation*}
2 \cos ^{2} \theta=1 \text { for } 0^{\circ} \leq \theta \leq 360^{\circ} \tag{2}
\end{equation*}
$$

c) (i) Sketch $f(x)=\frac{3}{x-1}-1$ showing all intercepts
(ii) Find the domain and range of $f(x)$
d) If $\sin \theta=-\frac{1}{5}$ and $\tan \theta>0$, find the exact value of $\cos \theta$
e) Given that $(2 \sqrt{3}+1)(3-\sqrt{3})=a \sqrt{3}+b$, find a and b
a)

Find the exact value of x

c) In the diagram below the lines $3 x+y-9=0$ and $4 x-y+16=0$ intersect at B.
The point A is $(3,0)$ and C is $(-2,8)$

(i) Show that the line $A C$ has the equation $8 x+5 y-24=0$
(ii) Show that the point B has coordinates $(-1,12)$
(iii) Find the equation of a line passing through B and perpendicular to AC . Answer in general form.
d) State whether the function $y=\frac{1}{x^{3}}$ is even, odd or neither. Justify your answer.
e) Simplify $\frac{2}{3-\sqrt{2}}+\frac{5}{3+\sqrt{2}}$
f) Write $\frac{a^{2 x}}{a^{2 y}} \times \frac{a^{y}}{a^{2}}$ in the form a^{k}
g) Simplify $\frac{y^{-1}+y}{1+y^{2}}$
a) Prove the identity $(\cos \alpha+\cot \alpha) \sec \alpha=1+\operatorname{cosec} \alpha$
b) Given $y=x^{2}$ and $y=|4 x-3|$
(i) Find the points of intersection of the two graphs.

3
(ii) On the same number plane, sketch $y=|4 x-3|$ and $y=x^{2}$ showing the points of intersection.
(iii) Hence or otherwise solve:

$$
|4 x-3| \geq x^{2}
$$

c) The diagram shows an isosceles $\triangle A B C$ with $A C=B C, A B=2 \mathrm{~cm}, \angle B A C=75^{\circ}$ and $\angle A C B=30^{\circ}$.

(i) Show that the exact value of $A C=\frac{2}{\sqrt{2-\sqrt{3}}}$
(ii) Hence show that the exact value of $\sin 75^{\circ}=\frac{1}{2 \sqrt{2-\sqrt{3}}}$
(iii) Find the exact area of triangle $A B C$
(iv) Using part (ii) or otherwise show that the exact value of $\cos 75^{\circ}=\frac{\sqrt{2-\sqrt{3}}}{2}$

End of Exam

BAULKHAM HILLS HIGH SCHOOL
Vend
2013
Name: \qquad
Teacher: \qquad
Mathematics
Section I - Multiple Choice
Select the alternative $\mathrm{A}, \mathrm{B}, \mathrm{C}$ or D that best answers the question. Fill in the response oval completely.

Sample:

$$
2+4=
$$

(A) 2
(B) 6
(C) 8
(D) 9

Question $1 /$

~Q1f -page 2~

You may ask for extra writing paper if you need more space to answer question 13

Question 12
-1
a) $6(x)=4 x-x^{2}$
i) $G(-3)=4(-3)-(-3)^{2}=-21$
ii) $G(x)=0=4 x-x^{2}$

$$
0=x(4-x)
$$

ii)

$\frac{\text { for both corned }}{\text { values }}$ values
(1)- shape
(1)- intercepts andiventer
b)

$$
\begin{aligned}
& 2 \cos ^{2} \theta=1 \quad 0 \leqslant \theta \leqslant 360^{\circ} \\
& \cos ^{2} \theta=\frac{1}{2} \\
& \cos \theta= \pm \frac{1}{\sqrt{2}} \therefore \theta=45^{\circ}, 135^{\circ}, 225^{\circ}, 315^{\circ}
\end{aligned}
$$

