\qquad
Class Teacher (circle): DL RBL(BE) GP

YEAR 11 MATHEMATICS

Preliminary Assessment Task 2

Half-Yearly Examination

May 2008

Syllabus Topics to be covered in this task:	1.1, 1.2, 1.3, 1.4
	4.1, 4.2, 4.3 (not locus), 4.4
	$6.1,6.2,6.3,6.4,6.5,6.7,6.8$
Syllabus Outcomes to be addressed in this task:	P2, P3, P4, P5

- Time allowed: $\mathbf{1 . 5}$ hours plus $\mathbf{5}$ minutes reading time
- There are five questions, each worth 12 marks
- The mark value of each part is indicated in [...] next to that part
- Start each question on a new page
(a) Find the value of a to four significant figures if:

$$
\begin{equation*}
a=\sqrt{\frac{12345-1.07}{1.96^{2}+3.22}} \tag{2}
\end{equation*}
$$

(b) Simplify fully: $3 \sqrt{32}+2 \sqrt{50}-8 \sqrt{18}$.
(c) Find, without a calculator, $0.1 \mathbf{7} \dot{4}$ as a simplified fraction.
(d) Explain, in your own words, what a rational number is.
(e) Factorise fully:
(i) $b^{2}+13 b-48$
[1]
(ii) $x^{3} y-4 x y-x^{2}+4$
(iii) $p-p^{4}$
[2]
(a) Find the values of a and b if $\frac{5}{\sqrt{3}+1}=a+b \sqrt{3}$.
(b) Solve the inequation below:

$$
x^{2}-4 x-12<0
$$

(c) State whether the function $f(x)=x^{5}-3 x$ is odd, even or neither.

Justify your answer with necessary working.
(d) Consider the function

$$
f(x)=\begin{array}{ll}
\square x+2 & \text { if } x>2 \\
\square x^{2} & \text { if }-2<x \leq 2 \\
\square-x+1 & \text { if } x \leq-2
\end{array}
$$

(i) Evaluate $f(-2)$.
(ii) Sketch the above function showing all relevant features.
(e) What is the domain of the function given by $f(x)=-\sqrt{9-x^{2}}$?
(f) Find the equation of the axis of symmetry of the parabola $y=(x+3)^{2}$.

Question 3

In the diagram below, the line l_{1} has equation $3 x-2 y+6=0$ and has an angle of inclination α with the x-axis as shown. The line l_{2} passes through points $B(5,0)$ and $D(0,10)$ as shown. Lines l_{1} and l_{2} intersect at point C .

NOT TO
SCALE
(a) Copy this diagram onto your answer sheet.
(b) Find the co-ordinates of A , the point where l_{1} cuts the x-axis.
(c) Calculate the size of angle α to the nearest degree.
(d) Show that the gradient of line l_{2} is -2 .
(e) Find the equation of line l_{2}.
(f) Find the co-ordinates of point C, the intersection of l_{1} and l_{2}.
(g) Hence, or otherwise, find the area of $\triangle A B C$.
(h) By choosing suitable inequations, define the region inside $\triangle A B C$ in algebraic terms. Include the lines $A B, B C$ and $A C$ as part of the region.
(a) Find the value(s) of x for which:

$$
|2 x+6|=3
$$

(b) The end-points of the diameter of a circle are the points $P(3,-3)$ and $Q(-1,-9)$.
(i) Find the co-ordinates of point C , the centre of the circle.
(ii) Hence, or otherwise, find the equation of the circle.
(c) (i) Draw a neat sketch of $y=\frac{1}{x}-3$, showing all relevant features.
(ii) What is the range of the above graph?
(d) Find, in exact form, the solution(s) to the equation:

$$
x^{2}-10 x-1=0
$$

(a) Express the following as a single fraction in simplest form:

$$
\frac{4 a-1}{4 a+1}-\frac{4 a+1}{4 a-1}
$$

(b) Find the shortest (i.e. perpendicular) distance between the lines
$l_{1}: 2 x-3 y-15=0$ and $l_{2}: y=\frac{2 x}{3}+4$. Express your answer in exact form.
(c) (i) Draw a neat sketch of $f(x)=|x|-x$ over the domain $-4 \leq x \leq 4$.
(ii) Using your graph in (i) above, determine the number of solutions to the equations

$$
\begin{aligned}
& y=|x|-x \text { and } \\
& x y=1
\end{aligned}
$$

Do not solve the equations.
(d) The general form of the quadratic equation is given by $a x^{2}+b x+c=0$.

Show that by completing the square on this equation, the quadratic formula is obtained.

End of Examination

