

Name:				

Teacher: _____

Class: _____

FORT STREET HIGH SCHOOL

2009

PRELIMINARY SCHOOL CERTIFICATE COURSE ASSESSMENT TASK 1

Mathematics

TIME ALLOWED: 1 HOUR

Outcomes Assessed	Questions	Marks
Performs routine arithmetic manipulation involving surds and simple rational	1	
expressions		
Chooses and applies appropriate algebraic techniques to simplify algebraic	2	
expressions		
Solves problems involving equations	3	
Chooses and applies appropriate geometric techniques and provides appropriate	4	
reasoning to support conclusions in proofs		

Question	1	2	3	4	Total	%
Marks	/16	/16	/16	/16	/64	

Directions to candidates:

- Attempt all questions
- The marks allocated for each question are indicated
- All necessary working should be shown in every question. Marks may be deducted for careless or badly arranged work.
- Board approved calculators may be used
- Each new question is to be started on a new booklet

Question One: (16 marks) Start a new booklet

a) Find |-2.5| - |8|

b) Simplify
$$1\frac{3}{5} \div 2\frac{2}{3}$$
 [1]

[1]

c) Find
$$\frac{1}{2.82 - 1.97}$$
 (correct to 3 significant figures) [2]

d) Calculate
$$6.31^3 \times \sqrt{4.301} \div 9.38$$
 (correct to 2 decimal places) [2]

e) Simplify
$$\sqrt{24} + 3\sqrt{48} - 2\sqrt{54} + 4\sqrt{75}$$
 [2]

f) Calculate
$$\sqrt{\frac{305^2 + 4071}{6 \div 8.6^3}}$$
 (give you answer in scientific notation to 4 significant figures) [2]

g) Expand
$$(2\sqrt{2}-1)(\sqrt{2}+3)$$
 [2]

h) Evaluate
$$\frac{a^3b^4}{c^2}$$
 if $a = \left(\frac{2}{3}\right)^2$ $b = \left(\frac{3}{4}\right)^3$ $c = \left(\frac{3}{8}\right)^4$, leaving your answer as an improper fraction [2]

i) Rationalize the denominator:
$$\frac{2\sqrt{3}+3}{1-\sqrt{3}}$$
 [2]

Question Two: (16 marks) Start a new booklet

a) Expand
$$(x-2)(2x+5)$$
 [1]
b) Factorize $x^2 + 14x - 32$ [1]

c) Simplify
$$6x^2 + 5x - 2x^2 + 4x - 3$$
 [2]

d) Simplify
$$\frac{a+2}{3} - \frac{a}{4}$$
 [2]

e) Fully factorize
$$x^4 - 4x^2$$
 [2]

f) Simplify
$$(2x+1)^2 - (x-2)^2$$
 [2]

g) Given
$$S = \frac{a(1-r^n)}{1-r}$$
, find S when $a = 2$, $r = \frac{1}{3}$, $n = 12$ [2]

h) Simplify
$$\frac{p^2 - 5p + 4}{p^2 - 1}$$
 [2]

i) Factorise
$$27x^3 + 125$$
 [2]

Question Three: (16 marks) Start a new booklet

a)	Solve $-2(3x+1) = 8$	[1]
b)	Draw a neat number-line to show the solution to $\frac{x+5}{3} + 3 > 4$	[2]
c)	Solve $x^2 - 3x - 10 = 0$	[2]
d)	Use the quadratic formula to find the roots of $x^2 - 6x + 7 = 0$ in surd form.	[2]
e)	Solve $ x-3 = 2x-1$	[3]
f)	Solve $y = x^2 - 4x - 1$ and $y = 2x + 3$ simultaneously.	[4]
g)	A regular polygon has an interior angle of 156°. Find how many sides it has.	[2]

Question four: (16 marks) **Start a new booklet** a) Find the value of *x* in the diagrams below

i.
$$AD = DB$$
 and $AD \parallel BE$. Give reasons. [3]

ii.

