Question 1 (15 Marks)		Marks
(a)	Factorise $8x^3 + 64y^3$.	2
(b)	Simplify fully $\frac{2^{-x}.4^{2x+1}}{(2^{-x})^3}$.	2
(c)	Find the equation of a line passing through the point of intersection of the straight lines $2x - 3y + 5 = 0$ and $3x + 4y + 8 = 0$ and the point (2, 1).	3
(d)	Differentiate with respect to <i>x</i> :	
	(i) $3\pi^2 - 2$	1
	(ii) $\frac{2x^3 - 5x}{x}$	2
	(iii) $\frac{2x}{3-4x}$	2
(e)	(i) State the natural domain and range for the function $y = \sqrt{3-x}$.	2
	(ii) Neatly sketch the function $y = \sqrt{3-x}$.	1
Que	stion 2 (15 Marks) START A NEW PAGE	Marks
(a)	Find the gradient of the tangent to the curve $y = \frac{1}{5-2x}$ at the point	2
	(3, -1)	
(b)	Solve for <i>x</i> :	
	(i) $\tan x = 1$, where $0^0 \le x \le 360^0$.	2

(ii)
$$\sqrt{3-2x} = x$$
 3

(iii)
$$\frac{18}{2x+1} - \frac{5}{x} = 1$$
 2

Question 2 continues overleaf.

Question 2 continued

(c) In the diagram below $RS \parallel BC$. Find the value of x, giving reasons.

- (d) ABCD is a quadrilateral such that AB = 8 units, BC = 16 units, CD = 18 units and AD = 24 units. Diagonal AC = 12 units. Draw a neat sketch on your answer page, clearly showing this information.
 - (i) Prove that $\triangle ABC \parallel \mid \triangle CAD$. 2
 - (ii) Hence show that $AB \parallel DC$.

Question 3 (15 Marks)START A NEW PAGEMarks

- (a) Using a sketch, neatly indicate the region of the Cartesian plane for which the following inequalities hold true. $y \le x, y \ge 0$ and $y \le \sqrt{9-x^2}$
- (b) Solve for x and y, given that $4^{x} \cdot 8^{-y} = 1$ and $25^{x} = 125 \times 5^{y} \cdot 3$
- (c) Derive the equation of the locus of P(x, y) such that it's distance from **3** A(2, 4) is twice it's distance from B(3, 5).

Question 3 continues overleaf.

2

2

Question 3 continued

- (d) HF=400 cm and GF=200 cm. $\angle EFH=15^{\circ}$.
 - (i) Find the size of $\angle HFG$. 1
 - (ii) Find the length of *EH*.

(e) A(1, 6) and B(3, 2) are points on the curve xy = 6 and it is known that the tangent at *B* has slope $-\frac{2}{3}$.

	5	
(i)	Find the equation of the tangent at <i>B</i> .	1
(ii)	If this tangent meets the x, y axes at E, F respectively, prove that B	3
	is the midpoint of <i>EF</i> .	

Question 4 (15 Marks)START A NEW PAGEMarks

- (a) The line $x + y = 3\sqrt{2}$ is a tangent to a circle with centre (0, 0). 2 Find the radius of this circle.
- (b) If f(x) and g(x) are odd functions and h(x) = f(x).g(x), prove that h(x) is 2 an even function.
- (c) The lines 3x y + 3 = 0, y = 3x 6, y = x 4 and 5x + 3y = 15 form a quadrilateral. Describe the type of quadrilateral formed, giving clear reasons.

Question 4 continued overleaf.

1

Question 4 continued.

(d) Solve for *x*:

(i)
$$|3x-2| < |3+2x|$$
 3

(ii)
$$\cos(180^{\circ} - x) = \frac{1}{2}; 0^{\circ} \le x \le 360^{\circ}$$
 2

(e) Show, by the method of First principles, that the derivative of $y = \sqrt{2x}$ 3 is given by $\frac{dy}{dx} = \frac{1}{\sqrt{2x}}$.

