GIRRAWEEN HIGH SCHOOL

MATHEMATICS

YEAR 11

May, 2004

TEST 2

TIME: 90 minutes

INSTRUCTIONS:

- 1. Attempt all questions.
- 2. Write your answers on your own paper.
- 3. All necessary working must be shown.
- 4. Marks will be deducted for careless or badly arranged work.
- 5. Questions are NOT of equal value.
- 6. Start each question on a new page.
- 7. Total marks -120

Question 1 (16 marks)

(a) Evaluate $(3.2)^{25} \div 0.015$ expressing your answer in scientific notation correct to 3 significant figures.

/2

/2

(b) Evaluate $\sqrt[3]{\frac{9.4 + 3.8}{6.5 - 1.2 \times 3.7}}$ correct to 2 decimal places.

/2

(d) Write 45g as a percentage of 2.5kg.

(c) If $\sqrt{5x} = 5\sqrt{2}$, find x.

/1

- (e) Expand and simplify:
 - (i) $4ab(a-2b)-2a^2(b-3a)$
 - (ii) $(y^2-2)(y^2+2)$

/1

/2

- (f) Simplify, giving exact answers:
 - (i) $\sqrt{48} + \sqrt{27}$
 - (ii) $(\sqrt{5} + 2\sqrt{3})^2$

/2

/2

/2

(g) Simplify $\frac{3}{\sqrt{5}-1}$ by rationalising the denominator.

(24- marks) Question 2

(a) Factorise:

(i)
$$8-18x^2$$

(ii)
$$x^2 - 7x + 12$$

(iii)
$$3x^2 - 20x - 7$$

/6

Factorise and simplify:

(i)
$$\frac{a^2 - 16}{a + 4}$$

(ii)
$$\frac{m^2 - 10m + 25}{m^2 - 2m - 15}$$
 (iii) $\frac{9 - t^2}{t - 3}$

$$(iii) \qquad \frac{9-t^2}{t-3}$$

/7

(c) Simplify:

$$(i) \qquad \frac{4}{y-2} \div \frac{6}{y-2}$$

(i)
$$\frac{4}{v-2} \div \frac{6}{v-2}$$
 (ii) $\frac{4m-12}{m^2-9} \times \frac{3m+9}{6m+12}$

/5

(d) Simplify:

(i)
$$\frac{5-u}{3} - \frac{u+2}{2}$$
 (ii) $\frac{5}{x-2} - \frac{4}{x+2}$

(ii)
$$\frac{5}{x-2} - \frac{4}{x+2}$$

/6

Question 3 (25 marks)

Solve the equation:

(i)
$$3(x-5)=3-2(x-1)$$

(ii)
$$\frac{2x-1}{3} = 1 - \frac{x-2}{5}$$

/6

Solve the quadratic equation $6x^2 = 4x + 2$ (leaving answer in simplified surd form if necessary). /3

The equation $x^2 - ax + 20 = 0$ has one solution x = 4.

Find a and the other solution.

/3

Solve the simultaneous equations: 2x + y = 8

$$xy = 6$$

(e) Solve $2-x \le \frac{3x}{4}$ and graph the solution on the number line.

/3

Solve the following:

(i)
$$|3y+2| = |6-4y|$$

(ii)
$$|2m-5| > 9$$

/6

Question 4 (13 marks)

- (a) Find, correct to 3 decimal places:
 - (i) $\sin 42^{0}05'$

(ii) $\cos 116^{\circ}28'$

/2

(b) If $\tan \theta = \frac{6.1}{8.5}$, find θ to the nearest minute.

/2

(c) Find the value of x correct to 1 decimal place.

/2

(d) A wire rope is attached to the mast of a boat 3.2m above the deck, and to the deck, making an angle of elevation of 72° 10'. How long is the rope?

/3

(e) A triangular block of land is to be made into a park and planted with grass. What is the area to be grassed, to the nearest m²?

/3

Question 5 (23 marks)

- (a) Find the exact value of:
 - (i) $\sin 210^{\circ}$
- (ii) $\cos{(-135^{\circ})}$
- (iii) cot 300°

/6

/6

- (b) Find the value(s) of θ (to the nearest degree) for $0^{\circ} < \theta < 360^{\circ}$ for which:
 - (i) $\cos \theta = 0.917$ (ii)
- $\sin\theta = -0.158$
- (iii) $\tan \theta = 0.674$ and $\sin \theta$

is negative

- (c) Give the exact value, in simplest form:
 - (i) $\cot 30^{\circ} + \cot 60^{\circ}$
- (ii) $\frac{\sin 45^0 + \sin 30^0}{\cos 45^0 \cos 60^0}$

/8

(d) If $\sin \theta = \frac{-5}{13}$ and $\cos \theta < 0$, find the exact value of $\tan \theta$.

/3

Question 6 (20 marks)

(a) Solve the following for $0^{\circ} \le \theta \le 360^{\circ}$

(I) $2\cos\theta = \sqrt{3}$

(ii) $\csc^2 \theta - 2 = 0$

/7

/2

(b) Simplify $\cos^2 \theta (1 + \cot^2 \theta)$.

(c) Prove $\frac{\cos ec\theta}{\cot \theta} = \sec \theta$.

