

Mathematics

General Instructions	 Reading time – 5 minutes Working time – 2 hours 30 minutes Write using black or blue pen Black pen is preferred Board-approved calculators may be used 			
	 In Questions 11 – 17, show relevant mathematical reasoning and/or calculations Marks may be deducted for careless or badly arranged work 			
Total marks: 82	 Section I – 10 marks (pages 2 – 5) Attempt Questions 1 – 10 Allow about 15 minutes for this section 			
	 Section II – 72 marks (pages 6 – 12) Attempt Questions 11 – 16 Allow about 2 hours 15 minutes for this section 			

Section I

10 marks Attempt Questions 1 – 10 Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1 - 10

1 Which one of the following expressions represents the factored form of $8x^3 + 27$?

(A)
$$(2x+3)(4x^2+6x+9)$$

- (B) $(2x+3)(4x^2-6x+9)$
- (C) $(2x-3)(4x^2-6x-9)$
- (D) $(2x-3)(4x^2+6x-9)$
- 2 Which of the following is a function?

3
$$\frac{1+\sqrt{3}}{2-\sqrt{3}} =$$

(A) $5+3\sqrt{3}$
(B) $\frac{5+3\sqrt{3}}{7}$
(C) $\sqrt{3}-1$
(D) $\frac{\sqrt{3}-1}{7}$

In the diagram above;

- (A) The angle of elevation is α and the angle of depression is β
- (B) The angle of elevation is β and the angle of depression is θ
- (C) The angle of elevation is θ and the angle of depression is β
- (D) The angle of elevation is α and the angle of depression is θ

5 Given
$$\cos\theta = -\frac{3}{5}$$
 and $\sin\theta < 0$, the ratio for $\tan\theta =$

(A) $-\frac{4}{5}$ (B) $-\frac{4}{3}$ (C) $\frac{4}{3}$ (D) $\frac{4}{5}$ 6 In simplified form, the algebraic expression $\frac{x}{(x-3)}$ written as

$$\frac{x+5}{(x-3)(x+1)} - \frac{x-1}{x^2 - x - 2}$$
 can be

(A)
$$\frac{7x-13}{(x+1)(x-2)(x-3)}$$

(B) $\frac{-x-13}{(x+1)(x-2)(x-3)}$
(C) $\frac{7x-7}{(x+1)(x-2)(x-3)}$

(D)
$$\frac{-x-7}{(x+1)(x-2)(x-3)}$$

$$7 \qquad \frac{\sin(360^\circ - A)}{\sin(90^\circ - A)} =$$

- (A) –1
- (B) 1
- (C) tanA
- (D) tanA
- 8 Two functions are defined as $f(x) = 3x^2 4$ and $g(y) = y^2 2y$. How many solutions are there to the equation f(a) = g(2a)?
 - (A) 0
 - (B) 1
 - (C) 2
 - (D) 3

- 9 The circle with equation $x^2 + y^2 12x 10y + k = 0$ meets the coordinate axes at exactly three points. What is the value of k?
 - (A) 5
 - (B) 6
 - (C) 25
 - (D) 36

10 Let *r* and *s* be integers, then $\frac{6^{r+s} \times 12^{r-s}}{8^r \times 9^{r+2s}}$ is an integer if

- (A) $r+s \leq 0$
- (B) $s \leq 0$
- (C) $r \leq 0$
- (D) $r \ge s$

END OF SECTION I

Section II

72 marks Attempt Questions 11 – 16 Allow about 2 hours 15 minutes for this section

Answer each question on the appropriate answer sheet. Each answer sheet must show your name. Extra paper is available.

In Questions 11 to 16, your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (12 marks) Use a separate answer sheet

(a) Write
$$4\sqrt[4]{x^5}$$
 in index form.

(b) Evaluate
$$\sqrt{\frac{4.81 \times 10^5}{7.36 \times 10^9}}$$
 correct to two significant figures. 2

Marks

1

(c) If
$$f(x) = 7 - 2x^2$$
, find the value of $f(-1)$.

