Student Number:

Class Teacher (circle): DL RBL(BE) GP

YEAR 11 MATHEMATICS

Preliminary Assessment Task 2

Half-Yearly Examination

May 2008

Arithmetic, Algebra, Functions and Relations, Linear Functions

Syllabus Topics to be covered in this task:	1.1, 1.2, 1.3, 1.4
	4.1, 4.2, 4.3 (not locus), 4.4
	6.1, 6.2, 6.3, 6.4, 6.5, 6.7, 6.8
Syllabus Outcomes to be addressed in this task:	P2, P3, P4, P5

- Time allowed: 1.5 hours plus 5 minutes reading time
- There are five questions, each worth 12 marks
- The mark value of each part is indicated in [...] next to that part
- Start each question on a new page

Question 1Start a new page[12 Marks]

(a) Find the value of *a* to four significant figures if:

$$a = \sqrt{\frac{12345 - 1.07}{1.96^2 + 3.22}}$$
 [2]

(b) Simplify fully:
$$3\sqrt{32} + 2\sqrt{50} - 8\sqrt{18}$$
. [2]

(c) Find, without a calculator, 0.174 as a simplified fraction. [2]

(d) Explain, in your own words, what a rational number is. [1]

(e) Factorise fully:

(i)
$$b^2 + 13b - 48$$
 [1]

(ii)
$$x^3y - 4xy - x^2 + 4$$
 [2]

(iii)
$$p - p^4$$
 [2]

[2]

Question 2	Start a new page	[12 Marks]

(a) Find the values of a and b if
$$\frac{5}{\sqrt{3}+1} = a + b\sqrt{3}$$
. [2]

(b) Solve the inequation below:

$$x^2 - 4x - 12 < 0$$

(c) State whether the function
$$f(x) = x^5 - 3x$$
 is odd, even or neither. [2]
Justify your answer with necessary working.

$$f(x) = \begin{bmatrix} x + 2 & \text{if } x > 2 \\ x^2 & \text{if } -2 < x \le 2 \\ x - x + 1 & \text{if } x \le -2 \end{bmatrix}$$

(i) Evaluate
$$f(-2)$$
. [1]

(e) What is the domain of the function given by $f(x) = -\sqrt{9 - x^2}$? [1]

(f) Find the equation of the axis of symmetry of the parabola
$$y = (x+3)^2$$
. [1]

Question 3

Start a new page

[12 Marks]

In the diagram below, the line l_1 has equation 3x - 2y + 6 = 0 and has an angle of inclination α with the x-axis as shown. The line l_2 passes through points B(5, 0) and D(0, 10) as shown. Lines l_1 and l_2 intersect at point C.

(a) Copy this diagram onto your answer sheet.

(b)	Find the co-ordinates of A, the point where l_1 cuts the x-axis.	[1]
(c)	Calculate the size of angle α to the nearest degree.	[2]
(d)	Show that the gradient of line l_2 is -2 .	[1]
(e)	Find the equation of line l_2 .	[2]
(f)	Find the co-ordinates of point C, the intersection of l_1 and l_2 .	[2]
(g)	Hence, or otherwise, find the area of $\triangle ABC$.	[2]
(h)	By choosing suitable inequations, define the region inside $\triangle ABC$ in algebraic terms. Include the lines <i>AB</i> , <i>BC</i> and <i>AC</i> as part of the region.	[2]

Question 4	Start a new page	[12 Marks]

(a) Find the value(s) of x for which: [2]

$$|2x+6| = 3$$

(b) The end-points of the diameter of a circle are the points P(3,-3) and Q(-1,-9).

(i)	Find the co-ordinates of point C, the centre of the circle.	[2]

(ii) Hence, or otherwise, find the equation of the circle. [3]

(c) (i) Draw a neat sketch of
$$y = \frac{1}{x} - 3$$
, showing all relevant features. [2]

(ii) What is the range of the above graph? [1]

(d) Find, in exact form, the solution(s) to the equation: [2]

$$x^2 - 10x - 1 = 0$$

Question 5Start a new page[12 Marks]

(a) Express the following as a single fraction in simplest form:

$$\frac{4a-1}{4a+1} - \frac{4a+1}{4a-1}$$

(b) Find the shortest (i.e. perpendicular) distance between the lines [3] $l_1: 2x - 3y - 15 = 0$ and $l_2: y = \frac{2x}{3} + 4$. Express your answer in exact form.

(c) (i) Draw a neat sketch of
$$f(x) = |x| - x$$
 over the domain $-4 \le x \le 4$. [2]

(ii) Using your graph in (i) above, determine the number of solutions [1] to the equations

$$y = |x| - x$$
 and $xy = 1$

Do not solve the equations.

(d) The general form of the quadratic equation is given by $ax^2 + bx + c = 0$. [3] Show that by completing the square on this equation, the quadratic formula is obtained.

End of Examination

[3]