HORNSBY GIRLS' HIGH SCHOOL

MATHEMATICS YEAR 11

Preliminary Assessment Task 2 Half-Yearly Examination 2009

Student Number:	

Time Allowed: 90 minutes plus 5 minutes reading time

Instructions:

- Attempt all questions
- Start a new page for each question
- The marks for each question are indicated
- Show all necessary working
- Marks may be deducted for untidy or badly arranged work
- Board approved calculators may be used

Outcomes Assessed:

- P1 Demonstrates confidence in obtaining realistic solutions to problems
- P2 Provides reasoning to support conclusions in the correct context
- P3 Performs routine arithmetic and algebraic manipulation involving surds, simple rational expressions and trigonometric identities
- P4 Chooses and applies appropriate arithmetic, algebraic, graphical, trigonometric and geometric techniques
- P5 Understands the concept of a function and the relationship between a function and its graph

Marking Scheme:

	Total	
Algebra and Arithmetic	Q1.	/14
Functions and Graphs	Q2.	/14
Linear Functions	Q3.	/14
Trigonometric Functions	Q4. Q5.	/14
	Q5.	/14
Total Marks:		/70

This assessment task constitutes 30% of the final Preliminary Course Assessment.

QUESTION 1 (14 Marks) START A NEW PAGE

Marks

a) Evaluate:
$$\sqrt{\frac{1.25 \times (3.6^4)}{0.075}}$$
 correct to 3 significant figures.

b) Factorise:
$$3y^3 - 81$$

c) Simplify:
$$(\sqrt{17} - 2\sqrt{5})(\sqrt{17} + 2\sqrt{5})$$

d) Show that the only real solution of
$$|4x-1|=3-5x$$
 is $x=\frac{4}{9}$

e) If
$$f(x) = x^2 - 8x$$
, find $\frac{f(a+h) - f(a)}{h}$

f) Solve for x:
$$|7-2x| > 9$$
 and graph the solution on a number line.

QUESTION 2 (14 Marks) START A NEW PAGE

Marks

(i)
$$y = \frac{8}{x-1}$$

(ii)
$$y = \sqrt{16 - x^2}$$

b) If
$$f(x) = 2^{-x} + 2^x$$
,

(i) find
$$f(a)$$
 and $f(-a)$.

(ii) hence, determine whether the function
$$f(x)$$
 is odd, even or neither.

c) <u>Sketch</u> the following functions on separate number planes showing important features and intercepts.

(i)
$$y = (x+2)^2$$

(ii)
$$y = |x + 2|$$

(iii)
$$y = \frac{1}{x+2}$$

(iv)
$$y = 2 - x^3$$

a)

The line l cuts the x axis at L (-4,0) and the y axis at M (0,3). N is a point on the line l and P is the point (0,8)

- (i) Find the equation of the line l in general form. 2 Show that $\triangle LMP$ is isosceles. (ii) 2 M is the midpoint of LN find the coordinates of N. (iii) 2 (iv) Show that $\angle NPL$ is a right angle. 2 Find the perpendicular distance from the point Q(-4,5) to the line l. (v) 2 Find the gradient of PQ and hence determine if PQ is parallel to line (vi) l, LN. 2
- b) Find the equation of the straight line that makes an angle of 135° with the positive direction of x axis and passes through the point (2,-3).

(i)
$$\frac{1}{\sec(-\theta)} = \frac{1}{\sec\theta} = \cos\theta$$

(ii)
$$\csc(180^{\circ} - \theta)$$
. $\sin(90^{\circ} - \theta)$
 $\cot(\theta) - \cos(\theta) = \cot(\theta)$

(iii)
$$2-2\sin^2$$

(iii)
$$2-2\sin^2\theta = 2\left(1-\sin^2\theta\right)$$

Solve
$$\cos \theta = -0.6$$
 for $0^{\circ} \le \theta \le 360^{\circ}$. Give your answer to the nearest minute.

c) Evaluate, giving the exact value as a single fraction for

(i)
$$\tan 210^\circ = \frac{1}{\sqrt{3}} \text{ or } \frac{\sqrt{3}}{3}$$

(ii)
$$\sin 60^\circ + \tan 210^\circ = \frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{3}$$

Given that $\tan \theta = \frac{-5}{7}$ and $\cos \theta > 0$, find the exact value of $\csc \theta$. Show d) necessary working.

Prove that
$$\frac{1 - \tan^2 \theta}{1 + \tan^2 \theta} = \cos^2 \theta - \sin^2 \theta$$

2

2

2

2

4

a) Find θ to the nearest minute.

