

Name: \qquad

Teacher: \qquad

Class:

\qquad

FORT STREET HIGH SCHOOL

2009

PRELIMINARY SCHOOL CERTIFICATE COURSE ASSESSMENT TASK 1

Mathematics

TIME ALLOWED: 1 HOUR

Outcomes Assessed	Questions	Marks
Performs routine arithmetic manipulation involving surds and simple rational expressions	1	
Chooses and applies appropriate algebraic techniques to simplify algebraic expressions	2	
Solves problems involving equations	3	
Chooses and applies appropriate geometric techniques and provides appropriate reasoning to support conclusions in proofs	4	

Question	1	2	3	4	Total	$\%$	
Marks		$I 16$		$I 16$		$I 16$	

Directions to candidates:

- Attempt all questions
- The marks allocated for each question are indicated
- All necessary working should be shown in every question. Marks may be deducted for careless or badly arranged work.
- Board - approved calculators may be used
- Each new question is to be started on a new booklet

Question One: (16 marks) Start a new booklet

a) Find $|-2.5|-|8|$
b) Simplify $1 \frac{3}{5} \div 2 \frac{2}{3}$
c) Find $\frac{1}{2.82-1.97}$ (correct to 3 significant figures)
d) Calculate $6.31^{3} \times \sqrt{4.301} \div 9.38$ (correct to 2 decimal places)
e) Simplify $\sqrt{24}+3 \sqrt{48}-2 \sqrt{54}+4 \sqrt{75}$
f) Calculate $\sqrt{\frac{305^{2}+4071}{6 \div 8.6^{3}}}$ (give you answer in scientific notation to 4 significant figures)
g) Expand $(2 \sqrt{2}-1)(\sqrt{2}+3)$
h) Evaluate $\frac{a^{3} b^{4}}{c^{2}}$ if $a=\left(\frac{2}{3}\right)^{2} \quad b=\left(\frac{3}{4}\right)^{3} \quad c=\left(\frac{3}{8}\right)^{4}$, leaving your answer as an improper fraction
i) Rationalize the denominator: $\frac{2 \sqrt{3}+3}{1-\sqrt{3}}$

Question Two: (16 marks) Start a new booklet
a) Expand $(x-2)(2 x+5)$
b) Factorize $x^{2}+14 x-32$
c) Simplify $6 x^{2}+5 x-2 x^{2}+4 x-3$
d) Simplify $\frac{a+2}{3}-\frac{a}{4}$
e) Fully factorize $x^{4}-4 x^{2}$
f) Simplify $(2 x+1)^{2}-(x-2)^{2}$
g) Given $S=\frac{a\left(1-r^{n}\right)}{1-r}$, find S when $a=2, \quad r=\frac{1}{3}, \quad n=12$
h) Simplify $\frac{p^{2}-5 p+4}{p^{2}-1}$
i) Factorise $27 x^{3}+125$

Question Three: (16 marks) Start a new booklet
a) Solve $-2(3 x+1)=8$
b) Draw a neat number-line to show the solution to $\frac{x+5}{3}+3>4$
c) Solve $x^{2}-3 x-10=0$
d) Use the quadratic formula to find the roots of $x^{2}-6 x+7=0$ in surd form.
e) Solve $|x-3|=2 x-1$
f) Solve $y=x^{2}-4 x-1$ and $y=2 x+3$ simultaneously.
g) A regular polygon has an interior angle of 156°. Find how many sides it has.

Question four: (16 marks) Start a new booklet

a) Find the value of x in the diagrams below
i. $\quad A D=D B$ and $A D \| B E$. Give reasons.

ii.

b) $A B C D$ is a parallelogram, with $A E$ and $C F$ drawn perpendicular to the diagonal $B D$.

i. Prove $\triangle A E B \equiv \triangle D F C$
ii. Hence prove $A E=F C$
c) $A B C D$ is a rectangular block 10 cm by 6 cm leaning against a vertical wall. Point D is 5 cm above the ground.

i. Prove $\triangle C E D$ and $\triangle F C B$ are similar.
ii. Find, in simplest surd form, the height of point B above the ground.

