

GOSFORD HIGH SCHOOL

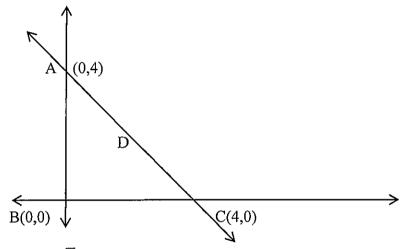
NAME

Task 2 June 2012 YEAR 11 Preliminary MATHEMATICS

Multiple Choice	
	/7
Part A Geometry	
	/16
Part B Linear Functions	
	/16
Part C Quadratic Polynomials	
	/16
Total	
	/55

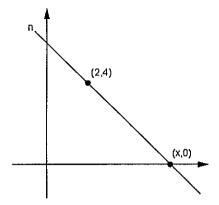
General Instructions:

- Reading time 5minutes
- Working time 80 minutes
- Write using black or blue pen.
- Board-approved calculators may be used
- All necessary working should be shown in every question.


Total marks: - 120

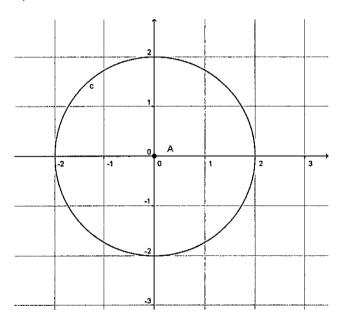
- Attempt ALL Questions
- Answer Multiple choice questions on paper provided.
- Part A, B and C on your paper (start each part on a new sheet).

Multiple Choice Questions


Answers to the multiple choice on the answer sheet provided. (1 Mark Each)

- 1) A quadrilateral has equal diagonals that bisect each other at right angles, it is a
 - (A) Rectangle
 - (B) Rhombus
 - (C) Isosceles Trapezium
 - (D) Square
- 2) The following figure shows an isosceles triangle ABC. If D is the mid-point of AC, what is the length of AD?

- (A) $2\sqrt{2}$
- (B) $\sqrt{2}$
- (C) $2 + \sqrt{2}$
- (D) $2 \sqrt{2}$
- 3) Two functions are defined as: $f(x) = 3x^2 4$ and $g(y) = y^2 2y$. How many values of the variable a satisfy the equation (a) = g(2a)?
 - (A) One
 - (B) Two
 - (C) Three
 - (D) None

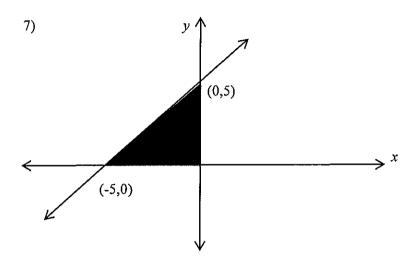

4)

In the above figure, the slope of line n is -1. Find the value of x

- (A) 3
- (B) 4
- (C) 5
- (D) 6

5)

The above figure shows a circle drawn in an X-Y plane with centre A as the origin. If a line with equation x + y = k intersects the circle at two points, which of the following is NOT a possible value of k?


- (A) 0
- (B) $-2\sqrt{2}+1$
- (C) 2
- (D) $2\sqrt{2} + 1$

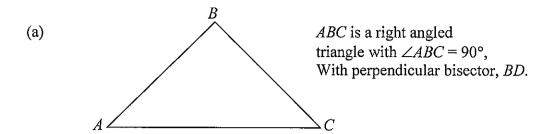
(A)
$$y = 3x^2 - 3x - 2$$

(B)
$$y = 3x^2 + 3x - 2$$

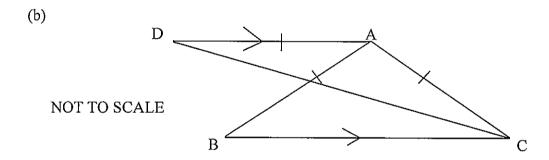
(C)
$$y = 3x^2 - 3x + 2$$

(D)
$$y = 3x^2 + 3x - 2$$

In the above diagram, the shaded region is given by:

