Question 1 (15 Marks)

Marks
(a) Factorise $8 x^{3}+64 y^{3}$. $\quad \mathbf{2}$
(b) Simplify fully $\frac{2^{-x} \cdot 4^{2 x+1}}{\left(2^{-x}\right)^{3}}$.
(c) Find the equation of a line passing through the point of intersection of the straight lines $2 x-3 y+5=0$ and $3 x+4 y+8=0$ and the point $(2,1)$.
(d) Differentiate with respect to x :
(i) $3 \pi^{2}-2 \quad 1$
(ii) $\frac{2 x^{3}-5 x}{x}$
(iii) $\frac{2 x}{3-4 x}$

2
(e) (i) State the natural domain and range for the function $y=\sqrt{3-x}$.
(ii) Neatly sketch the function $y=\sqrt{3-x}$.

Question 2 (15 Marks)

START A NEW PAGE
Marks
(a) Find the gradient of the tangent to the curve $y=\frac{1}{5-2 x}$ at the point $(3,-1)$
(b) Solve for x :
(i) $\tan x=1$, where $0^{\circ} \leq x \leq 360^{\circ}$. $\quad 2$
(ii) $\sqrt{3-2 x}=x \quad 3$
(iii) $\frac{18}{2 x+1}-\frac{5}{x}=1$
(c) In the diagram below $R S \| B C$. Find the value of x, giving reasons.

(d) $A B C D$ is a quadrilateral such that $A B=8$ units, $B C=16$ units, $C D=18$ units and $A D=24$ units. Diagonal $A C=12$ units. Draw a neat sketch on your answer page, clearly showing this information.
(i) Prove that $\triangle A B C \mid \| \triangle C A D$.
(ii) Hence show that $A B \| D C$.
(a) Using a sketch, neatly indicate the region of the Cartesian plane for which the following inequalities hold true.

$$
y \leq x, y \geq 0 \text { and } y \leq \sqrt{9-x^{2}}
$$

(b) Solve for x and y, given that $4^{x} \cdot 8^{-y}=1$ and $25^{x}=125 \times 5^{y}$.
(c) Derive the equation of the locus of $P(x, y)$ such that it's distance from $A(2,4)$ is twice it's distance from $B(3,5)$.
(d) $H F=400 \mathrm{~cm}$ and $G F=200 \mathrm{~cm} . \angle E F H=15^{\circ}$.
(i) Find the size of $\angle H F G$.
(ii) Find the length of $E H$.

Diagram not to scale
(e) $A(1,6)$ and $B(3,2)$ are points on the curve $x y=6$ and it is known that the tangent at B has slope $-\frac{2}{3}$.
(i) Find the equation of the tangent at B.
(ii) If this tangent meets the x, y axes at E, F respectively, prove that B is the midpoint of $E F$.

Question 4 (15 Marks) START A NEW PAGE

(a) The line $x+y=3 \sqrt{2}$ is a tangent to a circle with centre $(0,0)$.

Find the radius of this circle.
(b) If $f(x)$ and $g(x)$ are odd functions and $h(x)=f(x) \cdot g(x)$, prove that $h(x)$ is an even function.
(c) The lines $3 x-y+3=0, y=3 x-6, y=x-4$ and $5 x+3 y=15$ form a

3 quadrilateral. Describe the type of quadrilateral formed, giving clear reasons.

Question 4 continued.

(d) Solve for x :
(i) $|3 x-2|<|3+2 x| \quad 3$
(ii) $\cos \left(180^{\circ}-x\right)=\frac{1}{2} ; 0^{0} \leq x \leq 360^{\circ}$
(e) Show, by the method of First principles, that the derivative of $y=\sqrt{2 x}$ is given by $\frac{d y}{d x}=\frac{1}{\sqrt{2 x}}$.

Year 11 Preliminary Half Yearly Maths (2U) Examinations 2007 - SOLUTIONS

Question 1

(a) $8 x^{3}+64 y^{3}=(2 x+4 y)\left(4 x^{2}-8 x y+16 y^{2}\right)$
(b) $\frac{2^{-x} \cdot 4^{2 x+1}}{\left(2^{-x}\right)^{3}}=\frac{2^{-x} \cdot 2^{4 x+2}}{2^{-3 x}}$

$$
=2^{6 x+2}
$$

(c) New line must satisfy $2 x-3 y+5+k(3 x+4 y+8)=0$ at $(2,1)$.
$\therefore 4-3+5+k(6+4+8)=0 \rightarrow k=-\frac{1}{3}$
\therefore eqn of new line is: $3 x-13 y+7=0$
(d) (i) $\frac{d}{d x}\left(3 \pi^{2}-2\right)=0$
(ii) $\begin{aligned} \frac{d}{d x}\left(\frac{2 x^{3}-5 x}{x}\right) & =\frac{d}{d x}\left(2 x^{2}-5\right), x \neq 0 \\ & =4 x\end{aligned}$
(iii) $\frac{d}{d x}\left(\frac{2 x}{3-4 x}\right)=\frac{(3-4 x)(2)-(2 x)(-4)}{(3-4 x)^{2}}$