[2]

c) *ABCD* is a rectangular block 10cm by 6cm leaning against a vertical wall. Point D is 5cm above the ground.

- i. Prove $\triangle CED$ and $\triangle FCB$ are similar. [3]
- ii. Find, in simplest surd form, the height of point B above the ground. [2]

Questi	ion One: (16 marks) Start a new booklet		Marking
a)	-2.5 - 8	[1]	
	= 2.5 - 8		
	= -5.5		U answer
b)	$1\frac{3}{5} \div 2\frac{2}{3}$	[1]	
	8_3		
	$=\frac{1}{5}\times\frac{1}{8}$		
	$=\frac{3}{5}$		O answer
	5		
c)	$\frac{1}{282-197}$	[2]	
	1		
	0.85		
	=1.176470588		• answer
1)	-1.10		
d)	$6.31^{\circ} \times \sqrt{4.301 \div 9.38}$ = 55 54819617	[2]	• answer
	= 55.54819017		1 2 dp correct
e)	$\sqrt{24} + 3\sqrt{48} - 2\sqrt{54} + 4\sqrt{75}$	[2]	
•)	$= \sqrt{4 \times 6} + 3\sqrt{16 \times 3} - 2\sqrt{9 \times 6} + 4\sqrt{25 \times 3}$	[-]	
	$= 2\sqrt{6} + 3 \times 4\sqrt{3} - 2 \times 3\sqrt{6} + 4 \times 5\sqrt{3}$		• surds reduced correctly
	$=32\sqrt{3}-4\sqrt{6}$		• combined like
	$\sqrt{305^2 + 4071}$		surus confectiy
f)	$\sqrt{\frac{563 + 4671}{6 \div 8.6^3}}$	[2]	
	= 3208.283377		• answer
	$=3.208\times10^{3}$		• sci. not. correct
g)	$\left(2\sqrt{2}-1\right)\left(\sqrt{2}+3\right)$	[2]	
	$=\sqrt{2}(2\sqrt{2}-1)+3(2\sqrt{2}-1)$		• correct expansion
	$=4-\sqrt{2}+6\sqrt{2}-3$		
	$=1+5\sqrt{2}$		• collected like term
			concerty

Comments - for questions marked §, most students lost marks because they did not read carefully and so did not meet the requirements of the question! § § - students had trouble reducing $\sqrt{48}$ and $\sqrt{75}$ to multiples of $\sqrt{3}$ § - as with numerator in i) below, many had problems expanding with ed like terms surds.

h) (2) Marking Comments

$$a = \left(\frac{2}{3}\right)^{2} \quad b = \left(\frac{3}{4}\right)^{3} \quad c = \left(\frac{3}{8}\right)^{4}$$

$$\therefore \frac{a^{2}b^{4}}{c^{2}}$$

$$= \frac{\left(\left(\frac{2}{3}\right)^{2}\right)^{3} \times \left(\left(\frac{3}{4}\right)^{3}\right)^{4}}{\left(\left(\frac{3}{8}\right)^{4}\right)^{2}}$$

$$= \frac{\left(\frac{2}{3}\right)^{6} \times \left(\frac{3}{4}\right)^{3}}{\left(\frac{3}{8}\right)^{8}}$$

$$= \frac{\left(\frac{2}{3}\right)^{6} \times \left(\frac{3}{4}\right)^{12}}{\left(\frac{3}{8}\right)^{8}}$$

$$= \frac{2^{6}}{3^{2}} \times \frac{2^{24}}{3^{8}}$$

$$= \frac{2^{6}}{3^{2}}$$

$$= \frac{2^{6}}{3^{2}}$$

$$= \frac{2^{5}}{3^{2}}$$

$$= \frac{2\sqrt{3} + 3}{1 - \sqrt{3}} \times \frac{1 + \sqrt{3}}{1 + \sqrt{3}}$$

