

BAULKHAM HILLS HIGH SCHOOL
Half -Yearly 2017
YEAR 11 ADVANCED TASK 1

Mathematics

General Instructions

- Reading time - 5 minutes
- Working time -1.5 hours
- Write using black or blue pen
- Board-approved calculators may be used
- Show all necessary working in Questions 11-15
- Marks may be deducted for careless or badly arranged work

Total marks - 76
Exam consists of 9 pages.
This paper consists of TWO sections.

Section 1 - (10 marks) Pages(2-4)
Questions 1-10

- Attempt Question 1-10
- Answer on answer sheet provided

Section II - (66 marks) Pages(5-9)

- Attempt questions 11-15

Section I-10 marks

Use the multiple choice answer sheet for question 1-10

1. The factorisation of $x^{3}-8$ is
(A) $(x-2)\left(x^{2}-2 x+4\right)$
(B) $(x-2)\left(x^{2}+2 x+4\right)$
(C) $(x-2)\left(x^{2}-x+4\right)$
(D) $(x-2)\left(x^{2}+x+4\right)$
2. The solutions to the equation $x^{2}-5 x+2=0$ are :
(A) $\frac{5 \pm \sqrt{17}}{2}$
(B) $\frac{-5 \pm \sqrt{17}}{2}$
(C) $\frac{5 \pm \sqrt{33}}{2}$
(D) $\frac{-5 \pm \sqrt{33}}{2}$
3. Which of the following is equivalent to $\frac{1}{2 \sqrt{5}-\sqrt{3}}$?
(A) $\frac{2 \sqrt{5}-\sqrt{3}}{7}$
(B) $\frac{2 \sqrt{5}+\sqrt{3}}{7}$
(C) $\frac{2 \sqrt{5}-\sqrt{3}}{17}$
(D) $\frac{2 \sqrt{5}+\sqrt{3}}{17}$
4. $\frac{8^{n+1}}{2^{n-2}}=$
(A) 4^{-1}
(B) 4^{3}
(C) $2^{2 n+1}$
(D) $2^{2 n+5}$
5.

(A) $y=(x+1)^{2}+2$
(B) $y=(x-1)^{2}+2$
(C) $y=(x-2)^{2}+1$
(D) $y=2(x-1)^{2}+2$
6. How many solutions of the equation $(\sin x-1)(\tan x+2)=0$ lie between 0° and 360° ?
(A) 1
(B) 2
(C) 3
(D) 4
7. For the angle $\theta, \sin \theta=\frac{7}{25}$ and $\cos \theta=-\frac{24}{25}$. Which diagram best shows the angle θ ?
(A)

(B)

(C)

(D)

8. Which diagram shows the graph of an odd function?
(A)

(B)

(C)

(D)

9.

The area for the given triangle, correct to two decimal places, is:
(A) 38.30
(B) 46.98
(C) 32.14
(D) 43.30
10. How many solutions does the equation $|\cos (2 x)|=1$ have for $0^{\circ} \leq x \leq 360^{\circ}$?
(A) 1
(B) 3
(C) 4
(D) 5

Section II - Extended Response

Attempt questions 11-15. All necessary working should be shown in every question.
Question 11 (13 marks) Use the Question 11 section of the writing booklet.
a) Solve
(i) $6-\frac{2 x+1}{4}=3 x$

2
(ii) $|3 x-1|=6$

2
b) Simplify
(i) $(x-2)(x+2)-(3-x)$
(ii) $\frac{1}{x}-\frac{1}{x-1}$
c) If $(2 \sqrt{3}-2)^{2}=a-\sqrt{b}$, find the values of a and b 2
d) Council rates increased by 8% to $\$ 1296$. What were the rates prior to the increase?
e) Solve simultaneously

$$
4 x+6 y=11
$$

$$
17 x-5 y=1
$$

End of Question 11

Question 12 (13 marks) Use the Question 12 section of the writing booklet.
a) If $f(x)=x^{2}-4 x$, find:
(i) $\quad f(-2)$
(ii) $\quad f(2 \sqrt{3})$
(iii) the exact value of x, in simplest form, if $f(x)=2$.
b) Decide if the function $f(x)=\left(2 x^{2}-5 x\right)^{2}$ is even, odd or neither. Justify your answer
c) Sketch the region in the Cartesian plane for which inequalities

$$
\begin{aligned}
& y \leq 2 x-2 \\
& x^{2}+y^{2} \leq 4 \text { hold simultaneously }
\end{aligned}
$$

d) Given the triangle below, find the exact value of x.

e) Find the exact value of $\tan \theta$ if $\cos \theta=\frac{\sqrt{2}}{5}$ and $270^{\circ} \leq \theta \leq 360^{\circ}$.