c) $f(x)=\frac{3}{x-1}-1$

x	0	4	
y	-4	0	

d) $\sin \theta=\frac{1}{5}$ and $\tan \theta>0$

e) $(2 \sqrt{3}+1)(3-\sqrt{3})=a \sqrt{3}+b$
$6 \sqrt{3}-\sqrt{3}+3-6=a \sqrt{3}+b$
$5 \sqrt{3}-3=a \sqrt{3}+b$

$$
\therefore \quad a=5 \quad b=-3
$$

(1)
~Q13 - page 1 -
Question 13
Name: \qquad
a)

$$
\begin{aligned}
\tan 60^{\circ} & =\frac{10}{x} \\
\sqrt{3} & =\frac{10}{x} \therefore \quad x=\frac{10}{\sqrt{3}} \text { or } \frac{10 \sqrt{3}}{3}
\end{aligned}
$$

b)

$$
\begin{aligned}
A B^{2} & =10^{2}+15^{2}-2 \times 10 \times 15 \times \cos 132^{\circ} \\
& =525.739 \ldots \\
A B & =22.929 \ldots=22.93 \quad \begin{array}{l}
\text { ignore } \\
\text { woug } \\
\text { round }
\end{array}
\end{aligned}
$$

c) i)

$$
A C: \quad A(3,0)
$$

 rounding

ii) $B(x, y)\left\{\begin{array}{l}3 x+y-9=0 \\ 4 x-y+16=0\end{array}\right.$
either by substitution:

$$
\begin{aligned}
& y=-\frac{8}{5}(x-3) \\
& 5 y=-8 x+24 \\
& \therefore(8 x+5 y-24=0 \quad \therefore \text { shown }
\end{aligned}
$$

(θ B

by solvin) (1) $3 x+y-9=0$
Simeltaneously

$$
\begin{aligned}
& \left\{\begin{array}{l}
\text { (1) } 3 x+y-9=0 \\
7 x-y+16=0
\end{array}\right. \text { (t) } \\
& \therefore y=-3 x-1+9=12 \quad-(-1,12)
\end{aligned}
$$

13c) iii) $B(-1,12)$

$$
m_{A C}=\frac{-8}{5} \therefore m_{\perp \text { inc }}=\frac{5}{8}
$$

\therefore cquation is $y-12=\frac{5}{8}(x--1)$

$$
8 y-96=5 x+5
$$

in geneml form $\therefore 0=5 x-8 y+101$
a)

$$
\begin{align*}
& f(x)=y=\frac{1}{x^{3}} \frac{1}{f(-x)}=\frac{-1}{-x^{3}}=\frac{1}{x^{3}}=-f(x) \therefore \quad \therefore \quad 0 d d \tag{1}
\end{align*}
$$

e) $\frac{2}{3-\sqrt{2}}+\frac{5}{3+\sqrt{2}}=\frac{2(3+\sqrt{2})+5(3-\sqrt{2})}{(3-\sqrt{2})(3+\sqrt{2})}=\frac{21-3 \sqrt{2}}{9-\cdots 2}$
f) $\frac{a^{2 x}}{a^{2 y}} \times \frac{a^{y}}{a^{2}}=a^{2 x+y-2 y-2}=a$
g) $\frac{y^{-1}+y}{1+y^{2}}=\frac{\frac{1}{y}+\frac{y}{1}}{1+y^{2}}=\frac{\frac{1+y^{2}}{y}}{1+y^{2}}=\frac{1}{y}<$

Question 14
a) Prove $(\cos \alpha+\cot \alpha) \sec \alpha=1+\operatorname{cosec} \alpha$

$$
\begin{aligned}
& \text { LHS }=\left(\cos \alpha+\frac{\cos \alpha}{\sin \alpha}\right)^{2} \cdot \frac{1}{\cos \alpha} \\
&= \cos \alpha \cdot \frac{1}{\cos \alpha}+\frac{\cos \alpha}{\sin \alpha} \cdot \frac{1}{\cos \alpha}=1+\frac{1}{\sin \alpha}=1+\operatorname{cosec} \alpha \\
&=\text { ents } \\
& \text { in posen }
\end{aligned}
$$