Question One: (16 marks) Start a new booklet

$$
\text { a) } \begin{aligned}
& |-2.5|-|8| \\
& =2.5-8 \\
& =-5.5
\end{aligned}
$$

b) $1 \frac{3}{5} \div 2 \frac{2}{3}$

$$
\begin{aligned}
& =\frac{8}{5} \times \frac{3}{8} \\
& =\frac{3}{5}
\end{aligned}
$$

c) $\frac{1}{2.82-1.97}$
$=\frac{1}{0.85}$
$=1.176470588$
$=1.18$
d) $6.31^{3} \times \sqrt{4.301} \div 9.38$
$=55.54819617$
$=55.55$
e) $\sqrt{24}+3 \sqrt{48}-2 \sqrt{54}+4 \sqrt{75}$
$=\sqrt{4 \times 6}+3 \sqrt{16 \times 3}-2 \sqrt{9 \times 6}+4 \sqrt{25 \times 3}$
$=2 \sqrt{6}+3 \times 4 \sqrt{3}-2 \times 3 \sqrt{6}+4 \times 5 \sqrt{3}$
$=32 \sqrt{3}-4 \sqrt{6}$
f) $\sqrt{\frac{305^{2}+4071}{6 \div 8.6^{3}}}$
$=3208.283377$
$=3.208 \times 10^{3}$
g) $(2 \sqrt{2}-1)(\sqrt{2}+3)$
$=\sqrt{2}(2 \sqrt{2}-1)+3(2 \sqrt{2}-1)$
$=4-\sqrt{2}+6 \sqrt{2}-3$
$=1+5 \sqrt{2}$
(1) correct expansion
(1) collected like terms correctly
(1) 3 sig figs correct
(1) answer
(1) 2 dp correct
(1) surds reduced correctly
(1) combined like surds correctly
(1) answer
(1) sci. not. correct
-

Comments

- for questions marked §, most students lost marks because they did not read carefully and so did not meet the requirements of the question!
§

\begin{tabular}{|c|c|}
\hline Marking \& Comments

\hline (1) answer

(1) answer \& - for questions marked §, most students lost marks because they did not read carefully and so did not meet the requirements of the question!

\hline | (1) answer |
| :--- |
| (1) 3 sig figs correct | \& §

\hline (1) answer (1) 2 dp correct \& §

\hline | (1) surds reduced correctly |
| :--- |
| (1) combined like surds correctly | \& - students had trouble reducing $\sqrt{48}$ and $\sqrt{75}$ to multiples of $\sqrt{3}$

\hline | (1) answer |
| :--- |
| (1) sci. not. correct | \& §

\hline | (1) correct expansion |
| :--- |
| (1) collected like terms correctly | \& - as with numerator in i) below, many had problems expanding with surds.

\hline
\end{tabular}

$$
\begin{aligned}
& \text { h) } \\
& a=\left(\frac{2}{3}\right)^{2} \quad b=\left(\frac{3}{4}\right)^{3} \quad c=\left(\frac{3}{8}\right)^{4} \\
& \therefore \frac{a^{3} b^{4}}{c^{2}} \\
& =\frac{\left(\left(\frac{2}{3}\right)^{2}\right)^{3} \times\left(\left(\frac{3}{4}\right)^{3}\right)^{4}}{\left(\left(\frac{3}{8}\right)^{4}\right)^{2}} \\
& =\frac{\left(\frac{2}{3}\right)^{6} \times\left(\frac{3}{4}\right)^{12}}{\left(\frac{3}{8}\right)^{8}} \\
& =\frac{2^{6}}{3^{6}} \times \frac{3^{12}}{2^{24}} \times \frac{2^{24}}{3^{8}} \\
& =\frac{2^{6}}{3^{2}} \\
& =\frac{64}{9}
\end{aligned}
$$

i)
$\frac{2 \sqrt{3}+3}{1-\sqrt{3}}$
$=\frac{2 \sqrt{3}+3}{1-\sqrt{3}} \times \frac{1+\sqrt{3}}{1+\sqrt{3}}$
$=\frac{(2 \sqrt{3}+3)+\sqrt{3}(2 \sqrt{3}+3)}{1^{2}-(\sqrt{3})^{2}}$
$=\frac{2 \sqrt{3}+3+6+3 \sqrt{3}}{1-3}$
$=-\frac{(9+5 \sqrt{3})}{2}$
[2]
Marking
Comments
(1) powers resolved correctly
(1) answer
(1) correct conjugate

- those losing marks on this question generally did not have the conjugate correct.