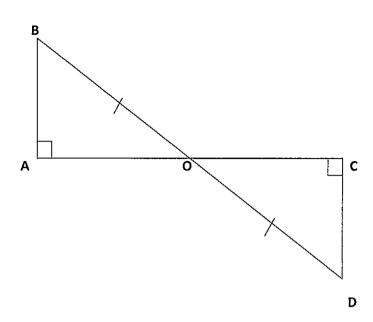

(A)
$$x \le 0, y \le 0$$
 and $x - y \le -5$

(B)
$$x \ge 0$$
, $y \ge 0$ and $y \le x - 5$


(C)
$$x \le 0$$
, $y \ge 0$ and $x + y - 5 \le 0$

(D)
$$x \le 0$$
, $y \ge 0$ and $y \le x + 5$

End of Multiple Choice

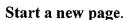

- (i) Copy diagram onto your paper indicating perpendicular bisector and showing all given information. (1)
- (ii) Prove triangles ABC and BDC are similar (3)
- (iii) Hence, show that $BC^2 = ACxDC$ (1)

In the diagram, $\triangle ABC$ is isosceles with AB=AC. DA is parallel to BC and DA=AC with $\angle DAB=55^{\circ}$.

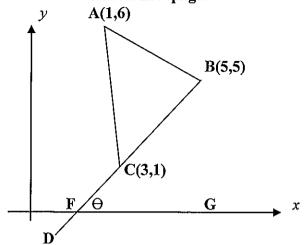
- (i) Copy the diagram onto your worksheet clearly Showing all of the information. (1)
- (ii) Show that $\angle ACB = 55^{\circ}$ (2)
- (iii) Find size of $\angle ADC$ (2)
- (iv) Find the size of $\angle BCD$ (1)

(c)

Prove that \triangle AOB is congruent to \triangle COD.


(3)

(d) Find the size of each exterior angle of a regular hexagon


(2)

PART B

(g)

16 Marks

NOT TO SCALE

The points A, B and C have co-ordinates (1,6), (5,5) and (3,1). The points B, C, F and D are in a straight line, and angle BFG is Θ .

- (a) Copy the diagram and answer the following.
- (b) Find the gradient of the line BC

(1)

(c) Calculate the size of angle θ to the nearest degree

(1)

(d) Find the equation of line BD in general form

(2)

(2)

(e) Find the co-ordinates of the point D if C is the midpoint of BD

(2)

- (f) Find the length of the interval joining BC (Leave answer in exact form)
 - (2)

ii) Hence, find the area of \triangle ABC

(2)

iii) Without calculating the area of \triangle ABD, find the ratio of the areas of the triangles ABC and ABD

i) Find the perpendicular distance of A from BC (Leave answer in exact form)

(1)

- (h) Find the co-ordinates of a point E such that ABDE forms a parallelogram (1)
- (i) Find the area of the parallelogram ABDE.

(2)

(a) If α and β are the roots of the equation $2x^2 - 3x - 4 = 0$, find the value of

(i)
$$\alpha + \beta$$
 (1)

(ii)
$$\alpha\beta$$
 (1)

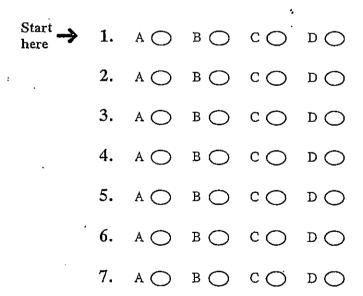
(iii)
$$\frac{1}{\alpha} + \frac{1}{\beta}$$
 (2)

