

BAULKHAM HILLS HIGH SCHOOL

Half -Yearly 2017 YEAR 11 ADVANCED TASK 1

Mathematics

General Instructions

- Reading time 5 minutes
- Working time 1.5 hours
- Write using black or blue pen
- Board-approved calculators may be used
- Show all necessary working in Questions 11-15
- Marks may be deducted for careless or badly arranged work

Total marks – 76 Exam consists of 9 pages.

This paper consists of TWO sections.

Section 1 – (10 marks) Pages(2-4) Questions 1-10

- Attempt Question 1-10
- Answer on answer sheet provided

Section II - (66 marks) Pages(5-9)

• Attempt questions 11-15

Section I - 10 marks Use the multiple choice answer sheet for question 1-10

1.	The factorisation of $x^3 - 8$ is
	(A) $(x-2)(x^2-2x+4)$
	(B) $(x-2)(x^2+2x+4)$
	(C) $(x-2)(x^2-x+4)$
	(D) $(x-2)(x^2+x+4)$
2.	The solutions to the equation $x^2 - 5x + 2 = 0$ are :
	$(A) \frac{5\pm\sqrt{17}}{2}$
	(B) $\frac{-5\pm\sqrt{17}}{2}$
	(C) $\frac{5\pm\sqrt{33}}{5\pm\sqrt{33}}$
	$\frac{1}{2}$
	(D) ${2}$
3.	Which of the following is equivalent to $\frac{1}{2\sqrt{5} - \sqrt{3}}$?
	(A) $\frac{2\sqrt{5} - \sqrt{3}}{7}$
	(B) $\frac{2\sqrt{5} + \sqrt{3}}{7}$
	$\frac{2\sqrt{5}}{\sqrt{3}}$
	(C) 17
	(D) $\frac{2\sqrt{5} + \sqrt{3}}{17}$
4.	$\frac{8^{n+1}}{2} =$
	2^{n-2}
	(A) 4^{-1}
	(B) 4^{3}
	(C) 2^{2n+1}
	(D) 2^{2n+5}

Section II – Extended Response

Attempt questions 11-15. All necessary working should be shown in every question.									
Que	stion 11 (13 marks) Use the Question 11 section of the writing booklet.	Marks							
a)	Solve (i) $6 - \frac{2x+1}{4} = 3x$	2							
	(ii) $ 3x - 1 = 6$	2							
b)	Simplify (i) $(x-2)(x+2) - (3-x)$ (ii) $\frac{1}{2} - \frac{1}{2}$	2							
	x x x-1	2							
c)	If $(2\sqrt{3}-2)^2 = a - \sqrt{b}$, find the values of a and b	2							
d)	Council rates increased by 8% to \$1296. What were the rates prior to the increase?	1							
e)	Solve simultaneously 4x + 6y = 11 17x - 5y = 1	2							
	End of Question 11								

Question 13		3 (13 marks) Use the Question 13 section of the writing booklet.								
a)	Consider the curve $y = \frac{2}{x-1} - 2$									
	(i)	State the domain and range	2							
	(ii) Find the intercepts									
	(iii)	Sketch the curve showing all important features	2							
b)	Solve for	$0^{\circ} \le \theta \le 360^{\circ}$								
	(i)	$\sqrt{2}\sin\theta = 1$	2							
	(ii)	$2\sin^2\theta - \cos\theta = 1$	3							
c)	Show the	at	2							
		$\left(\frac{\cos\theta - \sin\theta}{\cos\theta}\right)^2 = \sec^2\theta - 2\tan\theta$								
		End of Question 13								

Question 14 (13marks) Use the Question 14 section of the writing booklet. Solve |2x + 5| = 3x + 9a) 3 Factorise $4x^3 - 12x^2 - x + 3$ b) 2 Given c) $f(x) = \begin{cases} x+2 & for \quad x \le -2 \\ \sqrt{4-x^2} & for \quad -2 < x < 2 \\ 2-x & for \quad x \ge 2 \end{cases}$ 2 Sketch the function (i) 1 (ii) Hence or otherwise find the range of f(x). A hiker left camp A and walked 15 km on a bearing of $N32^{\circ}E$ to B. He then turned and d) walked for 25 km to the point C, then 35 km back to A. N A 1 i) Redraw the diagram into your booklet showing the given information. ii) Find the size of $\angle ABC$. 2 2 iii) Hence or otherwise find the bearing of B from C. **End of Question 14**