$$
=\frac{6}{(3-4 x)^{2}}
$$

Alternative solution

$\frac{d}{d x}(2 x)(3-4 x)^{-1}=(2 x) \cdot-1(3-4 x)^{-2} \cdot-4+(3-4 x)^{-1} \cdot 2$

$$
\begin{aligned}
& =\frac{8 x}{(3-4 x)^{2}}+\frac{2}{(3-4 x)} \\
& =\frac{6}{(3-4 x)^{2}}
\end{aligned}
$$

(e) (i) Domain: $\{x: x \leq 3\}$; Range: $\{y: y \geq 0\}$
(ii)

\rightarrow (2) Marks
\rightarrow (2) Marks
\rightarrow (1) Mark
\rightarrow (1) Mark for k
\rightarrow (1) Mark for equation.
\rightarrow (1) Mark
\rightarrow (1) Mark for simplification
\rightarrow (1) Mark correct answer
\rightarrow (1) Mark correct quotient rule
\rightarrow (1) Mark correct answer
\rightarrow correct use of rule (1) Mark
\rightarrow (1) Mark correct answer
\rightarrow (1) Mark each
\rightarrow (1) Mark

Question 2

(a) $\frac{d}{d x}\left(\frac{1}{5-2 x}\right)=\frac{2}{(5-2 x)^{2}}$
\therefore gradient at $(3,-1)$ is $m=2$
(b) (i) $\tan x=1$
$x=45^{0}$ or 225°
(ii) $\sqrt{3-2 x}=x \quad[$ Restriction: $0 \leq x \leq 1.5]$
$\therefore 3-2 x=x^{2} \rightarrow x^{2}+2 x-3=0$
$\therefore(x+3)(x-1)=0$
$\therefore x=-3$ or $x=1 \therefore$ only solution is $\boldsymbol{x}=\mathbf{1}$
(iii) $\frac{18}{2 x+1}-\frac{5}{x}=1 \quad[x \neq 0$ or $x \neq-1 / 2]$
$\therefore 18 x-5(2 x+1)=x(2 x+1)$
$\therefore 2 x^{2}-7 x+5=0$
$\therefore(2 x-5)(x-1)=0$
$\therefore x=1$ or $x=\frac{5}{2}$
(c) $\frac{x+4}{x+7}=\frac{x+1}{8}$
(A line parallel to one side of a triangle divides the other 2 sides in the same ratio)
$\therefore 8 x+32=x^{2}+8 x+7$
$\therefore x^{2}=25 \rightarrow x=5(x>0)$
(d) Next page
\rightarrow (1) Mark correct
differentiation
\rightarrow (1) Mark
\rightarrow (1) Mark each
\rightarrow (1) Mark restriction
\rightarrow (1) Mark
\rightarrow (1) Mark answer with justification
\rightarrow (1) Mark
\rightarrow (1) Mark
\rightarrow (1) Mark correct ratio with reason
\rightarrow (1) Mark answer with justification

(b) $4^{x} .8^{-y}=1 \rightarrow 2 x-3 y=0$
$25^{x}=125 \times 5^{y} \rightarrow 2 x=3+y \ldots$ (B)
Subst. (B) into (A)
$\therefore 3-2 y=0 \therefore y=\frac{3}{2}$
$\therefore 2 x=4.5 \quad \therefore x=\frac{9}{4}$
\rightarrow (1) Mark
$y=\sqrt{9-x^{2}}$
$\rightarrow 1 / 2$ mark each for $y=x$ and $y=0$
\rightarrow (1) Mark correct region
\rightarrow (1) Mark for (A)
\rightarrow (1) Mark for (B)
\rightarrow (1) Mark for answer x and y

Question 3

(c) $P A=2 P B \rightarrow P A^{2}=4 P B^{2}$
$\therefore(x-2)^{2}+(y-4)^{2}=4\left[(x-3)^{2}+(y-5)^{2}\right]$
$\therefore x^{2}-4 x+4+y^{2}-8 y+16=4 x^{2}-24 x+36+4 y^{2}-$ $40 y+100$
$\therefore 3 x^{2}+3 y^{2}-20 x-32 y+116=0 \rightarrow$ eqn of circle.
(d) (i) $\cos \angle H F G=\frac{200}{400} \rightarrow \angle H F G=60^{\circ}$
(ii) $\angle H E F=15^{\circ}$ (Angle sum of $\triangle E G F$)
$\therefore E H=H F$ (Equal sides opposite equal angles)
$\therefore E H=400 \mathrm{~cm}$
(e) (i) gradient $=-\frac{2}{3}$ (given)
\therefore eqn. of tangent is: $y-2=-\frac{2}{3}(x-3)$

$$
\text { i.e. } 2 x+3 y-12=0
$$

$E(6,0)$ and $F(0,4) \therefore$ midpoint $=\left(\frac{6+0}{2}, \frac{0+4}{2}\right)=(3,2)$
$\therefore B$ is the midpoint of $E F$.
\rightarrow (1) Mark
\rightarrow (1) Mark
\rightarrow (1) Mark
\rightarrow (1) Mark
$1 / 2$ Mark
$\rightarrow 1 / 2$ Mark