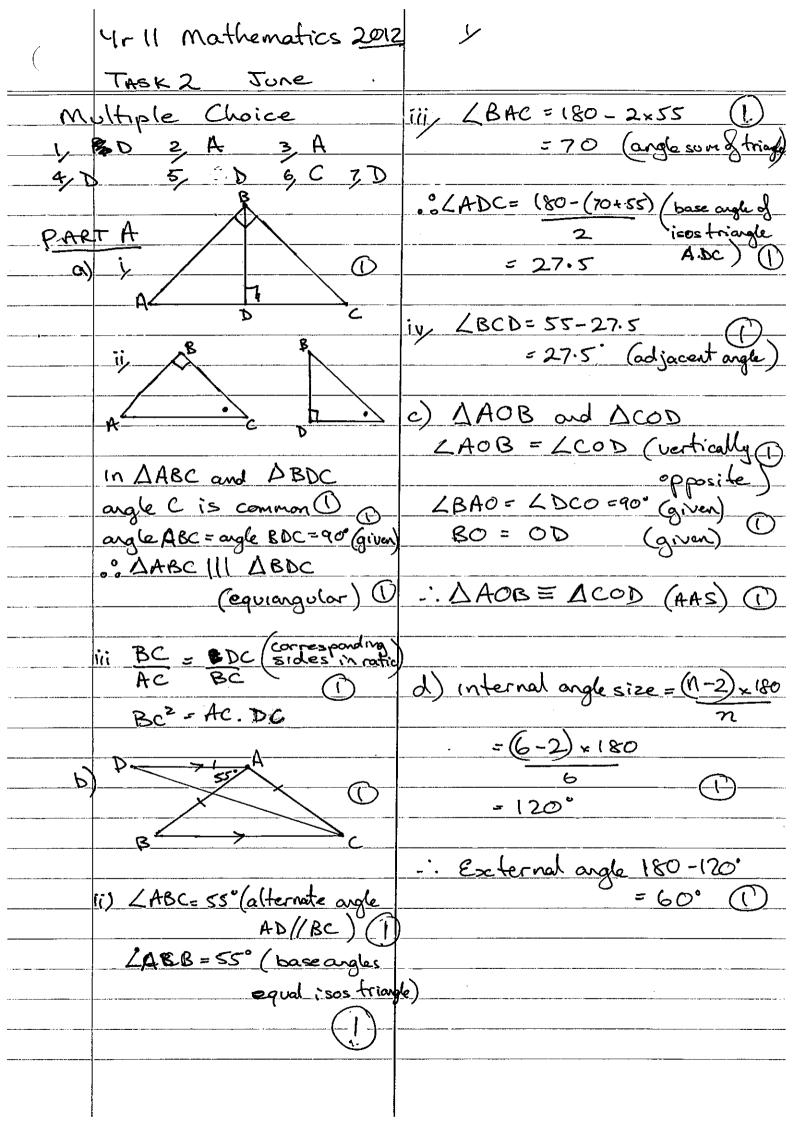
(iv)
$$\alpha^2 + \beta^2$$
 (2)