	Question 15 (14 marks) Use the Question 15 section of the writing booklet.	Marks
a)	Solve $\left(\frac{15}{x} + x\right)^2 - 11\left(\frac{15}{x} + x\right) + 24 = 0$	3
b)	Find an expression for the exact length of AB in terms of <i>h</i> . D D h A B C	2
c)	i) Prove that $\tan A \sin A + \cos A = \sec A$	2
	ii) Hence or otherwise solve $\tan A \sin A + \cos A = \operatorname{cosec} A$ for $0^{\circ} \le A \le 360^{\circ}$	2
d)	If $f(x) = 2 - x^2$ and $g(x) = 2x - 1$	
	i) Find $f(g(5))$.	1
	ii) Show that $f(g(x)) = -4x^2 + 4x + 1$.	1
	iii) Find the value(s) of x for which $f(g(x)) = g(f(x))$.	3
	End of Exam	

BAULKHAM HILLS HIGH SCHOOL MATHEMATICS	Section I – Multiple Choice	Sompletely. Sample: $2+4=$ (A) 2 (B) 6 (C) 8 (D) 9 A \bigcirc B \bigcirc C \bigcirc D \bigcirc	If you think you have made a mistake, put a cross through the incorrect answer and fill in the new answer. $A \bigoplus B \bigoplus C \bigcirc D \bigcirc$	If you change your mind and have crossed out what you consider to be the correct answer, then indicate the correct answer by writing the word correct and drawing an arrow as follows. A \swarrow $B $ \Leftrightarrow $C $ $D $	Start I. AO B I CO D I I AO B I CO D I I AO B I CO D I I AO B I I
hultiple choice Admued 2017 $() x^3 - 8 = (x - 2)(x^2 + 2x + 4)$ (B) $() x^3 - 8 = (x - 2)(x^2 + 2x + 4)$ (B) $() x^2 - 5x + 2 = 0$ $() x^3 - 5x + 12 = 2(5x + 12)$ $() x^3 - 5x$	$ \widehat{\mathcal{A}} \underbrace{g^{n+1}}_{k-1} = \underbrace{\left(2^3\right)^{n+1}}_{k-2} = \underbrace{2^{3n+3}}_{2} \xrightarrow{3n+3-n+2}_{k-2} \xrightarrow{2n+5^{-1}}_{k-2} \underbrace{\left(2^{n+3}\right)^{n+1}}_{k-2} = \underbrace{2^{n+3}}_{k-2} \xrightarrow{\left(2^{n+3}\right)^{n+1}}_{k-2} \xrightarrow{\left(2^{n+3}\right)^{n+1}}_{k-2} \underbrace{2^{n+3}}_{k-2} \xrightarrow{\left(2^{n+3}\right)^{n+1}}_{k-2} \xrightarrow{\left(2^{n+3}\right)^{n$	$\sum_{x'=1}^{2^{n-2}} 2^{n-2} - 2^{n-$	B sin x-1=0 or tan x+2=0 sin x=1 = 0 or tan x+2=0 sin x=1 anx = 2 of ns.	7) $\sin \theta = \frac{7}{25} = 205\theta = -\frac{24}{25}$ i. (b) Tor T i or III quadrant second quadrant	(a) Symetrical around $\sum y - nxis$ (A) (b) $A = \pm ab \cdot sin C$ $ ay 4a^{2}x ^{0}$ (A) $A = \pm r a_{2} a_{2} a_{2} ^{0}$ $22 \cdot 139 38 \cdots$ $A = \pm r a_{2} a_{2} a_{2} a_{2} ^{0}$ $A = \pm r a_{2} a_{2} a_{2} a_{2} ^{0} = 32 \cdot 139 38 \cdots$ (b) $ cos(2x) = a_{2} a_{2} a_{2} a_{2} ^{0} = 360^{\circ}$ $\pm cos(2x) = a_{2} a_{2} a_{2} a_{2} ^{0} = 320^{\circ}$ $\pm cos(2x) = a_{2} a_{2} a_{2} a_{2} ^{0} = 320^{\circ}$ $d = 0^{\circ}, 80^{\circ}, 340^{\circ}, 540^{\circ}, 720^{\circ}, (5solns)$

Question 11 (13 marks) 0 3x-1=6 = a) solve $\frac{3x=7}{x=7/3}$ 4 Simpli Ry 3x -132-1 $\frac{(x-2)(x+2)}{x^{\nu}-4}$ <u>x++x -7</u> 50/HS. (i) 6-~6 $-3 + \chi$ $24 - 2\chi - 1$ 24-(2x+1) $\chi = \frac{7}{3}$) $\frac{-5}{3}$ -(3-x)32-1 = -6 \sim Q11 - page 1 \sim 2x+1 3x = -54 I = -5/3 23 = $23 = 14\chi$ 4 = 12x= 12x 11 UN X of brackets correctly a - correct answer 2-cornect solus - one correct answer - expanding one 2 - correct solns 1 - Simplifying Narts $c)(xvz-z)^{r} = a - V_{b}$ 6) 4x3 - 8V3 + 4 = a - VbThe rates were \$1200 şi 2: 108% of x = 1296 16 - 1192 16 - 8/3 :. x - 1 - xエ X(x-1) ス(スーリ Q " 2-1 x ======== 6 = a - 1/6 =a-16 20 b = 192 \sim Q11 - page 2 \sim ントン 2 - connect value 2-correct auswer - correct denominant - correct ausuer - correct value Harks tor a and b tora or b