Question Two: (16 marks) Start a new booklet

$$
\text { a) } \begin{aligned}
& (x-2)(2 x+5) \\
& =x(2 x+5)-2(2 x+5) \\
& =2 x^{2}+5 x-4 x-10 \\
& =2 x^{2}+x-10
\end{aligned}
$$

b) $x^{2}+14 x-32$

$$
=(x+16)(x-2)
$$

c) $6 x^{2}+5 x-2 x^{2}+4 x-3$

$$
=4 x^{2}+9 x-3
$$

d) Simplify $\frac{a+2}{3}-\frac{a}{4}$

$$
\begin{aligned}
& =\frac{4(a+2)-3 a}{12} \\
& =\frac{4 a+8-3 a}{12} \\
& =\frac{a+8}{12}
\end{aligned}
$$

e) $x^{4}-4 x^{2}$
f) $(2 x+1)^{2}-(x-2)^{2}$
$=4 x^{2}+4 x+1-\left(x^{2}-4 x+4\right)$
$=3 x^{2}+8 x-3$
g) $a=2, \quad r=\frac{1}{3}, \quad n=12$

$$
\begin{aligned}
S & =\frac{a\left(1-r^{n}\right)}{1-r} \\
& =\frac{2\left(1-\left(\frac{1}{3}\right)^{12}\right)}{1-\frac{1}{3}} \\
& =2\left(1-\frac{1}{3^{12}}\right) \times \frac{3}{2} \\
& =3\left(\frac{3^{12}-1}{3^{12}}\right) \\
& =2.999994355
\end{aligned}
$$

$$
=x^{2}\left(x^{2}-4\right)
$$

$$
=x^{2}(x+2)(x-2)
$$

Marking
(1) x term correct
(1) correct cross multiplication
(1) answer
(1) x^{2} factored
(1) difference of squares correct
answer
(1) answer
(1) x^{2} term correct
(1) expansions
(1) answer
substitutions \& powers correct

Comments

Note: a), b) and
c) are

EXPRESSIONS

- too many treated them as equations and answered as $x=$...

Note: this is not a factorising question!

- many missed the x^{2} factor.
- many made errors subtracting the expansion; brackets often missed

Note: the question does not ask for a number of decimal places; in these cases, quote all from your calculator; an answer of 3 is incorrect (no mark deducted if the answer show was subsequently rounded to 3)
h) $\frac{p^{2}-5 p+4}{p^{2}-1}$

$$
\begin{aligned}
& =\frac{(p-4)(p-1)}{(p+1)(p-1)} \\
& =\frac{(p-4)}{(p+1)}
\end{aligned}
$$

i) $27 x^{3}+125$

$$
=(3 x+5)\left(9 x^{2}-15 x+25\right)
$$

Question Three: (16 marks) Start a new booklet

$$
\text { a) } \begin{aligned}
-2(3 x+1) & =8 \\
-6 x-2 & =8 \\
-10 & =6 x \\
x & =\frac{-5}{3}
\end{aligned}
$$

b) $\frac{x+5}{3}+3>4$
$\frac{x+5}{3}>1$
$x+5>3$
$x>-2$

c) $x^{2}-3 x-10=0$
$x=5,-2$

$$
(x-5)(x+2)=0
$$

$$
x=5,-2
$$

Marking
(1) factors correct
(1) answer
(1) cube root bracket
(1) squares bracket
[2]
(squares bracket
(1) answer with working
(1) resolved inequality
(1) number line correct
(1) factors correct
(1) answers

Comments

- this pattern poorly known
- simplest form! $\frac{-10}{6}$ accepted (this time)...

Note: a) and c) are EQUATIONS they DO need an answer of $x=$...