$$= \frac{\left(2\sqrt{3} + 3\right) + \sqrt{3}\left(2\sqrt{3} + 3\right)}{1^{2} - \left(\sqrt{3}\right)^{2}}$$

$$= \frac{2\sqrt{3} + 3 + 6 + 3\sqrt{3}}{1 - 3}$$

$$= -\frac{\left(9 + 5\sqrt{3}\right)}{2}$$
(2) Marking Comments
(2) Marking
(3) Marking
(4) Marking
(5) Mar

h)
$$\frac{p^2 - 5p + 4}{p^2 - 1}$$

$$= \frac{(p - 4)(p - 1)}{(p + 1)(p - 1)}$$

$$= \frac{(p - 4)}{(p + 1)}$$
i)
$$27x^3 + 125$$

$$= (3x + 5)(9x^2 - 15x + 25)$$
(2)
(3)
(4)
(5)
$$\frac{x + 5}{3} + 3 > 4$$
(1)
(5)
$$\frac{x + 5}{3} + 3 > 4$$
(2)
(6)
$$\frac{x + 5}{3} + 3 > 4$$
(2)
(7)
$$\frac{x + 5}{3} + 3 > 4$$
(7)
(8)
$$\frac{x + 5}{3} + 3 > 4$$
(7)
(9)
$$\frac{x + 5}{3} + 3 > 4$$
(7)
(9)
$$\frac{x + 5}{3} + 3 > 4$$
(7)
(9)
$$\frac{x + 5}{3} + 3 > 4$$
(7)
(9)
$$\frac{x + 5}{3} + 3 > 4$$
(7)
(9)
$$\frac{x + 5}{3} + 3 > 4$$
(7)
(9)
$$\frac{x + 5}{3} + 3 > 4$$
(7)
(9)
$$\frac{x + 5}{3} + 3 > 4$$
(7)
(10)
$$\frac{x + 5}{3} + 3 > 4$$
(7)
(11)
$$\frac{10}{6} \operatorname{accepted} (\text{this time}) \dots$$
(9)
$$\frac{x + 5}{3} + 3 > 4$$
(12)
(10)
$$\frac{x + 5}{4} - 3 - 2 - 1 \quad 0 \quad 1 \quad 2$$
(12)
(10)
$$\frac{10}{6} \operatorname{accepted} (\text{this time}) \dots$$
(13)
$$\frac{10}{6} \operatorname{accepted} (\text{this time}) \dots$$
(14)
$$\frac{10}{6} \operatorname{accepted} (\text{this time}) \dots$$
(15)
$$\frac{10}{6} \operatorname{accepted} (\text{this time}) \dots$$
(15)
$$\frac{10}{6} \operatorname{accepted} (\text{this time}) \dots$$
(16)
$$\frac{10}{6} \operatorname{accepted} (\text{this time}) \dots$$
(17)
$$\frac{10}{6} \operatorname{accepted} (\text{this time}) \dots$$
(17)
$$\frac{10}{6} \operatorname{accepted} (\text{this time}) \dots$$
(18)
$$\frac{10}{6} \operatorname{accepted} (\text$$

d)

$$x^{2}-6x+7=0$$

$$x = \frac{-b \pm \sqrt{b^{2}-4ac}}{2a}$$

$$= \frac{6 \pm \sqrt{(-6)^{2}-4 \times 1 \times 7}}{2 \times 1}$$

$$= \frac{6 \pm \sqrt{36-28}}{2}$$

$$= \frac{6 \pm \sqrt{8}}{2}$$

$$= \frac{6 \pm 2\sqrt{2}}{2}$$

$$= 3 \pm \sqrt{2}$$
e) $|x-3| = 2x-1$

$$x-3 = 2x-1$$
 or $-(x-3) = 2x-1$
 $-2 = x$ $4 = 3x$
 $x = -2$ $x = \frac{4}{3}$

