

Name: \qquad
Teacher: \qquad

FORT STREET HIGH SCHOOL

2012

PRELIMINARY HIGH SCHOOL CERTIFICATE COURSE

 ASSESSMENT TASK 1
Mathematics

TIME ALLOWED: 1 HOUR PLUS 5 MINUTES READING TIME

Outcomes Assessed	Questions	Marks
Demonstrates the ability to manipulate and simplify numeric and algebraic expressions	1	
Solves problems involving equations and inequalities	2	
Uses appropriate techniques to solve problems involving plane geometry	3	
Solves problems involving indices and logs	4	

Question	$\mathbf{1}$	$\mathbf{2}$	3	4	Total	\%	
Marks		$/ 14$		$/ 14$		$/ 13$	

Directions to candidates:

- Attempt all questions
- The marks allocated for each question are indicated
- All necessary working should be shown in every question. Marks may be deducted for careless or badly arranged work.
- Board - approved calculators may be used
- Each Question is to be started in a new booklet.
a) Mr Fraser bought an antique chair valued at $\$ 980$. Each year its value appreciated by 12%. Calculate the value of the chair after 5 years. Answer correct to the nearest 5 cents.

b) Calculate correct to four significant figures:

$$
\frac{\left(\frac{2}{5}\right)^{4} X\left(\frac{3}{4}\right)^{5}}{\left(\frac{6}{7}\right)^{2}+\left(\frac{2}{3}\right)^{3}}
$$

c) Expand and simplify:

$$
\frac{12 x}{x+1} \div \frac{6 x}{x^{2}+2 x+1}
$$

d) Factorise fully:

$$
y^{3}-64
$$

e) Express the following recurring decimal as a simplest fraction.

$$
0.297
$$

f) Express as a single fraction with rational denominator. Express your answer in simplest form.

$$
\frac{2}{6-3 \sqrt{3}}-\frac{1}{3+2 \sqrt{3}}
$$

a) Solve for a :

$$
\frac{a}{4}-\frac{a+2}{3}=9
$$

b) Solve for x :

$$
\frac{x-3}{7}-\frac{3}{4} \geq 9
$$

c) Solve by completing the square. Answer in exact form.

$$
x^{2}-10 x+20=0
$$

d) Solve for x :

$$
x^{2}-11 x+18>0
$$

e) Solve for x :

$$
|x-2|=7-2 x
$$

f) Solve simultaneously:

$$
\begin{aligned}
& a+b=5 \\
& 2 a+b+c=4 \\
& a-b-c=5
\end{aligned}
$$

a) The interior angles in a regular polygon are 140°. Calculate the number of sides of the polygon.
b) Solve for x :

c) Prove that $\frac{A F}{A G}=\frac{A B}{A C}$

d) Find the value of the pronumerals.
(Answer to 1 decimal place)

e) Given $A B=A C$ and $A D$ bisects $\angle B A C$. Prove that
i) $\triangle A B D \equiv \triangle A C D$, and
ii) Hence give a reason why $\mathrm{DB}=\mathrm{DC}$

a) Evaluate:

$$
\log _{6} 6 \sqrt{6}
$$

b) Solve for x : $\quad \log _{3} x=5$

1
c) Given $\log _{7} 2=0.36$ and $\log _{7} 5=0.83$, find $\log _{7} 70$. 2
d) Solve $\log _{9} 200$ to 1 decimal place.
e) Solve: $3^{X+2}=81$
f) Evaluate:
i) $\quad \log _{5} 500-\log _{5} 4$
ii) $2 \log _{3} 6+\log _{3} 18-3 \log _{3} 2$

MATHEMATICS
2012 Assessment 1: Preliminary Hs Solutions
Question 1 (14)
a. $\quad A=P(1+r)^{n}$

$$
\begin{align*}
A_{5} & =\$ 980(1.12)^{5} \tag{2}\\
& =\$ 1727.10
\end{align*}
$$

c.