(d) Simplify
$$\sqrt{75} - 2\sqrt{27}$$
. 2

(e) Expand and simplify
$$(3x - 4)(x - 2)(x + 2)$$
. 2

(f) Factorise

(i) $2x^2 + 3x - 2$ 1

(ii)
$$x^3 + 5x^2 + x + 5$$
 1

(iii)
$$4a^2(x^3 + 18ab^2) - (32a^5 + 9b^2x^3)$$
 2

Question 12 (12 marks) Use a separate answer sheet

(a) Express as a single fraction in simplest terms

(i)
$$\frac{125a^3 - 8}{a^2 - 7a + 10} \times \frac{a - 5}{25a^2 - 4}$$
 2

(ii)
$$\frac{2}{x^2 - 1} - \frac{1}{x^2 - x} + \frac{x - 1}{x^2 + x}$$
 3

(b) Solve

(i)
$$\frac{3x-2}{4} - \frac{2x-1}{8} = 5$$
 2

(ii)
$$|2x+6| = 3x-1$$
 3

(iii) Solve
$$2x^2 - 6x \le 0$$
 2

Question 13 (12 marks) Use a separate answer sheet

(a) The graph below shows the absolute value function y = |2x - 3| and the straight line $y = \frac{9 - x}{2}$.

Use the graph to solve the inequation $|2x - 3| \ge \frac{9 - x}{2}$.

(b) Rationalise the denominator of
$$\frac{10}{\sqrt{5}-\sqrt{3}}$$
. 2

(c) Express 0.0123 as a fraction in its simplest form, without the aid of a calculator.

(d) Make v the subject of the formula
$$F = \frac{mv^2}{gr}$$
 2

- (e) Use the method of "completing the square" to solve the equation 2 $x^{2} 8x + 9 = 0$
- (f) For the equation (x + 2y)(2x y) + (x y)(3x + 4y) = 22
 - (i) Verify that x = 2 and y = 1 is a possible solution 1
 - (ii) Find any other value(s) of x which makes the equation true when y = 1 2

- 8 -

1

Question 14 (12 marks) Use a separate answer sheet

- (a) Consider the function y = f(x)
 - (i) State the condition for the function to be even. 1
 - (ii) Give an example of an even function.
- (b) The function f(x) is defined as $f(x) = \begin{cases} x^2 + 1 & : x > 3 \\ 3x & : -2 \le x \le 3 \\ 2 & : x < -2 \end{cases}$

Find f(2) + f(5) - f(-2).

- (c) Consider the function $y = \sqrt{x^2 16}$
 - (i) Find the domain of the function.
 - (ii) Find the range of the function.
- (d) A circle, centred at the origin and an exponential of the form $y = a^x$ are shown below.

P and Q lie on the curves as shown, Q has coordinates (2,4)

(i)	Write down the coordinates of <i>P</i> .	1
(ii)	Find the equation of the circle.	2
(iii)	Find the equation of the exponential function.	1
(iv)	Give the three inequations which combine to define the shaded region.	2

Marks

1

2

1

1

Marks

2

Question 15 (12 marks) Use a separate answer sheet

(a) It is known that $\sin 15^\circ = \frac{\sqrt{3}-1}{2\sqrt{2}}$.

Using this value, find the following; (*Note: your working MUST show how you used* sin 15°)

- (i) $\cos 75^{\circ}$. 1
- (ii) $\operatorname{cosec} 15^{\circ}$.
- (iii) sin 195°. 1
- (b) Solve the simultaneous equations

$$2x + y = 4$$
$$5x + 2y = 9$$

- (c) Prove the relationship $\sin^4 x \cos^4 x \equiv 1 2\cos^2 x$. 2
- (d) A student is asked to solve $\tan x = \sin x$, giving all solutions in the range $0^{\circ} \le x \le 360^{\circ}$. Below is the student's working;

$\tan x = \sin x$	
$\frac{\sin x}{\cos x} = \sin x$	(write tanx as $\frac{\sin x}{\cos x}$)
$\sin x = \sin x \cos x$	(multiply by $\cos x$)
$1 = \cos x$	(cancel sinx)
$x = 0^{\circ}, 360^{\circ}$	

Whilst the student did find two correct answers, there is another answer that they did not find.