~ Q11 - page 3 ~

 $(f(2\sqrt{3}) = (2\sqrt{5})^{2} - f(2\sqrt{3})$ 2 = 4x3 -813 12-813 ij $(i) f(-2) = (-2)^{2-4/-2}$ = 4 + 8 $\chi^{r}-4\chi-2=0$ $a) f(\chi) = \chi^{r} - 4\chi$ 4 ± 1 24 4±216 =ペキVん f(sc) = 2 $x^{r-4}x = 2$ 0r D 2 Question 12 ۲. ۲ Ņ エ エ <u>;</u>;; 1 - CONNect elimitation other equation subst. into the 1 - mating 2014 the subject and 1-corred ralue values for x8x 4 brzory ofzory You may ask for extra writing paper if you need more space to answer question 11 2-connect Hurks Solutions are: x= 2, y= 3 m DO و ۲ 5 4 = 9 $\frac{4(z)+6y=11}{2}$ b = h qX= 1 in to (1) = 55 Ś e)() 4x + 6y = 11 61 Ķ 8 よし (1) 20x + 304 -54 (2) 102 x - 30 y= X Ŕ 122 × 721 (v) sub. -:

 \sim Q12 - page 1 \sim

1-correct ausulu exact or decine 2 - correct solus in surd form 1-correct auswer in surd form unsimpli hed 1- correct solus Simpli Aid Marks and a support of the second - 1.8564.-

1. CAN

	-2/	2	c) NY is neither L /374-7	also $(dx^{+}+5x)^{+} = -f(x)$	$\frac{f(-x)}{z} = \left(2(x)^{2} - 5(-x)\right)^{2}$	$\sim Q12 - page 2 \sim$ b) $f(x) = (2x^{2} - 5x)^{2}$
	bornect	2 - one correct region and boundary 2 - two correct houndaria 1 - one of the boundaries	3 - correct region		1-gets the expression ther f(-x)	Marks 2-correct working
You may ask for extra writing paper if you need more space t	$\frac{\partial R}{\partial n} + \frac{1}{2} = -\frac{1}{2}$	$\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}}$	$e) \qquad 5 \qquad 270° = 8 = 360°$	$\chi = \frac{1}{\sqrt{2}} = \frac{-4\sqrt{3}}{2} \sqrt{2}$ $\chi = \sqrt{16}$	2 - 4 4 15 4	d) 2 - 4 Sin 60° - 5in 45°
to answer question 12		for tan O for tan O 1-correct sign for tan O	d-correct answe	I-uses sine rule correctly	1-both exact values correct	Marks 2-correctansue

identity & creat quat. trig. equatic with one trig. ratio 1-correct shap with asymphy and asymptote 2-correct answer. and intercepts 3- abrect answer 2- gets two sets 2 - correct shape theornect quedi equ. - correct acust 1- USES COLVECT &-USES COMPECT - intercepts Harts augte →×/ 7==7 ħ : 0050-1 02 0050=-1 $\frac{d \cos^2 \theta + \cos \theta - 1}{d \cos \theta - 1} = 0$ ~ Q13 - page 2 ~ 2(1-0050)-COSO - 1=D - 2005 B - COS B + 1 =0 180° 25in 9 - 605 8 =1 ール ·· 0= 45, 135° 311 8 = 1-19 i) (2 sing =1 : B=60, 300° 4 Z $\langle \cdot \rangle$ - correct lauge 2 - correct solus. - CONFECT DOWN 2-conct 22y -correct x or y-intercept Harks Donnin= all real x, where x + 1 Range = allrealy except y= = 2 ~ Q13 - page 1 ~ 2 $\frac{1}{2} = h ::$ 1--4 ii) z - intercept :: y = 0 $z = \frac{2}{x^2} - 2$ y-interept in z=0 S $2(\chi - 1) = 2$ x = 1 = x $\mathcal{I} = \mathcal{I}$ $\alpha = \frac{1}{2}$ 1-2 3 Question 13 2