/2

(d)

(i) Use the sine rule to calculate AC to the nearest metre.

/2

(ii) Hence, find BC to the nearest metre.

/2

Yr 11 Mathematics - Task 2 (2004)

(e) A boat (S) is sinking 2.2km out to sea from a marina (M). Its bearing is 041° from the marina. A rescue boat (R) is at bearing 123° from the marina and 2.9km out to sea.

(i) Copy the diagram and indicate the given information.

/1

(ii) Show $\angle SMR = 82^{\circ}$.

/1

/3

(iii) Use the cosine rule to find the distance RS of the rescue boat from the sinking boat.

SOLUTIONS YAll TEST 2 18 Question (a) = 2.13 × 10²⁷ = (2.13×10^{27}) (b) $\sqrt[3]{\frac{9.4+3.9}{65-1.2\times3.7}}$ = $\sqrt[3]{\frac{9.4+3.9}{65-1.2\times3.7}}$ -1.85738...1 (1.86) to 2 dec.pl. (c) 15x = 512 (d) 49 (01670 2.5kg 2000 in 1 5×=50 (d) (i) $4a^{2}b - 8ab^{2} - 2a^{2}b + 6a^{3}$ (ii) $(y^{4} - 4)$ $= (6a^{3} + 2a^{2}b - 8ab^{2}) / 2$ (e)(i) $\sqrt{48} + 127 = \sqrt{16} \times 163 + \sqrt{9} \times 13 (ii) (15)^2 + 2\times 2\sqrt{15} + (2\sqrt{3})^2$ = $4\sqrt{3} + 3\sqrt{3}$ = $(7\sqrt{3})$ /2 = $(7+4\sqrt{15})$ ARRENTATION OF THE PARTY OF THE Question 2 724. (ii) $x^2 - 7\pi + 12 = (x - 3)(x - 4)$ $\frac{1}{6} = \frac{2(4-9x^2)}{(2(2+3x)(2-3x))}$ (iii) 3202-20-2-7 = (3x+1)(2c-7)) = (3x41) (3c-7) /2 $\frac{(ii)}{m^2 - 10m + 25} = \frac{(m-5)^2}{(m-5)(m-5)}$ $\frac{(b)(1)}{a+4} = \frac{(a+4)(a-4)}{(a+4)} = \frac{(a+4)(a-4)}{(a+4)}$ fire. (iii) $\frac{9-t^2}{t-3} = \frac{(3-t)(3+t)}{(t-3)}$ $= -\frac{(t-3)(3+t)}{(t-3)}$ $= -\frac{(3+t)}{(t-3)}$ = -(t+3) - (t+3) - 2

3

la

(1) \frac{4}{9-2} \frac{6}{9-2} \frac{7}{9-2} \frac{7}{9} \frac{7}{9}

/ 5(6)

1 (ci)

From (1) y = 8 - 2x - 6Substituting (2) = 6 82 - 222 = 6 82 - 222 = 6 $2x^2 - 82 + 6 = 0$ $32^2 - 402 + 3 = 0$ (2-1)(x-3) = 0 36 = 1,3Substituting (3) = 6 y = 8 - 2 or = 3 = 6 y = 8 - 2 or = 3 = 6 = 6 or = 2= 6 or = 3 =

(f)(i) | 3y+2| = |6-4y|Either 3y+2=6-4y or 3y+2=4y-6 7y=4 $y=\frac{4}{7}$ $Solv (y=\frac{4}{7}or 8)$

(ii) |2m-5| > 9 2m-5 > 9 2m > 14 m > 72m < -9

2.501 (N15-2 OF M77)

- f_2 (a) (1) Sun $42^{\circ}05^{\circ} = 0.670210...$
 - = (0.670) to 3 dec. pl. /4
 - (ii) ws 116°28' = -0.44567... =(-0.446)+03 decpl /
- 12 (b) tand = 61 = 0.717647... : 0 = 35.665...
 - (35° 40')
- $\frac{1}{2}$ (c) ton $72^{\circ}44' = \times \frac{16.3}{16.3}$
 - $1.2 = 16.3 \text{ ten } 72^{\circ}41'$ = $16.3 \times 3.20734...$ = 52.2797...
 - = 52.2797... (52.3) to I dec. pl. /2
 - (3 (d) 3.2 = -
 - 5w72°01
 - 18 Rope is (34 m)

- 3 (e) Area = \frac{1}{2}absinc
 - = 12 x 25 x 34 sur 110° m2
 - = 399.369 = 399 m2 to nearest m2

[3] /6

12

0=(45°, 135°, 275° or 315 (c) Pr wece 942C) 4 (d) (i) IN AACD L'AC = 300 sur 9° 500 4° , BC AC : BC= 673 co=120 = 558.29... (or 658.07... using all dec.pl.) = (558 m) to received m (11) LSMR = 123°-41° (iii) RS2 = MR2 + MS2 - 2MRMS cos 82° = (2.9)2 + (2.2)2 - 2x2.9x2.2 cos 82° = 11.47... : (RS = 3.387... = (3.4 km) (Idec pl) /3 3.38/... = 3.4 km (Idec pl) /3