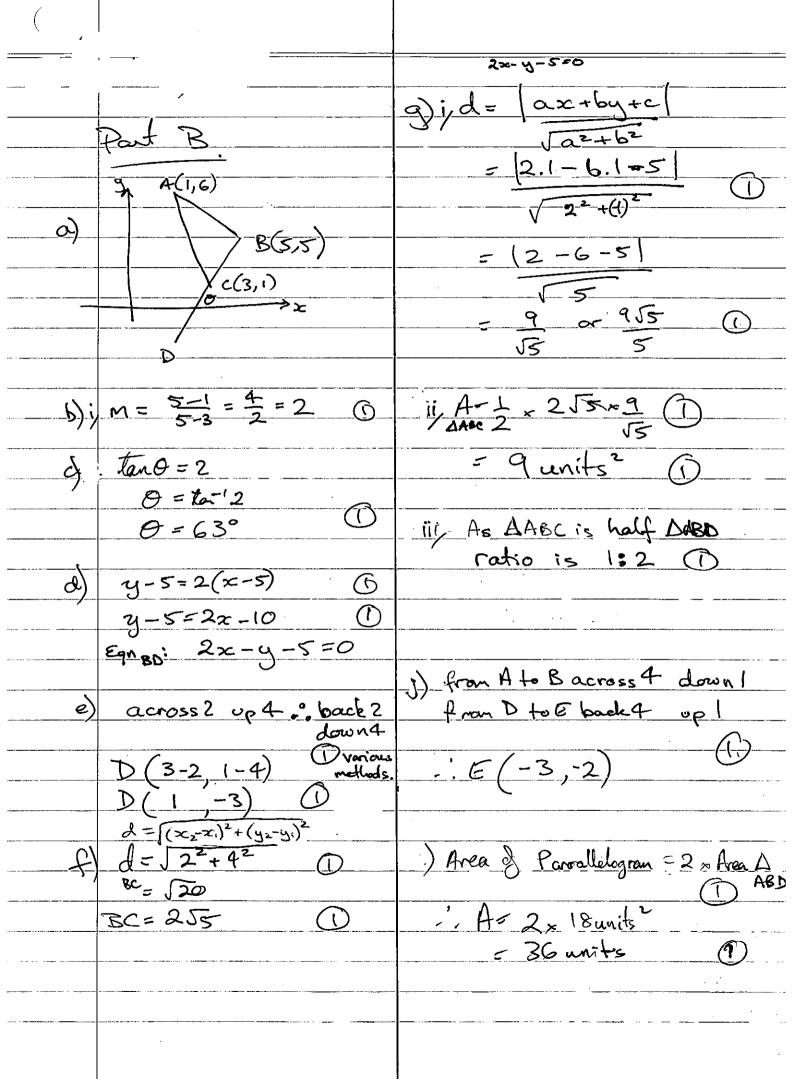
(b) Solve the equation
$$4^x - 9(2^x) + 8 = 0$$
 (2)

(c) If
$$3x^2 - 5x + 6 = A(x-2)^2 + B(x-2) + C$$
 for all values of x , find values for A , B and C . (3)

- (d) Find the values of m for which the equation $x^2 + (m-2)x + 4 = 0$ has equal roots; (2)
- (e) The quadratic expression Q(x) is given by:


$$Q(x) = (1+m)x^2 + 4x + m - 1.$$


Find the range of values of m for which Q(x) > 0 for all x. (3)


End of Exam ©

Name:			Teacher:			
Multipl	le-choice	answer sh	eet			
	alternative A, B, , using a black p		answers the ques	stion. Fill in the re	esponse oval	
Sample:	2 + 4 =	(A) 2	(B) 6	(C) 8	(D) 9	
		$A\bigcirc$	В	cO	DO 1	
If you think new answer		e a mistake, put a	a cross through th	e incorrect answe	r and fill in the	
		A 💮	В	cO	DO	
			out what you con: vord correc† and dr			
		correc † /				
		A 📉	В	cO	DO	

Part C c) 3x2-5x+6=A(x-2)2+B(x-2)+C (a) for 2x2-3x-4 Ax2-4Ax+4A +Bx-2B+C A-2- (A-B) x + 4A-2B+C i x+ B = -b = 3 0 equate co-efficients in & B = Ca = -2 1 iii + + + = A=3 4A-B=5 = x + B () 12-B=5 B = 7 44-2B+C=6 **(** = 3/4 12-14+c=6 c = 8iv x2 + B2 A=3 B=7 c=8 = (x+B) = 2xB () $-\frac{(3)^2+4}{(2)^2+4}$ $d) \cdot x^2 + (m-2)x + 4 = 0$ = 9+4 = 6 4 0 b2-4ac = 0 $(m-2)^2-4.1.4=0$ $m^2-4m+4-16=0$ b) $4^{x} - 9(2^{x}) + 8 = 0$ $m^2 - 4m - 12 = 0$ let m = 2x (m-6)(m+2) = 0m=6 or 2 -. 22x - 9(2x)+8=0 e) (1+m) x2+42+m-1>0 m2-9m+8=01 (m-8)(m-1)=0 $\therefore b^2 - 4ac > 0$ 42-4.(1+m)(m-1) M=8 m=1 : 2×=8 2×=1 16-4m2+4 -4m2 +20 >0 (m>15) -4(m2-5) -: (m+15)(m-15) <0 (m<-15) x=3 x=0