6) $y=x^{2} \quad y=|4 x-3|$
(i) $x^{2}=|4 x-3|$
case(1) $x^{2}=4 x-3$ OR case(2) $x^{2}=-(4 x-3)$

$$
\begin{aligned}
& x^{2}-4 x+3=0 \\
& (x-3)(x-1=0 \\
& x=3 \quad x=1 \\
& y=9 \quad y=1
\end{aligned}
$$

$$
\begin{array}{r}
x^{2}+4 x-3=0 \\
x=\frac{-4 \pm \sqrt{28}}{2} \\
\therefore x=-2=\sqrt{7}
\end{array}
$$

$$
x=\frac{-4 \pm \sqrt{28}}{2}=\frac{-4 \pm 2 / 7}{2}
$$

ii)

Question 14
c)

(i) let $A C=B C=a$

$$
\begin{aligned}
\therefore A B^{2} & =A C^{2}+B C^{2}-2 A C \cdot B C \cdot \cos 30^{\circ} \\
2^{2} & =a^{2}+a^{2}-2 a \cdot a \cdot \frac{\sqrt{3}}{2} \\
4 & =a^{2}(2-\sqrt{3}) \\
a^{2} & =\frac{4}{2-\sqrt{3}} \therefore a=\frac{2}{\text { only }} \boldsymbol{\sqrt { 2 - \sqrt { 3 } }}=A C V
\end{aligned}
$$

ii)

$$
\begin{aligned}
\frac{\sin 75^{\circ}}{B C} & =\frac{\sin 30^{\circ}}{2} \\
\sin 75^{\circ} & =\frac{B C \cdot \sin 30^{\circ}}{2}=\frac{x}{\sqrt{2-\sqrt{3}} \times \frac{1}{2}} \\
& =\frac{1}{\sqrt{2-\sqrt{3}}} \cdot \frac{1}{2}=\frac{1}{2 \sqrt{2-\sqrt{3}}}=
\end{aligned}
$$

iii)

$$
\begin{aligned}
\text { Area } & =\frac{1}{2} \times A B \times A C \times \sin 75^{\circ} \\
& =\frac{1}{2} \times 2 \times \frac{2}{\sqrt{2-\sqrt{3}}} \cdot \frac{1}{2 \sqrt{2-\sqrt{3}}} \\
& =\frac{1}{2-\sqrt{3}}
\end{aligned}
$$

(OR) Area $=\frac{1}{2} \times A C_{x} B C \times \sin 30^{\circ}$

$$
=\frac{1}{x} \times \frac{2}{\sqrt{2-\sqrt{3}}} \times \frac{2}{\sqrt{2-1 / \sqrt{3}}} \times \frac{1}{2}=\frac{1}{2-\sqrt{3}}
$$

$$
\text { iv) } \cos 75^{\circ}=\frac{A B^{2}+A C^{2}-B C^{2}}{2 \times A B \times A C}=\frac{2^{2}+0}{2 \times 2 \times A C}=\frac{\sqrt{4}}{4 \times A C}
$$

(OR)

$$
\begin{aligned}
\cos 75^{\circ} & =\sqrt{1-\sin ^{2} 75^{\circ}}=\sqrt{1-\left(\frac{1}{2 \sqrt{2-\sqrt{3}}}\right)^{2}} \sqrt{2} \\
& =\sqrt{1-\frac{1}{4(2-\sqrt{3})}}=\sqrt{1-\frac{2+\sqrt{3}}{4(4-3)}} \\
& =\sqrt{\frac{4-2-\sqrt{3}}{4}}=\frac{\sqrt{2-\sqrt{3}}}{2}
\end{aligned}
$$

$$
=\sqrt{\frac{4-2-\sqrt{3}}{4}}=\frac{\sqrt{2-\sqrt{3}}}{2}
$$

\qquad
\qquad
\qquad
\qquad