Auction correct			, DW/, CV/
Of the percenter			
three sections			Corr & Can U = KHY
1 - Ewo of the			- APAP Ada & Atta
	2-2 0 -1		0sm
sections correct	find=2-x x/2/3		SECU - a JINU
2- all three	f(x) = 14-x + semicircle		
	242 -1 1 0		COS B 205 B
	c) $f(x) = x + 2 - x \left[-3 \right] - 2$		- 1 _ acost, sino
			Q 500
correct factors	= (x-3)(2x-1)(2x+1)		Dulci Danna 1
1-gets 2073	$= (x-3)(4x^{2}-1)$		1-2 mc 0
	$=4x^{\nu}(x-3)-(x-3)$		Cos B
2 - correct factors	4x3-1222-x+3		= cos & +sin & -dcost, sind
	b) Factorise		
X-values correctly			02.00
1- tinds one of the			- cost - 2 cost sin & tsint
correctly and check	: the only solution is x = -14		
n) 2-tinds one x-value	Usy checking 2 = - 4 (not a solution	bracket	- 605 ² P
- X-Values correctly	$\int U_{\mathcal{H}} = -\frac{14}{5}$	and correctly expands	(cost - sint)
2 - finds both	$-4 = x 0 \qquad p = 14 = 5x$	of the trig dentities	Cost /
-9- 	dx + 5 = 3x + 9 - 2x - 5 = 3x + 9	1- recognizes one	LHS = / cost - sint
3 - correct solution	$\frac{1}{2} \pm (2\chi + 5) = 3\chi + 9$	2-correct proof	
	a) Solve 12x+51= 3x+9		() SHUW (UST-SILL) = Sec 0-2 tano
Hourts	Question 14		At and sing 2
	~Q14 - page 1 ~	Marks	~ Q13 - page 3 ~

Question 15 Subst Ŧ :X1-8X+15=0 2 $(\chi-5)(\chi-3)=0$ (1) Ean 30° = 1 tet $\chi = S_{1} \times = 3$ ۲ 15+x= 8x نی 8=x+ 2 Solve 5 (m -8) в $M = \vartheta$ $\frac{15}{5} + 7C = 401$ Nr -<u>ح</u>ے ۱۱ 4 {(2x solutions. 0 x + w 3 3/20 $\left(n_{1}-3\right)$ 2 t X 12 + 24 or ۲ let(AB = x)13 = h (2) tan60°= 8C=4 15/2 Z= 3+1-51 $75 + \chi = 3\chi$ x = 5/x = 3" no solution 2"-32+15=0 \sim Q15 - page 1 \sim 214 || 0 Ъ 1 н 3 + * = . \mathcal{C} t t ŧ E 0= 20 1 - uses correctly 3- correct answers 2-uses substitution - uses substitution to find ABXBC of tan 30 x tan 60° exact values equation and correct expression solution solves It cornect then significan to lead to quade. correctly Marks

nond;-	= sect=RHS	COSA	$\frac{1}{3in^{r}A + cos^{r}A}$	A cost + cost	Cost sint t Cost	Proof: LHS = tan A sin A + cos A		c) i) Prove tan Asing + cosA = sec A		$\frac{\partial R}{\partial x} = \frac{1}{\sqrt{5}} \frac{1}{h} \frac{1}{\sqrt{5}}$	$(-2) = \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}$	00 v 1 /15 -1 / av 1 /	$\frac{1}{2} = \frac{1}{3} h - \frac{h}{12} \qquad (\chi =$	$\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} + 1$	i source	15h) and	\sim Q15 - page 2 \sim
		thin A & sinAtco	both identities	Solution	judias to mana	1 - Significant	2 - correct prop	ITANES	Al ale		15	3-1	AL .	ene			

1- 4,245 g(4x) 3-correct ausuru f(g(x)) & g(f(x)) correctly 2-finds g(Arr) and equaks Narks in -4x+4x+1 = 3-2x+0 Now solve f(g(x)) = g(f(x)) $(0, 2x^{2}) = 3 - 2x^{2}$ $= 4 - 2x^{\nu} - 1$ $= \mathcal{A}\left(\mathcal{Z}^{-}\mathcal{Z}^{2}\right)$ Find $g(f(x)) = g(2-x^{r})$ \sim Q15 - page 4 \sim $i 0 = 2x^{r} - 4x + 2$ $0 = \chi^{r} - 2\chi + 1$ Ē 7-1)2 7=1)| 0 15d) conti) (ji 1 - progress towards auswers -gets only one 2-correct solms. of the solus. 1-correct ausuer 1-correct solus. 1 - uses parti) correctly Marks from part (i) trutsin + cosA = SecA for 0= A = 360° $4 = 45^{\circ} 225^{\circ}$ tau A sind + 005A = 005ec A i Solve Sec A = Co Sec A g(x)= 2x-1 = 2- 92= -79 81uA = COSA -: tan A =1 = 2 - 4x2 + 4x - $\frac{1}{2}$ Find f(g(5)) = f(2(5)-1)~ Q15 - page 3 ~ COSA = SinA $= 2 - (4x^{r} - 4x + 1)$ --4x2+4x+1 = 2 - (2x-1)2 $\ddot{i} f (g(x)) = f / 2x - i$ c) ii) Now Solve $d \not f(x) = 2 - x^{r}$ = f (9)

· ·