$$
\begin{aligned}
& \frac{12 x}{x+1} \times \frac{x^{2}+2 x+1}{6 x} \\
& =\frac{12 x 2}{x+1} \times \frac{(x+1)(x+1)}{6 x} \quad \checkmark \text { factorised } \\
& =2(x+1)
\end{aligned}
$$

d. $\begin{aligned} y^{3}-64 & =y^{3}-4^{3} \\ & =(y-4)\left(y^{2}\right.\end{aligned}$

$$
\begin{equation*}
=(y-4)\left(y^{2}+4 y+16\right) \tag{2}
\end{equation*}
$$

e) let $x=0.297297297 \ldots$ - (1)

$$
\begin{equation*}
1000 x=297.297 \ldots . \tag{2}
\end{equation*}
$$

(2) - (1)

$$
\begin{aligned}
999 x & =297 \\
x & =\frac{297}{999} \\
& =\frac{11}{37}
\end{aligned}
$$

f.

$$
\begin{aligned}
& \frac{2(6+3 \sqrt{3})}{(6-3 \sqrt{3})(6+3 \sqrt{3})}-\frac{(3-2 \sqrt{3})}{(3+2 \sqrt{3})(3-2 \sqrt{3})} \\
= & \frac{12+6 \sqrt{3}}{36-27}-\frac{(3-2 \sqrt{3})}{9-12} \times \frac{(3-2 \sqrt{3}) 3}{-3 \times 3} \\
= & \frac{12+6 \sqrt{3}}{9}-\frac{12+6 \sqrt{3}}{9}+9-6 \sqrt{3} \\
= & \frac{21}{9}: \frac{0}{3} \\
= & \left.\frac{7}{3} \quad \text { (or } 2 \frac{1}{3}\right) \\
= &
\end{aligned}
$$

Question 2
a. $\left[\frac{9}{4}-\frac{(a+2)}{3}=9\right] 12$

$$
\begin{align*}
3 a-4(a+2) & =108 \\
-a-8 & =108 \\
a & =-116 \tag{2}
\end{align*}
$$

b. $\left[\frac{x-3}{7}-\frac{3}{4} \geqslant 9\right] 28$

$$
\begin{align*}
4(x-3)-21 & \geqslant 252 \\
4 x-12-21 & \geqslant 252 \\
4 x & \geqslant 285 \tag{2}\\
x & \geqslant \frac{285}{4}\left(71 \frac{1}{4}\right)
\end{align*}
$$

c. $\quad x^{2}-10 x+(-5)^{2}=-20+25$

$$
\begin{aligned}
(x-5)^{2} & =5 \\
x-5 & = \pm \sqrt{5} \\
x & =5 \pm \sqrt{5}
\end{aligned}
$$

d. $x^{2}-11 x+18>0$

$$
x<2 \text { or } x>9
$$

e.] $|x-2|=7-2 x$

$$
x-2= \pm(7-2 x)
$$

case 1:
case 2: $x-2=2 x-7$

$$
\begin{aligned}
x-2 & =7-2 x \\
3 x & =9 \\
x & =3
\end{aligned}
$$

check:
when $x=3$

$$
x=+5
$$

3

$$
\begin{aligned}
\angle H S & =1 \\
\text { RHS } & =1 \\
\therefore \angle H S & =\text { RHS }
\end{aligned}
$$

$$
L H S=3
$$

$$
\text { RHs }=-3
$$

Lits \neq RHS
$\therefore x=3$ is the only Solution.
f.

$$
\begin{gather*}
a+b=5 \tag{1}\\
2 a+b+c=4 \tag{2}\\
a-b-c=5 \tag{3}
\end{gather*}
$$

(2)

$$
\begin{align*}
&+(3) \\
& 3 a=9 \\
& a=3 \tag{1}
\end{align*}
$$

Sub $a=3$ into

Sub

$$
\begin{gathered}
a=3, b=2 \text { into } 5 \\
3-2-c=5 \\
c=-4
\end{gathered}
$$