- too many stopped at the factored form, and did not give the x values.
d)

$$
\begin{aligned}
x^{2}-6 x+7 & =0 \\
x & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{6 \pm \sqrt{(-6)^{2}-4 \times 1 \times 7}}{2 \times 1} \\
& =\frac{6 \pm \sqrt{36-28}}{2} \\
& =\frac{6 \pm \sqrt{8}}{2} \\
& =\frac{6 \pm 2 \sqrt{2}}{2} \\
& =3 \pm \sqrt{2}
\end{aligned}
$$

e) $|x-3|=2 x-1$

$$
\begin{array}{ll}
x-3=2 x-1 & \text { or } \\
-2=x & 4=3 x \\
x=-2 & x=\frac{4}{3}
\end{array}
$$

Check:

$$
\begin{aligned}
L H S & =\left|\frac{4}{3}-3\right| \\
L H S & =|-2-3| \\
& =|-5| \\
& =5 \\
R H S & \left.=2 \times-\frac{5}{3} \right\rvert\, \\
& =-5 \quad \frac{5}{3} \\
& \neq L H S
\end{aligned} \quad R H S=2 \times \frac{4}{3}-1 .
$$

$\therefore x=\frac{4}{3}$ is the only solution.

Marking
[2]

correct substitution in quadratic formula
(1) answers

Comments

- resolving $\sqrt{8}$ to $2 \sqrt{2}$ an issue for some,
leading to errors giving the simplest form of the surd
- several students couldn't get two answers for the two cases
- most common error was not checking the solutions. You MUST do this step every time there is an absolute value $=$ a non-absolute value.
f) $y=x^{2}-4 x-1$ and $y=2 x+3$.

$$
\begin{aligned}
2 x+3 & =x^{2}-4 x-1 \\
0 & =x^{2}-6 x-4 \\
x & =\frac{6 \pm \sqrt{(-6)^{2}-4 \times 1 \times-4}}{2 \times 1} \\
& =\frac{6 \pm \sqrt{52}}{2} \\
& =\frac{6 \pm 2 \sqrt{13}}{2} \\
& =3 \pm \sqrt{13}
\end{aligned}
$$

$$
x=3+\sqrt{13} \quad x=3-\sqrt{13}
$$

$$
y=2(3+\sqrt{13})+3 \quad y=2(3-\sqrt{13})+3
$$

$$
=6+2 \sqrt{13}+3=6-2 \sqrt{13}+3
$$

$$
=9+2 \sqrt{13}
$$

$$
=9-2 \sqrt{13}
$$

\therefore Points of intersection are

$$
(2+\sqrt{13}, 9+2 \sqrt{13}) \quad(2-\sqrt{13}, 9-2 \sqrt{13})
$$

g) Regular polygon with interior angle of 156° :

$$
\begin{aligned}
\theta & =\frac{180(n-2)}{n} \\
156 & =\frac{180(n-2)}{n} \\
156 n & =180 n-360 \\
360 & =24 n \\
n & =15
\end{aligned}
$$

\therefore the polygon has 15 sides.

Marking
(1) quadratic correctly formed
(1) quadratic formula substitution correct
X values correct
(1) y values correct
correct substitution in polygon formula
(1) answer

Comments

- many did not put as quadratic $=0$, so were unable to proceed
- solving simultaneously means finding the points of intersection many did not find the y values.
- some students did not use a valid formula and were

Question Four: (16 marks) Start a new booklet
a) Find the value of x in the diagrams below
i. $\quad A D=D B$ and $A D \| B E$. Give reasons.

$$
\begin{aligned}
& \angle D A B=65^{\circ} \quad(\text { cor } \angle ' s A D \| B E) \\
& \angle A B D=65^{\circ} \quad(\text { base } \angle ' \text { sIsos } \triangle) \\
& x+2 \times 65=180 \quad(\triangle \text { Sum }) \\
& x=50
\end{aligned}
$$

ii.