~END OF TEST ~

Year 11 Preliminary Half Yearly Maths (2U) Examinations 2007 – SOLUTIONS				
Question 1				
(a) $8x^3 + 64y^3 = (2x + 4y)(4x^2 - 8xy + 16y^2)$ $2^{-x} 4^{2x+1} - 2^{-x} 2^{4x+2}$	→ ❷ Marks			
(b) $\frac{2^{-x} \cdot 4^{2x+1}}{(2^{-x})^3} = \frac{2^{-x} \cdot 2^{4x+2}}{2^{-3x}}$	→ ❷ Marks			
$= 2^{6x+2}$				
(c) New line must satisfy $2x - 3y + 5 + k(3x + 4y + 8) = 0$ at (2, 1).	→ 0 Mark			
$\therefore 4 - 3 + 5 + k(6 + 4 + 8) = 0 \rightarrow k = -\frac{1}{3}$	\rightarrow 0 Mark for <i>k</i>			
$\therefore \text{ eqn of new line is: } 3x - 13y + 7 = 0$	→ 0 Mark for equation.			
(d) (i) $\frac{d}{dx}(3\pi^2 - 2) = 0$	→ 0 Mark			
(ii) $\frac{d}{dx}\left(\frac{2x^3-5x}{x}\right) = \frac{d}{dx}\left(2x^2-5\right), x \neq 0$ $= 4x$	 → ● Mark for simplification → ● Mark correct answer 			
(iii) $\frac{d}{dx}\left(\frac{2x}{3-4x}\right) = \frac{(3-4x)(2) - (2x)(-4)}{(3-4x)^2}$	→ 0 Mark correct quotient rule			
$=\frac{6}{(3-4x)^2}$	→ 0 Mark correct			
Alternative solution	answer			
$\frac{d}{dx}(2x)(3-4x)^{-1} = (2x)\cdot -1(3-4x)^{-2}\cdot -4 + (3-4x)^{-1}\cdot 2$ $= \frac{8x}{(3-4x)^2} + \frac{2}{(3-4x)}$	 → correct use of rule ● Mark 			
$= \frac{6}{(3-4x)^2}$	→ • Mark correct answer			
(e) (i) Domain: $\{x : x \le 3\}$; Range: $\{y : y \ge 0\}$ (ii)	→ 0 Mark each			
3	➔ ❶ Mark			

Question 4			
(a) If line is a tangent then the radius = perp. Distance of the line from the centre of the circle. → ① Mark correct use			
	perp. Distance equation		
$\therefore Radius = \left \frac{0 + 0 - 3\sqrt{2}}{\sqrt{2}} \right = 3 \text{ units}$	→ 0 Mark correct		
	answer		
(b) If $f(x)$ and $g(x)$ are odd functions then by definition			
f(-x) = -f(x) and g(-x) = -g(x)	→ 0 Mark		
$\therefore h(-x) = f(-x) \times g(-x)$ $= -f(x) \times -g(x)$			
$= f(x) \times g(x) = h(x)$			
\therefore since $h(-x) = h(x)$; $h(x)$ is an EVEN function	→ O Mark		
(c) $L_1: 3x - y + 3 = 0 \rightarrow \text{gradient } m_1 = 3$			
$\begin{array}{c} (c) & L_1 : 5x - y + 5 & 0 & y \text{ gradient } m_1 & 5 \\ L_2 : y = 3x - 6 \rightarrow \text{ gradient } m_2 = 3 \end{array}$			
$L_3: y = x - 4 \rightarrow \text{gradient } m_3 = 1$	→ 0 Mark		
$L_4: 5x + 3y = 15 \rightarrow m_4 = -\frac{5}{3}$			
$\therefore \text{ since } m_1 = m_2 \text{ we have } L_1 \parallel L_2$	→ 0 Mark		
∴ quadrilateral formed is a	→ O Mark		
trapezium (one pair of opposite sides parallel)			
sides parallel)			
(d) (i) $ 3x-2 < 3+2x $			
: $9x^2 - 12x + 4 < 9 + 12x + 4x^2$ (by squaring	→ O Mark		
both sides) $\therefore 5x^2 - 24x - 5 < 0$			
	→ 0 Mark Correct		
$\therefore (5x+1)(x-5) < 0 \rightarrow -\frac{1}{5} < x < 5$	solution		
. 1			
(ii) $\cos(180^0 - x) = \frac{1}{2}$			
$\cos x = -\frac{1}{2}$ (by supplementary angles)	→ 0 Mark		
$\therefore x = 120^{\circ} \text{ or } x = 240^{\circ}$	→ 0 Mark		

Question 4
(d)
$$y = \sqrt{2x}$$

 $\therefore \frac{dy}{dx} = \lim_{\Delta x \to 0} \frac{(y + \Delta y) - y}{\Delta x}$ by First principles of diff.
 $\therefore \frac{dy}{dx} = \lim_{\Delta x \to 0} \frac{\sqrt{2(x + \Delta x)} - \sqrt{2x}}{\Delta x}$
 $= \lim_{\Delta x \to 0} \frac{\sqrt{2(x + \Delta x)} - \sqrt{2x}}{\Delta x} \times \frac{\sqrt{2(x + \Delta x)} + \sqrt{2x}}{\sqrt{2(x + \Delta x)} + \sqrt{2x}}$
 $= \lim_{\Delta x \to 0} \frac{2x + 2\Delta x - 2x}{\Delta x(\sqrt{2x + 2\Delta x} + \sqrt{2x})}$
 $= \lim_{\Delta x \to 0} \frac{2\Delta x}{\Delta x(\sqrt{2x + 2\Delta x} + \sqrt{2x})}$
 $= \lim_{\Delta x \to 0} \frac{2}{(\sqrt{2x + 2\Delta x} + \sqrt{2x})}$
 $= \lim_{\Delta x \to 0} \frac{2}{(\sqrt{2x + 2\Delta x} + \sqrt{2x})}$
 $= \frac{2}{(\sqrt{2x} + \sqrt{2x})}$ as $\Delta x \to 0$
 $= \frac{2}{2\sqrt{2x}} = \frac{1}{\sqrt{2x}}$ as required.