JAMES RUSE AGRICULTURAL HIGH SCHOOL
 YEAR 11 MATHEMATICS
 HALF YEARLY EXAM 2005

QUESTION 1
(a) Graph on the number line $\{x:-1 \leq x \leq 3\}$

Marks

1
(b) Simplify $\left(2^{x}\right)^{x}$
(c) Solve $|5 x-6| \leq 12 \quad \mathbf{2}$
(d) Shade the region $(x-1)^{2}+(y-1)^{2} \leq 1$ 1
(e) Find to 2 decimal places the solution of $3^{x}=7$
(f) Rationalize the denominator: $\frac{3 \sqrt{2}-5}{4+\sqrt{2}}$
(g) Solve $x^{2} \geq 121 \quad \mathbf{2}$
(h) Solve $2 \sin x+1=0$ for $\left\{-90^{\circ} \leq x \leq 90^{\circ}\right\}$
(i) Graph $y=x(x+1)(x+3)^{2}$,
hence solve $\quad x(x+1)(x+3)^{2} \leq 0$

QUESTION 2 (START A NEW PAGE)

(a) Triangle $A B C$ is represented by the points $A(3,-2), B(4,5)$ and $C(-6,1)$.

Find :
(i) the equation of line $A B$ in general form.
(ii) the equation of the line perpendicular to $A B$ passing through point C.
(iii) the length of the altitude from A to $B C$ if the equation of $B C$ is given by $2 x-5 y+17=0$.
(iv) the co-ordinates M of the midpoint $A B$.
(v) the length of the median from C to $A B$.
(vi) the co-ordinates of point D if $A B C D$ is a parallelogram.
(b) The roots of $2 x^{2}-3 x-5=0$ are α and β.

Find the value of :
(i) $\alpha+\beta$
(ii) $\alpha \beta$
(iii) $\alpha^{2}+\beta^{2}$

QUESTION 3 (START A NEW PAGE)

(a) Differentiate with respect to x :
(i) $9 x^{2}-11 \quad 2$
(ii) $\begin{gathered}x \\ \sqrt{x}(3 x-5)\end{gathered}$
(b) Find the equation of the tangent to the curve $y=4 x^{3}-8 x+7$ at $x=-1$.
(c) Graph $y=\tan x^{0}$ in the domain $\left\{0^{0} \leq x^{0} \leq 180^{\circ}\right\}$
(d) Find the value of x giving reasons $(6-x)(x+2)=3 x$
(e) A plane travels 250 km on a bearing $N 57^{\circ} \mathrm{E}$, then 380 km on a bearing of $193^{\circ} \mathrm{T}$.
(i) How far (to nearest km) is the plane from the initial position?
(ii) What is the final bearing of the plane from the initial position?

QUESTION 4 (START A NEW PAGE)

(a) Graph $y=\sqrt{16-x^{2}}$.

State the domain and range.
(b) Find the Cartesian equation of the locus of point $P(x, y)$ if point P is equidistant from $A(3,-2)$ and $B(-1,4)$.
(c) Find the values of k such that $(2 k+1) x^{2}-5 x+3$ is positive definite.
(d)(i) Triangle $O T S$ is right angled at S and $O R S$ is a sector with
T $O S$ and $O R$ equal to one unit.

R Prove the inequality :

$$
\sin x<x<\tan x \quad \text { for }\left\{0<x<\frac{\pi}{2}\right\}
$$

(ii)

Hence deduce the value of $\quad \lim _{x \rightarrow 0} \frac{x}{\sin x}$.
\qquad S
(e) A circular disc 8 cm in diameter touches a flat surface at the point P.

If the disc rolls 35 cm how high is the point P above the flat surface?
(f) Solve for $n: \quad 2^{2 n+1}-9\left(2^{n}\right)+4=0$
(a)

(i) 2^{x}
(c)

$$
\begin{aligned}
5 x-6 & = \pm / 2 \\
5 x & =6 \text { or } 18 \\
x & =-1 \frac{1}{5} \text { or } 3 \frac{3}{5} .
\end{aligned}
$$

Soln $\left\{-1 \frac{1}{5} \leq x \leq 3 \frac{3}{5}\right\}$
(d)

(e)

$$
\begin{aligned}
3^{x} & =7 \\
x & =\log 7 \\
& =\frac{\log 7}{\log 3} \\
& =1.77
\end{aligned}
$$

(f)

$$
\begin{aligned}
& \left(\frac{3 \sqrt{2}-5)}{(4+\sqrt{2})} \cdot \frac{(4-\sqrt{2})}{(4-\sqrt{2})}\right. \\
& =\frac{12 \sqrt{2}-6-20+5 \sqrt{2}}{16-2} \\
& =\frac{17 \sqrt{2}-26}{18}
\end{aligned}
$$

(g) $\{x \geqslant 11\} \quad\{x \leqslant-11\}$
(d) $\operatorname{sen} x=-\frac{1}{2}$

$$
x<-30^{\circ}
$$

$x=3$ or $\{-1 \leqslant x \leqslant 0\}$

2a(1) $A_{A B}=7$

$$
y+2=7(x-3)
$$

$$
7 x-y-23=0
$$

(ii) $x+7 y=-6+7$
(ii) $x+7 y-1=0$
(iv) $D=\left|\frac{6+10+17}{\sqrt{2^{2}+5^{2}}}\right|$
$=\frac{33}{\sqrt{29}}$ unts.
(v)

$$
m\left(\frac{7}{2}, \frac{3}{2}\right)
$$

(v)

$$
\begin{aligned}
D & =\sqrt{\left(\frac{-21}{2}\right)^{2}+\left(\frac{-1}{2}\right)^{2}} \\
& =\frac{\sqrt{442}}{2} \text { vals }
\end{aligned}
$$