From similar triangles:

$$
\begin{aligned}
& \frac{x}{25}=\frac{10}{12} \quad \text { OR } \quad \frac{x}{25}=\frac{x+10}{25+12} \\
& 12 x=250 \quad 37 x=25 x+250 \\
& \begin{aligned}
x & =\frac{125}{6} & 12 x & =250 \\
x & =20 \frac{5}{6} & x & =\frac{125}{6}
\end{aligned} \\
& x=20 \frac{5}{6}
\end{aligned}
$$

Marking
Comments

For both parts of a)

- generally not well set out; it was often
difficult to follow reasoning.
- references to parallel line properties MUST mention the parallel lines in question (no marks deducted - this time!)
- mostly well done; method depended on how students saw the ratios parallel lines OR similar triangles.
b) $A B C D$ is a parallelogram, with $A E$ and $C F$ drawn perpendicular to the diagonal $B D$.

i. Prove $\triangle A E B \equiv \triangle D F C$

In \triangle 's $A E B, D F C$
i) $\angle A E B=\angle C F D\left(=90^{\circ}\right) \quad($ given $A E \perp B D, C F \perp B D)$
ii) $\angle E B A=\angle F D C \quad($ given $B C\|A D, A B C D\|$ gram $)$
iii) $A D=B C \quad$ (op. sides of $\|$ gram $A B C D)$
$\therefore \triangle A E B \equiv \triangle D F C \quad(A A S)$
ii. Hence prove $A E=F C$
$\therefore A E=F C \quad$ (cor. \angle 's cong. Δ 's above)
c) $A B C D$ is a rectangular block 10 cm by 6 cm leaning against a vertical wall. Point D is 5 cm above the ground.

Marking
(1) set up proof
three congruency components; subtract
(1) per error
(1) conclusion with correct reason
(1) corresponding as reason
(1) reference to congruent triangles/proof above

Comments
NOTE:
GEOMETRY
PROOFS
GENERALLY!
These are very formal in structure while content of a proof may vary, there is a right way in terms of structure (and no other)!

- many omitted the set-up step.
- several students claimed "BD common" and a RHS proofclearly not using the correct triangles!
i. Prove $\triangle C E D$ and $\triangle F C B$ are similar.
$\angle E C D+\angle D C B+\angle B C F=180^{\circ} \quad$ (st. line)
but $\angle D C B=90^{\circ} \quad(A B C D$ a rectangle $)$
hence $\angle E C D+\angle B C F=90^{\circ}$
so $\angle E C D=90^{\circ}-\angle B C F$
also $\angle B C F+\angle C B F+\angle B F C=180^{\circ} \quad(\triangle$ sum $)$
and $\angle B F C=90^{\circ} \quad($ given $B F \perp E B)$
so $\angle B C F+\angle C B F=90^{\circ}$
hence $\angle C B F=90^{\circ}-\angle B C F$
but $\angle E C D=90^{\circ}-\angle B C F \quad$ (shown above)
$\therefore \angle E C D=\angle C B F$
\therefore In Δ 's DCE, $C B F$
i) $\angle E C D=\angle C B F \quad$ (shown above)
ii) $\angle C E D=\angle B F C=90^{\circ} \quad(D E \perp E F, B F \perp E F)$
hence $\triangle D C E\|\| \Delta C B F \quad($ equal $\angle ' s)$
ii. Height of point B.

$$
\begin{aligned}
& \text { hence } \\
& \frac{B F}{E C}=\frac{B C}{C D} \\
& \frac{B F}{\sqrt{6^{2}-5^{2}}}=\frac{10}{6} \\
& B F=\frac{10 \sqrt{11}}{6} \\
&=\frac{5 \sqrt{11}}{3}
\end{aligned}
$$

Marking
argument connecting angles between the two triangles (any method); subtract (1) per error
similarity proof correct
(1) correct ratio setup

Comments

- connecting arguments and reasoning very poorly
communicated, if at all.
- many
erroneously tried
to say $\angle D C E$ and $\angle B C F$ were equal!
- even if you can't do part (i), assume it is shown and complete part (ii) anyway - many did not do this (this is standard for any HSCstyle question).

NOTE: timing make sure you give some time to every question on the paper some students clearly "ran out of time")