- b) A ship leaves port and sails 58 kilometres on a bearing of 138°. How far due south of the port is the ship? Draw a diagram and give your answer correct to the nearest kilometre.
- c) From an aircraft flying at 9 000m above sea level the angle of depression of a ship is 33°25′. How far is the ship from the aircraft in a straight line? (Give your answer correct to nearest metre).
- d) Solve for $0^{\circ} \le \theta \le 360^{\circ}$

(i)
$$\cos ec\theta = 2$$

(ii) $\cot \theta = 0$

e) A child at A observes the angle of elevation of a kite caught in a tree to be 30 degrees. She then walks 100 metres towards the kite to a point B and finds the angle of elevation to be 60 degrees. If the kite has a height of h metres and the child has x metres still to walk before she is directly under the kite, find x.

YEAR 11 HGHS MATHEMATICS PRELIMINARY ASSESSMENT 2. , 2009 SOLLOTIONS! $Q_3 = \sqrt{\frac{y}{3}} = 1$ $QY.a)ijcos(-\theta) = cos\theta$ (ii) $\frac{1}{\sinh(180^\circ - \theta)} \times \frac{\cos \theta}{\sinh(180^\circ - \theta)} = \frac{\cos \theta}{\cot \theta}$ 30c-44 = 12 3x-4y+12 = 0 (11) 2(1-511126) = 200526 2 (1) & PM=5 units b) Quadranto II, III cos 0 < 0 for LM = 5 wints {3,4,5} Athagorean Tried acute angle X is 5307 48" (from calculator) or $d = \sqrt{3^2 + 4^2}$ $d = 180^{\circ} - \alpha \quad \text{or} \quad \theta = 180^{\circ} + \alpha$:. DLMP is isoscelos (2 equal sides (ii) $(0,3) = \left(-\frac{4+x_1}{2}, \frac{0+y_1}{2}\right)$ = 126°52' (forrect) = 233°8' (correct) $-4+x_1 = 0$, $0+y_1 = 3$ $x_1 = 4$ $y_1 = 6$ c) () tan 210° = tan (180° + 30°) 3rd quadrunt · Nis (4,6) $(iv)^{m}NP = \frac{8-6}{0-4}, m_{PL} = \frac{8-0}{0+4}$ 1 sin 60° + tam 210° = 13 + 1 -. mnp x mpl = - 1 x2 ·· NP L PL = 5 or 5/3 2 · · · ZNPLisarightangle. d) tun 0 <0 }: 4th quadrant. _
... sin 0 <0 (y d= |3(-4)-4(5)+12] V32+42 Casec $\theta = \frac{1}{\sin \theta}$ By Anthoporal Then) h=57-72 (V) $m_{pq} = \frac{8-5}{0+4}, m_{pq} = \frac{3}{4}$ = 3 : gradients are equal PQ I LN (line 1) e) LHS = $\left(1 - \frac{\sin^2\theta}{\cos^2\theta}\right) \div \sec^2\theta$ Intan 135° 4= -1x+b $=\frac{\cos^2\theta-\sin^2\theta}{\cos^2\theta}\times\frac{1}{\sec^2\theta}$ $-3 = -1 \times 2 + b$ $= \frac{\cos^2\theta - \sin^2\theta}{\cos^2\theta} \times \cos^2\theta$ = RHS.

ME HEMATICS PRELIMINARY ASSESSMENT 2 80 LUTIONS 2009 $Q5.g + 6n\theta = \frac{19.47}{27.3}$ QSd)(ii) cot $\theta = 0$ 0°€Ð *€ 36*0° 0 = 35° 29'45" (from calc.) = 35° 30' (to neavest) tant is undefined. $\therefore \theta = 90^{\circ}/270^{\circ}$ b) $\frac{b}{x} = tanbo^{\circ}$ h = xtan 60° Cos 42° = 36 x = 58 cos 42° xtun 60° = 100 tun30° + xtan 30° = 43.10. (Grom calculate) oc tum 60° - xtan 30° = 100 tun 30° ... Ship is 43km south of the Port 2 (tan 60 - tan 30°) = 100 tan 30° Aircraft oc= 100 tan 30 tun 600 - tan 300 9000 $= \frac{100 \times 1}{\sqrt{3} - \sqrt{5}}$ 9000 sin 33°251 =ೃಕರ = 16342.13. (from ... The distance between them is

16342 m.

= 2

d) vi cosec \(\theta = 2 \), o \(\in \text{\$\in 360} \)

B = 30° | 180°-30°

= <u>30°, 150°</u> 2