\rightarrow (1) Mark

(eqn. can be of any form.)
\rightarrow Point E © Mark
\rightarrow point F © Mark
\rightarrow Showing B is the midpoint (1) Mark

Question 4

(a) If line is a tangent then the radius $=$ perp. Distance of the line from the centre of the circle.
\therefore Radius $=\left|\frac{0+0-3 \sqrt{2}}{\sqrt{2}}\right|=3$ units
(b) If $f(x)$ and $g(x)$ are odd functions then by definition $f(-x)=-f(x)$ and $g(-x)=-g(x)$
$\therefore h(-x)=f(-x) \times g(-x)$ $=-f(x) \times-g(x)$
$=f(x) \times g(x)=h(x)$
\therefore since $h(-x)=h(x) ; \boldsymbol{h}(\boldsymbol{x})$ is an EVEN function
(c) $\quad L_{1}: 3 x-y+3=0 \rightarrow$ gradient $m_{1}=3$
$L_{2}: y=3 x-6 \rightarrow$ gradient $m_{2}=3$
$L_{3}: y=x-4 \rightarrow$ gradient $m_{3}=1$
$L_{4}: 5 x+3 y=15 \rightarrow m_{4}=-\frac{5}{3}$

\therefore since $m_{1}=m_{2}$ we have $L_{1} \| L_{2}$
\therefore quadrilateral formed is a trapezium (one pair of opposite sides parallel)
(d) (i) $|3 x-2|<|3+2 x|$
$\therefore 9 x^{2}-12 x+4<9+12 x+4 x^{2}$ (by squaring both sides)
$\therefore 5 x^{2}-24 x-5<0$
$\therefore(5 x+1)(x-5)<0 \rightarrow-\frac{1}{5}<x<5$
(ii) $\cos \left(180^{\circ}-x\right)=\frac{1}{2}$
$\cos x=-\frac{1}{2}$ (by supplementary angles)
$\therefore x=120^{\circ}$ or $x=240^{\circ}$
\rightarrow (Mark correct use perp. Distance equation
\rightarrow (1) Mark correct
answer
\rightarrow (1) Mark
\rightarrow (1) Mark
\rightarrow (1) Mark
(1) Mark
(1) Mark
\rightarrow (1) Mark
\rightarrow (1) Mark Correct
solution
\rightarrow (1) Mark
\rightarrow (1) Mark

$$
\begin{aligned}
& \text { Question } 4 \\
& \text { (d) } y=\sqrt{2 x} \\
& \therefore \frac{d y}{d x}=\lim _{\Delta x \rightarrow 0} \frac{(y+\Delta y)-y}{\Delta x} \text { by First principles of diff. } \\
& \therefore \frac{d y}{d x}=\lim _{\Delta x \rightarrow 0} \frac{\sqrt{2(x+\Delta x)}-\sqrt{2 x}}{\Delta x} \\
& =\lim _{\Delta x \rightarrow 0} \frac{\sqrt{2(x+\Delta x)}-\sqrt{2 x}}{\Delta x} \times \frac{\sqrt{2(x+\Delta x)}+\sqrt{2 x}}{\sqrt{2(x+\Delta x)}+\sqrt{2 x}} \\
& =\lim _{\Delta x \rightarrow 0} \frac{2 x+2 \Delta x-2 x}{\Delta x(\sqrt{2 x+2 \Delta x}+\sqrt{2 x})} \\
& =\lim _{\Delta x \rightarrow 0} \frac{2 \Delta x}{\Delta x(\sqrt{2 x+2 \Delta x}+\sqrt{2 x})} \\
& =\lim _{\Delta x \rightarrow 0} \frac{2}{(\sqrt{2 x+2 \Delta x}+\sqrt{2 x})} \\
& =\frac{2}{(\sqrt{2 x}+\sqrt{2 x})} \text { as } \Delta x \rightarrow 0 \\
& =\frac{2}{2 \sqrt{2 x}}=\frac{1}{\sqrt{2 x}} \text { as required. }
\end{aligned}
$$

\rightarrow correct use of first principles (1) Mark
\rightarrow (1) Mark multiply by the conjugate of numerator
\rightarrow (1) Mark correct simplification to result to answer