- (i) What did the student do wrong in their working?*1*(ii) Find the missing answer.
- (e) Solve, to the nearest degree where necessary, for $0^{\circ} \le \theta \le 360^{\circ}$ 3

$$\sin\theta \tan\theta + 2\sin\theta = 3\cos\theta$$
.

Question 16 (12 marks) Use a separate answer sheet

(a) The diagram below represents a framework for supporting a roof. The outer beams TP and TS are each 4 metres in length, the inner beams TQ and TR are inclined at 65° to the horizontal and the height of the framework is 2.5 metres.

Calculate the;

(i)	angle TPS, correct to the nearest degree	1
(ii)	width PS, correct to the nearest centimetre.	1
(iii)	length of TQ, correct to the nearest centimetre.	1

(b) A field is triangular, with two sides of 80 metres and 40 metres, enclosing an angle of 130° .

(i)	Calculate the area of the field, correct to the nearest metre squared.	1
(ii)	Without calculating its length, how do you know that the third side must be the largest side of the triangle?	1
(ii)	Use the cosine rule to calculate the length of the third side, correct to the nearest metre.	1

Question 16 continues on page 12

Question 16 (continued)

(c) A and B are two points 1500 metres apart on a road running due west. A soldier at A observes that the bearing of an enemy's gun battery at G is 296° and heads towards B, where the bearing of the gun battery is 302°.

(i)	Copy this diagram onto your answer sheet, showing the given information.	1
(ii)	Explain why $\angle AGB = 6^{\circ}$	1
(iii)	Show that BG = $\frac{1500 \sin 26^{\circ}}{\sin 6^{\circ}}$	1
(iv)	The range of the guns in the enemy's battery is 5 km. How far past B can the soldier travel before being in range of the enemy's guns? Give your answer correct to the nearest metre.	3

End of paper

BAULKHAM HILLS HIGH SCHOOL

YEAR 11 MATHEMATICS HALF YEARLY ASSESSMENTS 2018 SOLUTIONS

Solution	Marks	Comments
SECTION I		
1. B - $8x^3 + 27 = (2x)^3 + 3^3$		
$= (2x+3)\left((2x)^2 - (2x)(3)\right)$	1	
$= (2x+3)(4x^2-6x+9)$		
2. D – the only graph that satisfies the "vertical line test"	1	
3 A $\frac{1+\sqrt{3}}{\sqrt{3}} \times \frac{2+\sqrt{3}}{\sqrt{3}} = \frac{2+3\sqrt{3}+3}{\sqrt{3}+3}$		
$3. A^{-} 2 - \sqrt{3}^{-} 2 + \sqrt{3}^{-} 4 - \frac{3}{2}$	1	
$= 5 + 3\sqrt{3}$		
4. \mathbf{D} – from the diagram;		
Angle of depression is ρ	1	
Angle of depression is σ		
5. C - $\cos\theta < 0$ and $\sin\theta < 0 \Rightarrow$ guadrant 3, $\therefore \tan\theta > 0$		
4 5	1	
$\tan\theta = \frac{4}{3}$		
6. A - $\frac{x+5}{x+5} - \frac{x-1}{2} = \frac{x+5}{x+5} - \frac{x-1}{x+5}$		
$ (x-3)(x+1) x^2 - x - 2 (x-3)(x+1) (x-2)(x+1) \\ (x+5)(x-2) (x-1)(x-3) $		
$=\frac{(x+3)(x-2)-(x-1)(x-3)}{(x-2)(x-1)(x-3)}$		
$x^{2} + 3x - 10 - x^{2} + 4x - 3$	1	
$=\frac{1}{(x-3)(x-2)(x+1)}$		
$=\frac{7x-13}{7x-13}$		
(x-3)(x-2)(x+1)		
7. C - $\frac{\sin(360^\circ - A)}{\sin(360^\circ - A)} = \frac{-\sin A}{\sin(360^\circ - A)}$		
$\sin(90^\circ - A) \cos A$	1	
$= -\tan A$		
$3a^2 = 4 = (2a)^2 = 2(2a)$		
$3a^2 - 4 - (2a) - 2(2a)$		
$a^2 - 4a + 4a = 0$	1	
$\frac{a^2 - a^2 + 4 - 6}{(a^2 - 1)^2 - 6}$		
$a=2 \Rightarrow$ only one solution		
9. $C - x^2 + y^2 - 12x - 10y + k = 0$		
$(x-6)^2 + (y-5)^2 = 61 - k \implies \text{centre is } (6.5)$		
For exactly three intercepts the radius = 6 (6.5)	1	
61 - k = 36		
k = 25		
$10.B - \frac{6^{r+s} \times 12^{r-s}}{2} = \frac{2^{r+s} \times 3^{r+s} \times 2^{2r-2s} \times 3^{r-s}}{2}$		
$8^r \times 9^{r+2s}$ $2^{3r} \times 3^{2r+4s}$		
$=\frac{2^{3'-3}\times 3^{2'}}{3}$	1	
$2^{3r} \times 3^{2r+4s}$		
$=2^{-s}\times 3^{-4s}$		
Thus $s \leq 0$ in order for expression to be an integer		