(vi) $M_{A C}=\left(-\frac{3}{2},-\frac{1}{2}\right)$
$M_{B D}\left(\frac{x \not 44}{2}, \frac{y+5}{2}\right)$
$D \equiv(-7,-6)$
(b)
(i) $\alpha y p=\frac{3}{2}$
(ii) $\alpha_{\beta}=\frac{-5}{2}$
(iii) $\alpha^{2}+p^{2}=(\alpha+\beta)^{2}-2 \alpha p$

$$
\begin{aligned}
& =\left(\frac{3}{2}\right)^{2}-2 \cdot-\frac{5}{2} \\
& =7 \frac{1}{4}
\end{aligned}
$$

(6) (i) $9+\frac{11}{x^{2}}$
(ii) $\frac{d}{d x}\left[3 x^{\frac{3}{2}}-5 x^{1 / 2}\right]=\frac{9}{2} x^{1 / 2}-\frac{5 x^{-1 / 2}}{2}$
b)

$$
\begin{array}{rlrl}
y & =4 x^{3}-8 x+7 \\
\frac{d y}{d x} & =12 x^{2}-8 & x=-1 \\
m & =12-8 & y=11 \\
& =4 &
\end{array}
$$

Eqn tangent

$$
=4 n \text { rangent }=4(x+1)
$$

$$
4 x-y+15=0
$$

c)

(d) $(6-x)(x+2)=3 x \quad \begin{aligned} & \text { A lie panthe } \\ & \text { do one side }\end{aligned}$ $12+4 x-x^{2}=3 x$ $x^{2}-x-12=0$

$$
x \in \notin \mathbb{O}=-3
$$

But $\{0<x<b\}$
: $x=4$ umity andy
'e)

$$
\begin{aligned}
d^{2} & =250^{2}+380^{2}-2 \times 250 \times 380 \operatorname{cost}{ }^{\circ} \\
& =70225 \\
d & =265 \mathrm{hm},
\end{aligned}
$$

((I) $380=10225+250^{2}-2 \times 250 \times 26580$

$$
\cos \theta=-0.09
$$

$$
\theta=95^{\circ} 3^{\prime}
$$

Bing 1520%
4

Domain $\{-1 \leqslant 4 \leq t\}$
Range $\{0 \leq y \leqslant 4\}$
d.) $(x-3)^{2}+(y-32)^{2}=(x+1)^{2}+(y-4)^{2}$

$$
\begin{gathered}
x^{2}-6 x+9+y^{2}+4 y+4=x^{2}+2 x+1+y^{2}-8 y+16 \\
-8 x+12 y-4=0 \\
2 x-3 y+1=0
\end{gathered}
$$

(c) $2 k+1>0$

$$
k>-\frac{1}{2}
$$

And $\Delta<0$

$$
\begin{aligned}
25-4 \times 3 \times(2 k+1) & <0 \\
25-\$ 4 k-12 & <0 \\
-24 k & <-13 \\
k & >\frac{13}{24}
\end{aligned}
$$

a Soh $k>\frac{13}{24}$.
d(i) ANea $\triangle O R S<$ Area Sector< 4 保 B oi $\frac{1}{2} \cdot 1,1 \operatorname{sen} x<\frac{1}{2} \cdot 1^{2} \cdot x<\frac{1}{2} \cdot 1 \cdot \tan x$ Sunk $<x<$ Tank
(ii)

$$
\begin{aligned}
1 & <\frac{x}{\operatorname{sen} x}<\frac{\operatorname{sen} x}{\cos x} \cdot \frac{1}{\operatorname{sen} x} \\
\lim _{x \rightarrow 0}(1) & <\lim _{x \rightarrow 0}\left(\frac{x}{x}\right)<\lim _{x \rightarrow 0} \frac{1}{\cos x} \\
1 & <\lim _{x \rightarrow 0} \frac{x}{\sin x}<1
\end{aligned}
$$

$\therefore \quad \lim _{x \rightarrow 0} \frac{x}{\operatorname{sink}}=1$
(e)

$$
\begin{aligned}
l & =x \theta \\
35 & =0 \\
\theta & =8.75 \mathrm{rad} . \\
\text { heogit } & =4 \times 4 \mathrm{sin}\left(8.75-\frac{\pi}{2}\right) \\
& =7.12 \mathrm{~cm} .
\end{aligned}
$$

(f)

$$
\begin{aligned}
& 2^{2 n+1}-9\left(2^{n}\right)+4=0 \\
& 2 \cdot\left(2^{n}\right)^{2}-9\left(2^{n}\right)+4=0
\end{aligned}
$$

hat $\mu=2^{n}$

$$
2 m^{\prime}-9 w+\neq=0
$$

$$
(2 \mu+1)(\mu-4)=0
$$

$$
\mu=\frac{1}{2} \text { or } \mu=4
$$

$$
2^{n}=2^{-1} \text { on } 2^{n}=2^{2}
$$

$$
n=y \text { dr } n=2 \text {. }
$$