Question 3
a. \quad Intenior angle $=140^{\circ}$
\therefore Extenior angle $=40^{\circ}$
Sum of exterion angles $=360^{\circ}$

$$
\begin{align*}
\therefore \text { number of sides } & =\frac{360^{\circ}}{40^{\circ}} \\
& =9 \tag{2}
\end{align*}
$$

b. $\quad(x+2)^{2}=x^{2}+(x-7)^{2}$

$$
\begin{gather*}
x^{2}+4 x+4=x^{2}+x^{2}-14 x+49 \\
x^{2}-18 x+45=0 \tag{2}\\
(x-3)(x-15)=0 \\
x=3 \text { or } 15
\end{gather*}
$$

c) $\frac{A F}{A G}=\frac{A D}{A E}$
(1) $(\triangle A G E)$

Ratio properties of a trianple
Also $\frac{A D}{A E}=\frac{A B}{A C}$
(2) $(\triangle A C E)$
sub (1) into (2)
(2)

$$
\therefore \quad \frac{A F}{A G}=\frac{A B}{A C}
$$

d. $\begin{aligned} \frac{x}{3.4} & =\frac{6.7}{4.1} \\ x & =5.6 \mathrm{~cm}\end{aligned}$

$$
\left.\begin{array}{rl}
\frac{x}{y} & =\frac{(x+6.7)}{18.7} \\
y & =\frac{5.6(18.7)}{12.3} \\
& =8.5 \mathrm{~cm}
\end{array}\right\}
$$

i) In $\triangle A B D$ and $A C D$

$$
\left.\begin{array}{l}
A B=A C \text { (given) } \\
\angle B A D=\angle C A D \text { (given) }
\end{array}\right\}
$$

$$
\begin{gathered}
\angle B A D=\angle C A D(\text { given) } \\
A D \text { is common } \quad V
\end{gathered}
$$

$$
\therefore \triangle A B D \equiv \triangle A C D(S A S)
$$

ii) $\therefore D B=D C$ (corresponding sides of congruent triangles)

Question 4
a)

$$
\begin{align*}
\log _{6} 6 \sqrt{6} & =\log _{6} 6^{\frac{3}{2}} \\
& =\frac{3}{2} \log _{6} 6 \\
& =\frac{3}{2} \quad \sqrt{\text { (with working) }} \text { shown } \tag{1}
\end{align*}
$$

b)

$$
\begin{align*}
\log _{3} x & =5 \\
x & =3^{5} \tag{1}\\
& =243
\end{align*}
$$

c. $\log _{7} 70=\log _{7}(7 \times 5 \times 2)$

$$
\begin{aligned}
& =\log _{7} 7+\log _{7} 5+\log _{7} 2 \\
& =1+0.83+0.36 \\
& =2.19
\end{aligned}
$$

d. $\quad \log _{9} 200=x$

$$
\begin{align*}
9^{x} & =200 \\
x & =\frac{\ln 200}{\ln 9} \tag{2}\\
& =2.4
\end{align*}
$$

e. $3^{x+2}=81$ or $x+2=\frac{\ln 81}{\ln 3}$

$$
\begin{aligned}
& \begin{aligned}
3^{x+2} & =3^{4} \\
x+2 & =4 \\
x & =2
\end{aligned},(2) \begin{aligned}
x+2 & =4 \\
x & =2
\end{aligned} \\
& x=2 \\
& x=2
\end{aligned}
$$

f.
i) $\log _{5} 500-\log _{5} 4$
ii)

$$
\begin{aligned}
& =\log _{5}\left(\frac{500}{4}\right) \swarrow=\log _{3}\left(\frac{36 \times 18}{8}\right) \\
& =\log _{5} 125 \quad \nearrow \quad=\log _{3} 81 \\
& =\log _{5} 5^{3} \left\lvert\,=\frac{\ln 125}{\ln 5}=\log _{3} 3^{4}\right. \\
& =3 \log _{5} 5=3=4 \log _{3} 3 \\
& =3 \quad \square \quad(3)=4
\end{aligned}
$$

END