SECTION II				
	QUESTION 11	•		
	Solution	Marks	Comments	
11(a)			1 mark	
	<u> </u>	1	• Correct answer	
	$\sqrt[4]{x^5} = x^4$	_		
11 (b)			2 montre	
11 (0)	4.01 105		2 marks	
	$\frac{4.81 \times 10^{\circ}}{10} = 0.00808413637$	2	• Correct solution	
	$\sqrt{7.36 \times 10^9}$ 0.00000415057		• Derforms the correct calculation	
	= 0.0081 correct to two significant figures		• I enorms the correct calculation	
11(c)	$f(-1) = 7 - 2(-1)^2$		1 mark	
	J(-1) = 7 - 2(-1) = 7 - 2	1	• Correct answer	
	=5			
11 (d)	$75 - 2 \overline{27} - 5 \overline{2} - 6 \overline{2}$		2 marks	
11 (u)	$\sqrt{15} - 2\sqrt{21} - 5\sqrt{5} - 5\sqrt{5}$		• Correct solution	
	$= -\sqrt{2}$	2	1 mark	
			• Simplifies at least one surd correctly	
11 (e)	(3x-4)(x-2)(x+2)		2 marks	
	$=(3x-4)(x^2-4)$		Correct solution	
	$=3x^{3}-12x-4x^{2}+16$	2	1 mark	
	$-3r^3 4r^2 12r + 16$		• Performs a binomial product expansion	
11 (0 ()	-3x - 4x - 12x + 10		1 mark	
11 (f) (i)	$2x^{2} + 3x - 2$	1	• Correct answer	
	=(2x-1)(x+2)			
11 (f) (ii)	$x^3 + 5x^2 + x + 5$		1 mark	
	$=x^{2}(x+5)+1(x+5)$	1	• Correct answer	
	$=(x+5)(x^{2}+1)$			
11 (0 (**)	$4^{2}(3+10,1^{2})$ (22 $5+01^{2}$ 3)		2 marks	
	4a (x + 18ab) - (32a + 9b x)		• Correct solution	
	$=x^{3}(4a^{2}-9b^{2})-8a^{3}(4a^{2}-9b^{2})$	2	1 mark	
	$=(4a^2-9b^2)(x^3-8a^3)$		• Correctly uses $r^2 + t^2$ or $r^3 + t^3$	
	$= (2a - 3b)(2a + 3b)(x - 2a)(x^{2} + 2ax + 4a^{2})$		factorisation	
	OUFSTION 12		lactorisation	
			2 marks	
12 (a) (i)	$\frac{125a-8}{2} \times \frac{a-5}{2}$		Correct solution	
	$a^2 - 7a + 10^{-1} 25a^2 - 4$		1 mark	
	$(5a-2)(25a^2+10a+4)$ $a-5$		• Factorises 2 out of the 3 non-linear	
	$=\frac{(a-5)(a-2)}{(5a-2)(5a+2)}$	2	expressions	
	$25^{2} + 10 + 4$		1	
	$=\frac{25a + 10a + 4}{10a + 4}$			
	(a-2)(5a+2)			
12 (a) (ii)	$\frac{2}{1}$ $\frac{1}{x-1}$		3 marks	
12(a)(ll)	$\frac{1}{x^2-1} - \frac{1}{x^2-x} + \frac{1}{x^2+x}$		• Correct solution	
	2 1 r - 1		2 marks	
	$=\frac{2}{(x-1)(x+1)}-\frac{1}{x(x-1)}+\frac{x-1}{x(x-1)}$		• Rewrites as a single fraction	
	(x-1)(x+1) $x(x-1)$ $x(x+1)$		1 mark	
	$-\frac{2x-(x+1)+(x-1)^2}{2}$		• Finds the LCD	
	-x(x+1)(x-1)			
	$2x - x - 1 + x^2 - 2x + 1$			
	$=\frac{-1}{2} \frac{1}{(x+1)(x-1)}$	3		
	x(x + 1)(x - 1)			
	$=$ $\frac{x^2 - x}{x^2 - x}$			
	x(x+1)(x-1)			
	x(x-1)			
	$=\frac{1}{x(x+1)(x-1)}$			
	1			
	$=\frac{1}{n+1}$			
	x + 1			