Check:

$$LHS = \left|\frac{4}{3} - 3\right|$$

$$LHS = \left|-2 - 3\right| = \left|-\frac{5}{3}\right|$$

$$= 5 = \frac{5}{3}$$

$$RHS = 2 \times -2 - 1$$

$$= -5 \qquad RHS = 2 \times \frac{4}{3} - 1$$

$$\neq LHS = \frac{5}{3}$$

$$= LHS$$

$$\therefore x = \frac{4}{3} \text{ is the only solution.}$$

d

f)
$$y = x^2 - 4x - 1$$
 and $y = 2x + 3$. [4]
 $2x + 3 = x^2 - 4x - 1$
 $0 = x^2 - 6x - 4$
 $x = \frac{6 \pm \sqrt{(-6)^2 - 4 \times 1 \times - 4}}{2 \times 1}$
 $= \frac{6 \pm \sqrt{52}}{2}$
 $= \frac{6 \pm 2\sqrt{13}}{2}$
 $= 3 \pm \sqrt{13}$
 $x = 3 + \sqrt{13}$ $x = 3 - \sqrt{13}$
 $y = 2(3 + \sqrt{13}) + 3$ $y = 2(3 - \sqrt{13}) + 3$
 $= 6 + 2\sqrt{13} + 3$ $y = 2(3 - \sqrt{13}) + 3$
 $= 6 + 2\sqrt{13} + 3$ $y = 2(3 - \sqrt{13}) + 3$
 $= 9 + 2\sqrt{13}$ $= 9 - 2\sqrt{13}$
 \therefore Points of intersection are
 $(2 + \sqrt{13}, 9 + 2\sqrt{13})$ $(2 - \sqrt{13}, 9 - 2\sqrt{13})$
g) Regular polygon with interior angle of 156° : [2]
 $\theta = \frac{180(n-2)}{n}$
 $156n = 180n - 360$
 $360 = 24n$
 $n = 15$
 \therefore the polygon has 15 sides.

Marking
O quadratic correctly
formed
O quadratic correctly
 0 y values correct
 0 y values correct
 $-$ solving
simultaneously
means finding
the points of
intersection -
 $values$.
 0 y values correct
 $-$ some students
di not use a
valid formula
and were

i. Prove
$$\triangle CED$$
 and $\triangle FCB$ are similar. (3)
 $\angle ECD + \angle DCB + \angle BCF = 180^{\circ} (st. line)$
but $\angle DCB = 90^{\circ} (ABCD a \operatorname{rectangle})$
hence $\angle ECD + \angle BCF = 90^{\circ}$
so $\angle ECD = 90^{\circ} - \angle BCF$
also $\angle BCF + \angle CBF + \angle BFC = 180^{\circ} (\Delta sum)$
and $\angle BFC = 90^{\circ} (given BF \perp EB)$
so $\angle BCF + \angle CBF = 90^{\circ}$
hence $\angle CBF = 90^{\circ} - \angle BCF$
but $\angle ECD = 90^{\circ} - \angle BCF$
but $\angle ECD = 2CBF$
 $\therefore h a's DCE, CBF$
 $i) \angle ECD = \angle CBF$ (shown above)
 $i. \angle ECD = \angle CBF$ (shown above)
 $ii) \angle CED = \angle CBF$ (shown above)
 $ii) \angle CED = \angle BFC = 90^{\circ} (DE \perp EF, BF \perp EF)$
hence $\frac{BF}{EC} = \frac{BC}{CD}$
 $\frac{BF}{\sqrt{6^{\circ} - 5^{\circ}}} = \frac{10}{6}$
 $BF = \frac{10\sqrt{11}}{6}$
 $= \frac{5\sqrt{11}}{3}$
 $BF = \frac{10\sqrt{11}}{3}$
 $BF = \frac{10\sqrt{11}}{6}$
 $= \frac{5\sqrt{11}}{3}$
 $BT = \frac{10\sqrt{11}}{6}$
 $BT = \frac$