End of Question 12

Question 13 (13 marks) Use the Question 13 section of the writing booklet.
a) Consider the curve $y=\frac{2}{x-1}-2$
$\begin{array}{ll}\text { (i) State the domain and range } & \mathbf{2}\end{array}$
(ii) Find the intercepts $\quad \mathbf{2}$
(iii) Sketch the curve showing all important features $\quad \mathbf{2}$
b) Solve for $0^{\circ} \leq \theta \leq 360^{\circ}$
(i) $\begin{aligned} & \sqrt{2} \sin \theta=1 \\ & \mathbf{2}\end{aligned}$
(ii) $2 \sin ^{2} \theta-\cos \theta=1 \quad 3$
c) Show that $\quad \mathbf{2}$

$$
\left(\frac{\cos \theta-\sin \theta}{\cos \theta}\right)^{2}=\sec ^{2} \theta-2 \tan \theta
$$

End of Question 13

Question 14 (13marks) Use the Question 14 section of the writing booklet.
a) Solve $|2 x+5|=3 x+9$
b) Factorise $4 x^{3}-12 x^{2}-x+3$
c) Given

$$
f(x)=\left\{\begin{array}{cl}
x+2 & \text { for } x \leq-2 \\
\sqrt{4-x^{2}} & \text { for }-2<x<2 \\
2-x & \text { for } x \geq 2
\end{array}\right.
$$

(i) Sketch the function
(ii) Hence or otherwise find the range of $f(x)$.
d) A hiker left camp A and walked 15 km on a bearing of $N 32^{\circ} E$ to B. He then turned and walked for 25 km to the point C , then 35 km back to A .

i) Redraw the diagram into your booklet showing the given information. $\mathbf{1}$
ii) Find the size of $\angle A B C$.
iii) Hence or otherwise find the bearing of B from C.

Question 15 (14 marks) Use the Question 15 section of the writing booklet.
a) Solve $\left(\frac{15}{x}+x\right)^{2}-11\left(\frac{15}{x}+x\right)+24=0$

3

2

c)
i) Prove that $\tan A \sin A+\cos A=\sec A$
ii) Hence or otherwise solve $\tan A \sin A+\cos A=\operatorname{cosec} A$ for $0^{\circ} \leq A \leq 360^{\circ}$
d) If $f(x)=2-x^{2}$ and $g(x)=2 x-1$
i) Find $f(g(5))$.
ii) Show that $f(g(x))=-4 x^{2}+4 x+1$.
iii) Find the value(s) of x for which $f(g(x))=g(f(x))$.

End of Exam

	QQदा यूल डभया कू:		
	वOE1\$=		
10nstio fownos -	$9 b 61=x+0 \% 801(p$		
	Tbl $=9$ ¢ $91=0 \quad \because$		
910 blay	$\underline{9} \\|-b=c_{b 1} \mid-91$		
minntranos-1	91-b $=$ 菂8-91		
	$9 \cap-b=b+\varepsilon \wedge 8-\varepsilon \times b$		
9 pun bly			
$\operatorname{son} 121$ frinon- 6	$9 \\|-v=a(z-\varepsilon \\| \varepsilon)(r$		
	$x-12$		
	$1-10-1-=$		
punonop toanos-1	$(1-x) x=$		
	$x-1-x$		
joushby founem-8	$1-x \quad x$		
57.123	$\frac{x}{1}-T(!!)(9$		

You may ask for extra writing paper if you need more space to answer question 11

~Q13-page $1 \sim$
Question 13

	1
	SHy = Qunt - -02S
	6503
	θ बisc $-\theta$ OJs $=$
	-9,500 $0_{1} 500$
	Q 500
	-4.5.0sosx-1 =
	0_{2} Son
	θ_{2}^{505}
	$\theta_{1} u 15+\theta^{n!5} \theta^{503} \varphi-\theta 500$
	Q sas
	(0415-050) $=$
	$3(0.15-6.508)$
	0500
no sazinbosat -1	$\cdots{ }^{-\theta n!s-\theta 5 B 0}=S+1 Y$
	1
Yooud +Panson-6	(6500
	$\underline{2 x}-\theta \partial a s=\left(\frac{0,00}{\theta n, s-\theta s a s}\right)$ mons (1

\sim Q14-page $2 \sim$

Question 15	Marks
a) Solve $\left(\frac{15}{x}+x\right)^{2}-11\left(\frac{15}{x}+x\right)+24=0$	3-correct answers
let $\frac{15}{x}+x=m$	2- uses substivution
$\therefore \quad m^{2}-11 m+24=0$	to lead to quade.
$(m-8)(m-3)=0$	equation and
$m=8$ or $m=3$ (1)	solves it correctly
$\therefore \frac{15}{x}+x=8 \quad \frac{15}{x}+x=3$	poo ressigtowards solution
$15+x^{2}=8 x \quad 115+x^{2}=3 x$	-uses substitution
$\therefore x^{2}-8 x+15=0 \quad x^{2}-3 x+15=0$	correctly
$(x-5)(x-3)=0 \quad x=3 \pm \sqrt{-51}$	
$x=5, x=3 \quad \therefore$ no solution	
(1) (1.)	
\therefore solutions $\quad x=5, x=3$	
b)	2- correct exprssin
$B C=y$	1 - uses correctly
	exact values
(1) $\tan 30^{\circ}=\frac{h}{2} \quad$ (2) $\tan 60^{\circ}=\frac{h}{y}$	of $\tan 30^{\circ} \times \tan 60^{\circ}$
$1 \cdot \frac{h^{2}}{} \quad 1 \sqrt{3}=h^{y}$	to find $A B \times B C$
$\frac{1}{\sqrt{3}}=\frac{u}{x+y}$	
t. $y=\frac{h}{\sqrt{3}} \quad \cdots y=\frac{h}{\sqrt{3}}$	
(1)	
$1=h$	
$\sqrt{3}-\frac{2}{x+\frac{2}{2}}$	