QUESTION 12continued.			
Solution	Marks	Comments	
12 (b) (i) $ \frac{3x-2}{4} - \frac{2x-1}{8} = 5 $ $ 2(3x-2) - (2x-1) = 40 $ $ 6x - 4 - 2x + 1 = 40 $ $ 4x = 43 $ $ x = \frac{43}{4} $	2	 2 marks Correct solution 1 mark Removes the fractions by multiplying by the LCD, or equivalent 	
12 (b) (ii) 2x + 6 = 3x - 1 2x + 6 = 3x - 1 x = 7 0R 5x = -5 x = -1 NOT A SOLUTION $\therefore x = 7$	3	 3 marks Correct solution 2 marks Finds two "possible" answers 1 mark Finds an answer without considering cases. 	
12 (b) (iii) $2x^2 - 6x \le 0$ $2x(x - 3) \le 0$ $0 \le x \le 3$	2	 2 marks Correct solution 1 mark Establishes the two critical points of the solution. 	
QUESTION 13	1		
13 (a) Using the graph, the question becomes; "whenis the linebelow the absolute value graph?" As we are only concerned with the x values, the solution is $x \le -1$ or $x \ge 3$	1	1 mark • Correct solution	
13 (b) $\frac{10}{\sqrt{5} - \sqrt{3}} \times \frac{\sqrt{5} + \sqrt{3}}{\sqrt{5} + \sqrt{3}} = \frac{10(\sqrt{5} + \sqrt{3})}{5 - 3}$ = $\frac{10(\sqrt{5} + \sqrt{3})}{2}$ = $5(\sqrt{5} + \sqrt{3})$	2	 2 marks Correct solution 1 mark Attempts to multiply by the conjugate of the denominator 	
13 (c) let $x = 0.01232323$ 100x = 1.23232323 99x = 1.22 $x = \frac{1.22}{99}$ $= \frac{122}{9900}$ $= \frac{61}{4950}$ $\therefore 0.0123 = \frac{61}{4950}$	2	 2 marks Correct solution 1 mark Evidence of a valid manual calculation 	
13 (d) $F = \frac{mv^{2}}{gr}$ $mv^{2} = Fgr$ $v^{2} = \frac{Fgr}{m}$ $v = \pm \sqrt{\frac{Fgr}{m}}$	2	 2 marks Correct solution 1 mark makes v² the subject of the formula 	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	 2 marks Correct solution 1 mark Completes the square to obtain (x - 4)² Solves the equation for a different completed square. 	

QUESTION 13continued.			
Solution	Marks	Comments	
13 (f) (i) when $x = 2$ and $y = 1$		1 mark	
(x+2y)(2x-y) + (x-y)(3x+4y) = (2+2)(4-1) + (2-1)(6+4)	1	• Correct answer	
= 12 + 10			
= 22			
13 (f) (ii) when $y = 1$		2 marks	
(x+2)(2x-1) + (x-1)(3x+4) = 22		• Correct solution	
$2x^{2} + 3x - 2 + 3x^{2} + x - 4 = 22$		I mark	
$5x^2 + 4x - 28 = 0$		• Establishes quadratic in terms of x	
(x-2)(5x+14)=0	2		
$x = 2$ or $x = -\frac{14}{14}$			
$x - 2$ or $x\frac{1}{5}$			
14			
\therefore the only other possible value of x is $-\frac{1}{5}$			
QUESTION 14		1	
14 (a) (i) $f(x)$ is even if $f(-x) = f(x)$	1	1 mark	
		Correct condition	
14 (a) (ii) some examples would include;		1 mark	
$v = x^2$		• Correct example	
• $y = y $	1	_	
$y = \mu_1$			
$y = \cos x$		2	
14 (b) $f(2) + f(5) - f(-2) = 3(2) + (5^2 + 1) - 3(-2)$		2 marks	
= 6 + 26 + 6	2	• Correct solution	
= 38		I mark	
2		• finds at least two function values	
14 (c) (i) $x^2 - 16 \ge 0$	1	1 mark	
$x \le -4$ or $x \ge 4$		• Correct answer	
$14 (c) (ii) y \ge 0$	1	1 mark	
		• Correct answer	
14(0)(1) P(0,1)	1		
		• Correct answer	
14 (d) (ii) $x^2 + y^2 = 2^2 + 4^2$		2 marks	
= 20		1 mark	
\therefore circle has equation $x^2 + y^2 = 20$	2	• Recognises that a circle's equation is	
		• Recognises that a check s equation is	
		of the form $x + y = k$	
14 (d) (iii) (2,4) : $4 = a^2$		1 mark	
a = 2	1	• Correct answer	
\therefore exponential has the equation $y = 2^x$			
14 (d) (iv) $x \ge 0$		2 marks	
$x^2 + y^2 \le 20$	2	• Correct solution	
$v \ge 2^x$		1 mark	
, – –		• At least two correct inequations	
QUESTION 15	1	1	
15 (a) (i) $\cos 75^\circ = \sin(90^\circ - 75^\circ)$		1 mark	
$= \sin 15^{\circ}$		• Correct solution	
$\sqrt{3}-1$			
$=\frac{1}{2\sqrt{2}}$			
1		1 mark	
15 (a) (ii) $\operatorname{cosec} 15^\circ = \frac{1}{\operatorname{cin} 15^\circ}$		Correct solution	
	1		
$=\frac{2\sqrt{2}}{2}$			
$\sqrt{3}-1$			
15 (a) (iii) $\sin 195^\circ = \sin(180^\circ + 15^\circ)$		1 mark	
$= -\sin 15^{\circ}$		Correct solution	
$1 - \sqrt{3}$	1		
$=\frac{1}{2\sqrt{2}}$			
<u>_</u>			

QUESTION 15continued			
	Solution	Marks	Comments
15 (b)	$2x + y = 4 \implies 4x + 2y = 8$		2 marks
	$5x + 2y = 9 \qquad \qquad 5x + 2y = 9$		Correct solution
	$x=1$ \therefore $y=2$	2	1 mark
			• Finds the correct value for one
			pronumeral
15 (c)	$\sin^4 r - \cos^4 r = (\sin^2 r - \cos^2 r)(\sin^2 r + \cos^2 r)$		2 marks
10 (0)	$= \frac{1}{2} \frac{2}{3} \frac{1}{3} $		Correct solution
	$-\sin x - \cos x$	2	1 mark
	$= (1 - \cos^2 x) - \cos^2 x$		• Uses a valid trig identity in a relevant
	$= 1 - 2\cos^2 x$		manner.
15 (d) (i)	The student divided out a possible solution when canceling $sinx$.		1 mark
	When solving equations you can only divide by an unknown if	1	Correct explanation
	there is no possibility that the unknown could equal zero.		-
15 (d) (ii)	The missing answer comes from the possibility that;		1 mark
	$\sin x = 0$	1	Correct solution
	$x = 0^{\circ}$, 180°, 360°	1	
	So the missing answer is $x = 180^{\circ}$.		
15 (e)	$\sin\theta\tan\theta + 2\sin\theta = 3\cos\theta$		3 marks
	$\sin^2 \theta$		Correct solution
	$\frac{\sin^2\theta}{\cos^2\theta} + 2\sin^2\theta = 3\cos^2\theta$		2 marks
			• Finds the two possibilities for $\tan \theta$
	$\sin^2\theta + 2\sin\theta\cos\theta = 3\cos^2\theta$	2	1 mark
	$3\cos^2\theta - 2\sin\theta\cos\theta - \sin^2\theta = 0$	5	• Correctly manipulates terms into a
	$(3\cos\theta + \sin\theta)(\cos\theta - \sin\theta) = 0$		quadratic equation
	$\tan \theta = -3$ OR $\tan \theta = 1$.		
	$\theta = 108^\circ$, 288° $\theta = 45^\circ$, 225°		
	$\therefore \theta = 45^{\circ}, 108^{\circ}, 225^{\circ}, 288^{\circ}$		
	QUESTION 16		
16(a) (i)	2.5		1 mark
10(a) (l)	$\sin 2 \Pi S = \frac{1}{4}$	1	• Correct answer
	∠TPS = 36.6821875	1	Note: no rounding penalty
	$= 36^{\circ}$ to nearest degree		
	$(1)^{2}$		1 mark
16 (a) (ii)	$\left \frac{1}{-PS} \right = 4^2 - 2.5^2$		• Correct answer
	$\begin{pmatrix} 2 \end{pmatrix}$		Note: no rounding penalty
	$\frac{1}{-1}$ ps - 2 1224008000	1	
	2 FS = 5.12249969999		
	PS = 6.244997998		
	= 6.24 metres to the nearest centimetre		
16 (a) (iii)	$\frac{2.5}{1.5} = \sin 65^{\circ}$		1 mark
	$TQ^{-SIIIOS}$		• Correct answer
	2.5	1	Note: no rounding penalty
	$TQ = \frac{1}{\sin 65^{\circ}}$	1	
	= 2.758444797		
	= 276 metres to the nearest centimetre		
1(0) (1)	1 1 10 10 20 11 1 1000		1 mark
16 (b) (1)	Area = $\frac{-1}{2} \times 40 \times 80 \times \sin 130^{\circ}$		• Correct answer
	= 1225.671109	1	Note: no rounding penalty
	$= 1226 \text{ m}^2$		
16 (b) (ii)	The largest side is always opposite the largest angle and since		1 mark
(~) (")	the angle is obtuse, it must be the largest angle.	1	Correct explanation
16 (b) (#)	$x^2 = 40^2 + 80^2 = 2 \times 40 \times 80 \times 120^{10}$		1 mark
10 (D) (III)	$x = 40 \pm 60 = 2 \times 40 \times 60 \times \cos 150^{\circ}$ x = 110.0628043	1	• Correct answer
	x = 110.0020743 x = 110 metres to the nearest metre		Note: no rounding penalty
1			Growy

